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Abstract: In the vehicle-following scenario of autonomous driving, the change of driving style in the
front vehicle will directly affect the decision on the rear vehicle. In this paper, a strategy based on a
probabilistic neural network (PNN) for front vehicle intention recognition is proposed, which enables
the rear vehicle to obtain the driving intention of the front vehicle without communication between
the two vehicles. First, real vehicle data with different intents are collected and time—frequency
domain variables are extracted. Secondly, Principal Component Analysis (PCA) is performed on the
variables in order to obtain comprehensive features. Meanwhile, two cases are classified according to
whether the front vehicle can transmit data to the rear vehicle. Finally, two recognition models are
trained separately according to a PNN algorithm, and the two models obtained from the training are
verified separately. When the front vehicle can communicate with the rear vehicle, the recognition
accuracy of the corresponding PNN model reaches 96.39% (simulation validation) and 95.08% (real
vehicle validation). If it cannot, the recognition accuracy of the corresponding PNN model reaches
78.18% (simulation validation) and 73.74% (real vehicle validation).

Keywords: probabilistic neural networks; principal component analysis; intention recognition;
vehicle-following scene

1. Introduction

Since the invention of the vehicle, there has been a never-ending quest for safety and
performance. With the improvement of vehicle performance, the safety of manually driven
vehicles is not guaranteed [1], but autonomous vehicles can balance safety and perform [2].
With the continuous breakthroughs in the Internet of Vehicles [3], autonomous driving is
developing at a rapid pace [4]. Autonomous vehicles can improve vehicle performance
compared to manual driving vehicles [5]. However, an excellent autonomous driving
system requires an excellent sensing decision module [6], which needs to have the ability
to accurately identify the intent of the front vehicle, thus providing the basis for planning
vehicle speed, trajectory, and other decisions.

Many scholars at home and abroad have also conducted in-depth research on driving
intention. For example, some scholars used a behavioral dictionary based on six typical
driving behaviors to build a faster and more accurate behavioral perception model for
recognition [7]. A more accurate online recognition model of a driver’s intention has been
developed by using the Hidden Markov Model (HMM) [8]. In the study of emotion on
driving intention, the probability distribution of driving intention under different emotions
can be obtained by an immune algorithm application, so that a more realistic driving inten-
tion can be obtained [9]. At the same time, based on driving data in eight typical emotional
states, the effect of emotions on driving intention conversion was obtained [10]. As time
progresses, more accurate neural network algorithms are used in the scenario of driving
intent recognition. Long Short-Term Memory (LSTM) neural networks recognize driving
intent in real time, which is faster and more accurate than traditional back propagation
neural networks [11]. Some scholars have also improved the existing driving intention
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model by adding Auto-regression (AR), which improves the accuracy of recognition by
analyzing the driver’s previous behavior [12]. By combining multiple algorithms, some
scholars have also made some results. The cascade algorithm of HMM and Support Vector
Machine (SVM) are used to build the driving intention recognition model, which has greater
recognition results than HMM and SVW alone and has a faster response speed [13]. Data
processing is a necessary step for identification. Some scholars have studied the factor-
bounded Nonnegative Matrix Factorization (NMF) problem and proposed an algorithm to
ensure that the objective and matrix factors can converge, which can improve the stability
of the NMF [14]. Some scholars have solved the problem of the PCA algorithm, which is
sensitive to outliers and has noisy data [15].

