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Abstract: Only a small part of the high performance of electric drive systems in vehicles is used in
everyday operation by customers. As a result, most drives are not operated in the optimum effi-
ciency range. Designing a suitable drive system, whose performance is aligned with actual customer
requirements, presents the potential to increase efficiency. Based on the findings of previous re-
search, this paper serves to complement an existing method, which already introduced the basic
method of transferring statistical customer data into relevant parameters for the design of a cus-
tomer-specific drive system. In order to improve the method, further criteria for the selection of
relevant time series come into place. Furthermore, the impact on maximum loads resulting from
various sequences of the selected time series is identified and evaluated with time frame-based anal-
ysis. A new approach for the effective computation of maximum design-relevant loads in the ad-
missible time frame range is introduced and validated. By taking this approach, the sensitivity of
the derived design parameters regarding various time series sequence is evaluated in the context of
selected datasets. In addition, concatenations of time series are identified which may have a relevant
influence on the maximum loads. Consequently, the design process is safeguarded thoroughly
against potential maximum loads as well as the associated thermal stresses.

Keywords: design of vehicle drive systems; analysis of customer data; sequence of time series

1. Introduction

Electrical drive systems in vehicles are usually designed according to the require-
ments, e.g., extracted from endurance testing. The maximum loads occurring in the rec-
orded time series data define the target performance of the developed drive system. In
contrast to these requirements, the loads actually occurring in customer operation and
thus the real customer requirements are quite different. In this respect, the analysis of
vehicle- and market-specific customer data provides valuable information about the use
of driving systems. In system design, this discrepancy in requirements affects the effi-
ciency of the powertrain, among other things. Maximizing the efficiency of the overall
system can lead to an increase in range and thus customer benefit.

By applying a previously published method [1], statistical customer data are trans-
formed into a customer-oriented driving cycle from which customer-relevant require-
ments can be derived. In contrast to already existing work, whose methods also deal with
the synthesis of representative driving cycles, the methodical approach of this work pur-
sues different goals and therefore differs in detail. The customer data used in [2] are based
only on statistical averages, while the database of this work contains statistics recorded
from real customer usage. Compared to [3], in this work, there is no categorization of
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subcycles in different driving styles or driving environments and no further subdivision
of time series, but the approximation of distribution statistics. Due to the limited database
of only 175 measurement series from real drives, the method according to [4] does not
fully capture the breadth of customer driving behavior and, in contrast to the customer
data analyzed here, does not represent different markets. In summary, these methods do
not represent a suitable or adequate approach for the ambition of this work.

The methodological approaches for derived design-relevant parameters presented in this
paper are based on the methods from [1] and serve to extend the existing method. Due to the
ambiguity in the derivation of time series from statistical customer data, multiple criteria are
required for the selection of relevant time series. This enables a customer-specific drive system
design with the potential to increase efficiency compared to existing drives.

The basic cycle generation methods could be categorized into the following variants
according to [5]: (1) micro-trip based cycle construction, (2) segment-based cycle construc-
tion, (3) cycle construction with pattern classification, and (4) modal cycle construction.
Despite of different methodical approaches, the sequencing of selected time series of all
above-mentioned variants are based on stochastic or random principles. The influence of
various subcycle sequences has been neglected. Due to the fact that varying the chrono-
logical order of loads and breaks affects the thermal behavior of powertrain components
differently, it is necessary to investigate the sequence of the selected relevant time series
regarding to their maximum loads and to identify the concatenations that may affect these
loads most. Based on the importance of powertrain thermal safeguarding, it is necessary
to investigate and evaluate the impact of different time series sequences regarding to the
occurring loads. In this presented work, an extensive method developed on time frame-
based analysis is introduced to assess varying load sequences. By doing this, a consequent
safeguarding process against thermal stresses is achieved and the corresponding relevant
design parameters are derived.

2. Improvement of Customer-Specific Drive Cycle Derivation

According to the method in [1], statistical customer data are transformed into a com-
bined driving cycle whose distribution statistics are as close as possible to those of the
customer data. This cycle further serves for the derivation of design-relevant parameters
for electric powertrains.