In addition, based on the mixed traffic scenario where both autonomous vehicles and
manual driving vehicles exist, a driving intention discrimination model for autonomous
vehicles using HMM has been proposed, which has better recognition results in the mixed
traffic scenario [16]. Based on the safety goal of reducing vehicle tailgating, a new model of
safety spacing considering the rear-end braking intention has been proposed [17]. Some
scholars have proposed modified safety interval strategies considering inter-vehicle braking
information communication delays, brake actuator sluggishness, road conditions of each ve-
hicle, and vehicle motion states [18]. In an autonomous driving scenario, the driving speed
and optimal speed tracking controllers for autonomous vehicle formation was investigated
based on the stability and integrity of predicting driving [19]. A two-layer HMM model is
proposed to handle the recognition of driving intentions under combined conditions, and
a maximum likelihood model is used to predict future states in the combined conditions
scenario [20]. A recognition method based on improved Gustafson—Kessel cluster analysis
is proposed for the driving intention of a driver’s gear change, and a corresponding fuzzy
recognition system is constructed based on driving intention fuzzy rules [21]. For the
recognition of driving intention during lane change, a corresponding driver lane change
intention recognition model based on the Multi-dimension Gauss Hybrid Hidden Markov
Model (MGHMM) was constructed and validated on Carmaker vehicle dynamics simula-
tion software [22]. SVM-based lane change intention recognition models have also been
developed by collecting corresponding driving data through driving simulators [23]. For
trajectory prediction in the field of autonomous driving, a trajectory prediction model based
on driving intention is proposed, which can obtain long-term prediction of future trajectory
and short-term prediction of vehicle behavior [24]. Some scholars have also conducted
safety studies based on curve and ramp scenarios [25,26]. There are also scholars who have
achieved good results in adjusting the parameters of the torque converter based on the
results of driver intent recognition [27,28].

However, most of the above research results are aimed at the driving intention recog-
nition of autonomous driving vehicles, and less for the mixed scenarios of manual and
autonomous driving. Most of the algorithms studied above have also been run only in
simulation, with less consideration of real vehicle experiments. In this paper, a model
of driving intention in forward vehicles that can be verified in real vehicles is proposed.
When the front vehicle can transmit vehicle data to the rear vehicle, the model can carry out
accurate driving intention recognition for the corresponding data. When the front vehicle
cannot communicate with the rear vehicle, the rear vehicle can only measure the front vehi-
cle speed through a sensor. As a result, the model carries out less accurate driving intention
recognition. The method proposed in this paper can be a way to recognize the intention
of the front vehicle without any requirement of the front vehicle. In addition, the method
has good implementation implications and requires low hardware performance. The rear
vehicle can base its policy on this reference value, thus improving vehicle performance
while ensuring safety.

2. Research Ideas and Methods

In the vehicle-following scenario, in order to ensure a safe inter-vehicle distance,
the speed change of the front vehicle will directly affect the decision judgment of the
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rear vehicle. When the front vehicle accelerates, the rear vehicle can choose to accelerate
appropriately according to its own vehicle status, thus improving the fuel economy and
power of the vehicle. In this paper, we mainly consider the performance of the vehicle in
the vehicle-following scenario, so we mainly recognize the acceleration intention of the
front vehicle, and when the rear vehicle recognizes the acceleration intention of the front
vehicle, it can reduce the safe inter-vehicle distance appropriately to improve the economy
and power of the vehicle.

In the vehicle-following scenario, the driver’s intention is directly reflected in the
operation of the accelerator pedal, and the vehicle speed, gear and acceleration can also
reflect the driver’s intention, so this paper chooses the accelerator pedal position, speed,
acceleration, and gear position information as the original input of the data. These data
need to be sent from the front vehicle to the rear vehicle. If the front vehicle cannot transmit
this data, the rear vehicle can collect the speed of the front vehicle through the sensor, but
the accuracy of the recognition result will be slightly worse than the former. Therefore, in
this paper, the model is trained in the same way for two cases, one with four inputs and
the other with one input. The workflow of model training is shown in Figure 1. The driver
data can be collected from the driver model in the simulation environment or from the
driver driving a real vehicle. There is a certain difference between the driving behavior
of the driver model in the simulation environment and the real driver, so this paper uses
existing equipment such as Kvaser to collect vehicle status information through CAN
communication. There are four types of working conditions collected, which are mild,
normal, less aggressive, and aggressive. The data for these four intents were collected
by professional drivers driving on the road with the accelerator pedal open at around
10%, 20%, 30%, and 50%. The lengths of the data sets are 120,739, 111,010, 111,413, and
33,954, respectively. Due to the small variety of the original data, a time domain analysis
is performed in this paper in order to make the eigenvalues of each driving intention as
distinguishable as possible. After time domain analysis processing, many time domain
features of the data can be obtained, which can make different driving intentions have more
distinguishing features, thus making the recognition results more accurate. However, too
many features will slow down the recognition speed; we need to ensure the accuracy while
minimizing the computing time, so this paper adopts the PCA to extract the integrated
feature values. The processed data will be used as samples to start training the model. For
the real vehicle experiment, the PNN model, which is easy to implement in hardware, is
chosen in this paper.

Figure 1. Model training workflow diagram.

The verification idea of the simulation and the real vehicle test is the same, as shown in
Figure 2. In the vehicle-following scenario, after collecting vehicle data via Kvaser, the front
vehicle transmits the data to the rear vehicle via the Internet of Vehicles. As mentioned
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earlier, there are two types of data collected by the front vehicle, one includes speed, gear,
accelerator pedal position, and acceleration signal, and the other is speed signal only. The
raw data obtained in both cases need to be processed in the time—frequency domain and
the PCA. The processed data are used as the input to the trained PNN model, and the
final output results are compared with the actual results. In this paper, simulation and real
vehicle experiments are conducted for both cases.

Figure 2. Simulation and real vehicle workflow diagram.

In addition, after the data are acquired, they need to be pre-processed in advance.
The useless data between different intents and data that do not conform to common sense
are deleted. The pre-processed data are divided into training and test sets with a ratio
of 8:2. The training set is first used for PNN training, and then the test set is used to
validate the model obtained from the training. After that, two scenarios are verified in a
real vehicle environment according to whether the front vehicle can communicate or not.
In this paper, different experimental vehicles and different testers were used in order to
ensure the accuracy of the test results as much as possible.

3. Time Domain Analysis Processing and PCA Dimensionality Reduction

In the actual driving of the vehicle, it is not reasonable to judge driving intentions
by the state of the vehicle in the moment. It is normal for different driving intentions to
have the same speed and other vehicle status in the moment. Therefore, this paper adopts
the sliding window intercepts data as the input of the model. The meaning of the sliding
window is that as time increases, new data is gradually added and old data is gradually
deleted, with the length of the window always being a constant. With this approach,
recognition results can be outputted at any time and the accuracy of the recognition results
can be guaranteed. The length of the window is the amount of data, and in terms of the
amount of data selected, if the amount of data selected is too small, the features of the
data will not be obvious enough, thus leading to inaccurate recognition results, and if the
amount of data selected is too large, it will lead to untimely output results. Therefore, in a
comprehensive comparison, this paper chooses to use 3000 data for processing, and the
sampling time of the data is 0.001 s. That is, each intent recognition decision will be based
on the last three seconds of data.

In order to make full use of the data and improve the recognition accuracy, it is
necessary to process the data. In this paper, we mainly process the data in the time domain,
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extracting the time domain features of the data segments, such as mean value, root mean
square value, etc. As shown in Table 1, a total of 18 features were extracted. However, the
time domain processed data will bring too much computation, which will lead to a too
long recognition time and is not conducive to hardware implementation. Therefore, the
simulation time needs to be reduced as much as possible while maintaining the recognition
accuracy. There are more kinds of methods for dimensionality reduction, among which
PCA dimensionality reduction is mainly covariance matrix calculation, and the calculation
process is not complicated and easy to implement in hardware. In this paper, we use the
PCA for dimensionality reduction, which is an unsupervised dimensionality reduction
method. The main idea is that if we want to reduce 6-dimensional data to 3-dimensional,
we need to find 3 orthogonal features and make the maximum variance of the data after
mapping; the larger the variance, the bigger the dispersion between data points and the
greater the degree of differentiation. The main effect of PCA is to reduce the simulation
time, and it is not based on the association with the labels, but on the variance to classify
the principal components. The variance is calculated as shown in Equation (1).

σ2
x =

1
n

n

∑
i=1

(xi −
−
x)

2
, (1)

Table 1. Feature meaning.