The following sections deal with the extension of the existing method. Additionally,
it is important to mention that the actual method must be considered separately from the
available database. While the quality of the data may vary, the method as such must be
self-sufficiently applicable. In the context of the exemplary application in this work, it is
assumed that the data used are plausible and contain the required information.

2.1. Evaluation of the Intersection of Multiple CLC-Data

The following investigations are based on customer load collective (CLC) data, which
are event-based counts in the control unit of real customer vehicles. These data are stored
in a cloud and can be retrieved and analyzed on a vehicle- or market-specific basis. Based
on the available CLC data, only the distribution of acceleration versus velocity has been
considered by the method so far. In order to increase the accuracy of the derived conclu-
sions from the analysis of the customer data, additional CLC data will be evaluated. De-
pending on the availability of the CLC data for the specific vehicle, customer statistics,
such as torque versus speed, as well as the mechanical power of the machine, can also be
taken into account. Considering these data reduces the deviation to the customer data and
thus increasing the quality of the derived conclusions by including additional infor-
mation, e.g., acceleration and torque are not necessarily proportional; instead, torque in-
cludes the influence of slope.

Thereby, the structure of the torque versus speed map is analogous to the accelera-
tion versus velocity, whereas the mechanical power is already time-weighted in the CLC
data. As the example in Figure 1 shows, the classes in y-direction reflect ascending time
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frames T, and the power classes in the x-direction represent certain power ranges. The
number of power classes and time frames are chosen here as an example and influence
the accuracy of the CLC data. Finally, the color scheme symbolizes the frequency of oc-
currence and thus represents the accumulation of the customers driving behavior.

Max. RMS of mechanical power

Increasing size
of time frames t

Figure 1. Exemplary distribution map of the mechanical power of an electric SUV.

The highest accumulation, represented by the green color, can be localized in this
particular case around power class 3 for small time frames and becomes significantly
lower for larger time frames. This tendency is caused by the maximum occurring root
mean square value (RMS), which becomes smaller for larger time frames, e.g., due to
breaks between the loads. In addition, the red marked area of the map shows that there
are basically no operating points in customer use cases above power class 5.

As mentioned above, the method considers the distribution of acceleration vs. veloc-
ity as well as torque vs. speed and can finally be extended to take into account the fre-
quency of the time-averaged mechanical power. As pointed out in [1], the TFBA (time
frame-based load analysis) provides additional information, such as duration and fre-
quency of specific loads, and therefore increases the accuracy of the method. The devia-
tion is calculated for those maps according to the method mentioned in [1] and finally
results in the total deviation, which serves as a measure for the relevance of each time
series. This dimensionless variable becomes even smaller the more representative the re-
spective time series is.

The determination of the time series is now based on the intersection of the criteria men-
tioned. An investigation shows that the algorithm considers fewer time series for the approx-
imation to the customer data after implementation of these new criteria. At the same time, the
length of the derived cycle as well as the deviation from the CLC data decreases. This increases
the accuracy considerably, as more appropriate time series are selected. This extension of the
method allows an improved approximation of customer behavior.

2.2. Concatenation of the Time Series

In order to combine time series with each other, it must be ensured that the signal
courses are still continuous. Implausible signal characteristics, such as jumps or kinks,
must be avoided. For example, this would be the case if both time series have different
velocities at the junction. However, as Figure 2 shows, it is not sufficient that the signal
values of both time series match at the end and beginning, respectively. The gradient must
also match to avoid kinks.
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Figure 2. Implausible vs. plausible signal characteristics, e.g., for speed.

To ensure this, the method combines only time series that start and end at standstill,
so the velocity is zero. This means that signals, such as speed, torque, or power, can be
strung together without any problems and result in plausible signal progressions. Both
speed and torque become zero at standstill, whereas auxiliary units or, e.g., the electrical
DC-power of the drive system, contains the standby losses of the inverter and thus does
not become zero.