No. Meaning No. Meaning

1 Maximum value 10 Skewness
2 Minimum value 11 Rms amplitude
3 Average value 12 Form factor
4 Peak-to-peak value 13 Crest factor
5 Absolute mean 14 Impulse factor
6 Root mean square (Rms) 15 Clearance factor
7 Variance 16 Spectral center of gravity
8 Standard deviation 17 Rms frequency
9 kurtosis 18 Frequency variance

For the simplicity of the calculation, it is necessary to make the mean of each data
zero before the formal dimensionality reduction. This operation does not change the
distribution of the sample, but only corresponds to a translation of the coordinate axes.
Thus, the formula for calculating the variance is shown in Equation (2).

σ2
x =

1
n

n

∑
i=1

x2
i , (2)

The variance is the deviation of the data from a feature before dimensionality reduction,
while the covariance is used to determine whether the new feature will affect the original
feature. Therefore, in addition to calculating the variance, PCA dimensionality reduction
also requires the calculation of the covariance, and the calculation of the covariance of the
feature X and the feature Y is calculated as follows.

Cov(X, Y) =
1
n

n

∑
i=1

xiyi, (3)

In the calculation process, the eigenvectors of the covariance matrix are the principal
components, and their corresponding eigenvalues are the variances of the principal com-
ponents. The larger the eigenvalue corresponding to this eigenvector in the covariance
matrix, the larger the variance represents, and the more obvious the differentiation of the
data mapped to this eigenvalue, so it is more appropriate to choose him as the principal
component. Therefore, the size of the eigenvalue can be used to determine which principal
component direction contains the size of the data, so that the final number of principal
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components can be determined. As shown in Figure 3, the number of principal components
selected in this paper is 4, and the final data volume that can be included is 99.87% (one
input variable) and 99.58% (four input variables). The n-th variance ratio in the figure is
calculated as the ratio of the sum of the variances of the first n principal components to all
principal components.

Figure 3. PCA downscaling results ((left): one input variable, (right): four input variables).

In this paper, Matlab software is used to write the relevant algorithms, and the final
result is a transformation matrix, and the transformed data principal components are
obtained by multiplying the data with this matrix. The transformed data are used for
subsequent model design and training. When the PCA is not used, the input data has a
total of 18 dimensions (one input variable) and 72 dimensions (four input variables) and
when the PCA is used, the input data has 4 dimensions. Therefore, this approach greatly
reduces the simulation time.

4. PNN Algorithm

The PNN algorithm consists of a combination of an input layer, a pattern layer, a
summation layer, and an output layer, and its structure is shown in Figure 4. The PNN
algorithm is based on radial basis neural networks and uses Bayesian decision rules as the
basis for classification, which has the following advantages:

1. Easy training and fast convergence make PNN classification algorithms ideal for
real-time processing;

2. The pattern layer uses a radial basis nonlinear mapping function, so the PNN can
converge to a Bayesian classifier as long as sufficient sample data are available;

3. The transfer function of the pattern layer can be chosen from various basis functions
used to estimate the probability density with better classification results;

4. The number of neurons in each layer is relatively fixed and thus easy to implement
in hardware.

From the results of PCA, it can be seen that there is a total of four inputs to the
PNN algorithm used in this paper, as shown in X1–X4. The input layer does not perform
computation, but simply transforms the input data into vector s and passes it to the neurons
in the pattern layer. The pattern layer is a radial base layer, and the function chosen in
this paper is a Gaussian function. In the actual calculation, the vector s in the input layer
needs to be multiplied with the weighting coefficients, as shown in ‘*W1’ in the figure.
The selection of PNN weights relies on the size of the feature value corresponding to each
feature in the PCA dimensionality reduction. The larger the eigenvalue of a feature, the
more data it contains and the more important it is. The formula for calculating the initial
weight is the variance of the feature divided by the sum of the variances of all features.
After that, the weights change as the model is trained. There are four types Φa–Φd of
pattern layer, corresponding to four classification results, where the output of the n-th
neuron is shown in Equation (4).



Vehicles 2023, 5 338

Figure 4. PNN structure diagram.

Φn(s) =e−
(s−wn)(s−wn)T

2α2 , (4)

where Φn(s)—The output of the n-th pattern layer neuron;
α—Smoothing factor;
s—The vectors corresponding to the model inputs;
wn—The weight vector of the n-th pattern layer neuron.
The summation layer does a weighted average of the output of the pattern layer,

and each summation layer neuron represents a category. In total, this paper collects the
recognition results under four driving intentions, which are mild, normal, less aggressive,
and aggressive. There are four neurons in the summation layer, and the output of the i-th
neuron is shown in Equation (5).

Pi =
1
L

L

∑
n=1

Φi,n(s), (5)

where Pi—Weighted output of the i-th category;
L—Number of pattern layer neurons pointing to the i-th category;
Φi,n(s)—The output of the n-th pattern layer neuron pointing to the i-th category.
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The output layer follows the Bayesian decision rule to decide the final output class.
The minimum risk decision is the general form of Bayesian decision making, when the risk
function is shown in Equation (6):

PR(ci|s ) =
4

∑
h=1

λi,hPh(ch|s) , (6)

where PR(ci|s )—The risk when the input vector is judged to be the i-th category;
λi,h—Losses when judging category h as the i-th category;
Ph(ch|s)—The conditional probability of the input vector when judged into the h-th

category the output of the PNN model in a comparison of the input with the trained data,
the probability of similarity is calculated. λi,h represents the loss when wrong results are
outputted. This value can be increased appropriately when the output of the wrong result
has little impact. In this paper, due to the safety of the vehicle involved, λi,h is set to 1 when
the correct result is outputted, and 0 otherwise. Then equation 6 is updated to Equation (7).

PR(ci|s ) = 1− Ph(ci|s ), (7)

Therefore, in order to minimize PR(ci|s ), then Ph(ci|s) is maximum. So that is, the
output layer takes the class corresponding to the output of the maximum summation layer.

5. Algorithm Validation and Real Vehicle Experiment

In this paper, both simulation and real vehicle experiments are used for validation.
The purpose of the simulation is to verify the accuracy of the recognition. The purpose of
the real vehicle experiments is to verify the generality of the results and to verify the ease
of implementation of the recognition algorithm.

In this paper, we used Prescan and Simulink for joint simulation verification, where
Prescan provided the road environment and Simulink controlled the vehicle operation. The
vehicle model was built based on the demo file of Prescan. In the simulation environment,
there were two vehicles driving in the same direction on a road. The front vehicle drove with
different driving intentions and the rear vehicle performed recognition. The rear vehicle
recognized the driving intention of the front vehicle based on the information received.
The result of the recognition is shown in Figures 5 and 6. The horizontal coordinates in the
figure represent time, and each recognition is made using the last 3 s of data. The vertical
coordinate in the figure is the recognition accuracy rate. As time increases, the accuracy
rate changes continuously, and the final average accuracy rate is 96.39%. where accuracy
rate is defined as follows:

Acc =
TP

TP + FP
, (8)

where Acc accuracy rate of recognition;

Figure 5. Identification results under simulation ((left): mild, (right): normal).
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Figure 6. Identification results under simulation ((left): less aggressive, (right): aggressive).

TP, FP are the number of samples with correct and incorrect identification results,
respectively.

When the front vehicle is unable to transmit status information, the rear vehicle can
only judge the intention by the speed of the front vehicle. In this paper, the final average
accuracy rate of knowing only the speed information of the front vehicle was 78.18%.

In the real vehicle experiment, as shown in Figure 7, two vehicles are used in this paper.
The front vehicle collects data through the Kvaser device and sends it to the rear vehicle
through a LoRa chip. The rear vehicle receives the data and sends it to the transmission
control unit (TCU) through the UART serial port. The PNN model is burned into the TCU for
recognition. In this paper, experiments were conducted according to two cases, one was to
send four vehicle status information and the other was to send only vehicle speed information.
As shown in Figure 8, the recognition average result in the first case was 95.08%.

Figure 7. Schematic diagram of the real vehicle experiment.