The only exceptions regarding the concatenation of time series are state variables
such as temperature or state of charge (SOC), since these quantities are not independent
of temporal repeatability. For example, a certain load case, which runs several times in
succession, causes the same signal trace for torque or power. In contrast, signals, such as
temperature or SOC, can change significantly over the time series and consequently do
not fit together. With signal types, a distinction must therefore be made between load and
state variables. The methodical procedure is nevertheless permissible, since only mechan-
ical load variables are considered in the context of this method in order to approximate
the customers driving behavior.

2.3. Limitation of the Total Length

By limiting the total length of the combined time series, another extension of the
method comes into play. The problem is caused by the algorithm combining multiple time
series, creating a new cycle that extends over several hours in duration and hundreds of
kilometers in distance. Due to the limited range, especially for electric vehicles, such a
profile would not be drivable continuously. Therefore, building a cycle that exceeds the
limit in range of vehicles needs to be avoided.

This derived cycle is used for the design of the electric drive components, such as
power electronics, electrical machine, and transmission, which does not include the bat-
tery. Nevertheless, the battery capacity of the specific vehicle is requested by the method
in order to limit the cycle and thus must first be stored. The algorithm then integrates the
battery power of each time series, as exemplified in the top diagram in Figure 3, and rec-
ords the total energy in kWh. Finally, the concatenation of the relevant time series runs
until the energy consumption of the combined cycles reaches, but does not surpass, the
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total capacity of the battery. The graph of the total energy consumption of the composite
cycle can be seen in the exemplary bottom diagram in Figure 3.
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Figure 3. Limitation of the cycle length by the battery capacity

3. Analysis of Load Characteristics under Identical Conditions of Statistics

The authors in [1] established a method including the criteria introduced in Section
2, which delivers a customer-specific drive cycle without a specified chronological order.
The benchmark of this method is a statistical parameter, which indicates the overall dif-
ference between customer CLC data and the combined time series in the region of interest.
This benchmark parameter and all further statistics, e.g., the velocity and acceleration dis-
tributions, remain unchanged under the condition of varied cycle sequences.

However, time series chronological order could have a significant impact due to var-
iable load peaks and breaks arising in different sequences, which results in varied thermal
stresses and therefore influences various design factors of target drive system, e.g., cost,
packaging, weight and manufacture. Therefore, the transition between the subcycles must
be examined more closely. It is assumed that the selected time series can be combined in
any order and all loads can occur at any point in time in the derived cycle.

The time frame-based analysis provides a key framework to understand the varying load
characteristics caused by subcycle permutations for infinite, periodic recurring time series.
Under the scope of the presented work, the constraint of time series recurrence is applied.

Section 3.1 introduces the phenomenon, that the varying cycle sequences give rise to
different load characteristics. Section 3.2 provides a novel method to identify the maxi-
mum design-relevant load within the valid time domain. Section 3.3 defines a generalized
metric to quantify the possible impact of subcycle permutations within the scope of the
underlying work. This analysis provides essential information for the design and thermal
protection of the components.

3.1. Impact of Time Series Sequences on Load Characteristics

Three exemplary synthetic profiles A, B, and C are used, which represent drive
events with loads occurring in different intensity, length, and position, such as alternating
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current in electric motor. Figure 4 demonstrates the cause and effect between arising loads
and the temperature profiles of a drive system component.
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Figure 4. Load and temperature profiles of synthetic profiles A, B and C.

Under the premise that all requirements from Section 2.2 are met, six composite cy-
cles ABC, ACB, BAC, BCA, CAB, and CBA are generated by varying the sequences of
given time series. The number of composite cycles corresponds to the factorial of the pro-
files count. In order to examine the load characteristics of all concatenations generated by
n time series, the time frame-based analysis needs to be performed ! times.

The authors in [6,7] introduced time-rated load periods curve, also known as time-de-
pendent continuous load curves in [1], depicted for the composite cycles in Figure 5. Different
loads resulting from subcycle sequences could be identified for specific time frames.