Figure 8. Identification results under real vehicle ((left): mild, (right): normal).
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Due to the safety considerations during driving, only the first two intentions were
experimented in this paper. As can be seen from the figure, the accuracy rate was steady
as time increased, which means that the recognition algorithm does not recognize only
a certain situation but has a similar ability to recognize most situations. The recognition
accuracy decreased when the rear vehicle could only obtain the speed information of the
vehicle in front, and the final average recognition result was 73.74%.

In summary, as shown in Table 2, the recognition model proposed in this paper has
good performance in both simulation and real vehicles. The recognition accuracy was
around 95% when more information about the front vehicle could be obtained, and around
73% when only speed information about the front vehicle could be obtained. The vehicle
could carry out corresponding measures to improve the vehicle performance according
to the recognition results of the front vehicle. The variance of the accuracy could reflect
the suitability of the algorithm. The lower variance of the recognition accuracy indicates
that the algorithm has a similar recognition ability for various working conditions. The
peak-to-peak value is the maximum value minus the minimum value in a segment of
data, which can reflect the sharpness of the curve. Since the sample size is too small at the
beginning of identification, the accuracy at this time is not meaningful and this part of the
data is not included in the calculation of peak-to-peak values. The final calculation results
are shown in Table 2.

Table 2. Recognition results.

Work Conditions Correct Rate
(Acc)

Variance of the
Correct Rate

(σ2
Acc)

Peak-to-Peak of
the Correct Rate

(σ2
Acc)

Simulation (with four
input variables)

mild 96.81% 0.88 3.45
normal 95.37% 3.30 7.55

less aggressive 96.31% 0.44 2.21
aggressive 96.60% 0.83 2.16

Simulation (with one
input variable)

mild 76.90% 9.33 9.39
normal 77.18% 18.33 16.43

less aggressive 83.80% 17.48 14.96
aggressive 68.98% 29.16 13.14

Real vehicle (with four
input variables)

mild 95.05% 0.19 3.26
normal 95.93% 0.49 1.57

Real vehicle (with one
input variable)

mild 73.84% 4.11 4.64
normal 73.37% 13.13 9.18

6. Summary and Prospect

This paper focuses on the recognition of acceleration driving intentions of the rear
vehicle to the front vehicle in a vehicle-following scenario. The purpose of this work was
to enable the rear vehicle to take countermeasures in advance according to the change of
the front vehicle’s intention in an autonomous driving scenario, so that a greater vehicle
performance could be obtained while ensuring safety. In this paper, we also considered
the driving intention recognition when there was no Internet of Vehicle. By processing
and analyzing the vehicle driving data, it was possible to provide the rear vehicle with a
reference value of the driving intention of the front vehicle in most cases. The specific work
is as follows:

1. This paper identified the research idea. The idea of identification is to analyze and
process the existing data, determine the driving behavior characteristics, and build a
model using a PNN algorithm.

2. The data were processed in the time domain and processed by the PCA. By combining
time domain analysis and PCA, the main features of the data were extracted, redun-
dant data calculations were avoided, and the computation was effectively reduced on
the basis of accuracy, thus laying the foundation for real vehicle experiments;
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3. The processed data were trained by the PNN algorithm, which had the advantage
that the number of neurons is fixed, thus making the implementation of the algorithm
simpler. In addition, the PNN model was simpler to train, which further reduced the
amount of computation required for recognition.

4. In this paper, the PNN model was verified by both simulation and the real vehicle.
The validation of simulation is mainly to ensure the accuracy of the model, and the
validation of the real vehicle is mainly to ensure the generalizability of the model.
This paper also validated the model based on the situation when there is no vehicle
network and achieves good results.

Through the above series of work, this paper verifies the feasibility of recognizing
the driving intention of the front vehicle. However, this paper only studied the vehicle-
following scene, and did not expand it to a variety of scenarios. The subsequent research
will gradually consider more scenarios, such as signal light scenarios. In addition, during
the research process of this paper, many algorithms with excellent performance were there-
fore excluded due to the consideration of real vehicle experiments. Later, more advanced
algorithms can be used to further improve the accuracy of recognition by upgrading the
vehicle controller.
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