As Figure 5 shows, two different groups of time-dependent continuous load curves
could be identified out of six composite cycles. The first group of curves contains the com-
bination of ABC, BCA, and CAB, while the second one contains ACB, BAC, and CBA. This
observed two-way partition of composite cycles gives insight about the time frame-based
load characteristics using the state-of-the-art TFBA algorithm from [8]. The concatenations
in each array of curves possess a unambiguous sequence, while the first subcycle could
vary, e.g., ABC, BCA, and CAB correspond to sequence A — B — C and their starting time
series are interchangeable. The observed results could be generalized, as concluded in
Theorem 1.
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Figure 5. Characteristic of time frame-based loads for all time series permutations.

Theorem 1. Once a unambiguous sequence of n given time series is identified, all composite cycles
within this sequence exhibit the same load characteristics in the meaning of TFBA, while the selec-
tion of the starting subcycle is arbitrary.

Proof of Theorem 1. Given the periodic nature of time frame-based analysis, as well as
the incorporated sliding window mechanism in TFBA algorithm, which are both thor-
oughly described and evaluated in [8], consider the two following cases: (1) A time series
is periodically expanded and fixed on the time axis. A sliding time window is moved
toward the positive direction on the time axis until each section of the given time series is
examined. (2) A time window is fixed on the time axis. A periodically expanded time se-
ries slides pass the given time window until the end of time series is reached. While case
1 characterizes the TFBA algorithm, case 2 corresponds to the situation described in The-
orem 1. As long as each section of the given time series is examined within the given time
window, these two cases are equivalent. o

Using Theorem 1, the number of concatenations of #n input time series could be re-
duced by a factor of n, i.e., the number of composite cycles is effectively limited to factorial
of n — 1. In order to identify the relevant parameters for a customer-specific drive system
in the given example with three synthetic profiles, the TFBA only needs to be applied for
two unambiguous cycle sequences in total.

In addition, a further reduction can be achieved based on an analysis of transitions
between time series, which is particularly relevant for the case with large number of total
target cycles. The corresponding approach will be presented in the following section.

3.2. Identification of Maximum Design-Relevant Loads

A high overall load occurs especially when high loads occur in a quick succession
with very short breaks or even without breaks at all. For example, the components expe-
rience a higher thermal stress when one time series, where a high load occurs at the end,
is combined with another time series, where a high load occurs right at the beginning. For
this reason, the transition between two cycles is closely examined in this section with time
frame-based analysis.

In order to obtain maximum time frame-based loads, the analysis procedure intro-
duced in Section 3.1 could be deployed. For n time series, the required number of TFBA
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to be performed on the entire composite cycle would be (n — 1)!, which is computationally
inadmissible once n becomes larger. The optimization of the introduced approach should
be considered. On the one hand, the number of TFBA to be executed could be restricted.
On the other hand, the target time frame-based analysis domain could also be narrowed
down. The maximum design-relevant loads derived from the entire composite cycle orig-
inate from two type of events: (1) Subcycle events, i.e., the entire events and the related
peak loads occur only within each original time series. In fact, this type of event could be
detected in advance before the composite cycle is derived. The required number of TFBA
is in linear relation to the number of input cycles. (2) (n-way) Transition events, which
span across 1 time series. This type of event contains at least one transition between two
time series. The TFBA results of subcycle events are also implicitly contained in the results
of transition events, since each original time series will be analyzed at least once during
the examination of all types of transition events.

Assuming high loads only occur in the transition between two input cycles, i.e., only
two-way transition events are considered, a new approach to identify the maximum de-
sign-relevant loads with respect to cycle sequences is purposed based on Theorem 2.

Theorem 2. For a composite cycle with n original time series, assume the design-relevant maxi-
mum loads are only related to subcycle events and two-way transition events. The peak loads of the
composite cycle for each time frame up to the minimal time series duration could be represented by
the envelope of time-dependent continuous load curves of all two-way combination based on origi-
nal time series.

Proof of Theorem 2. Each time frame-based analysis within each two-way combination
generates one time-dependent continuous load curve, which represents the maximum
loads inside each two-way combination and therefore covers all subcycle events and two-
way transition events based on the initial assumption in Theorem 2. The constraint of the
minimal target time series duration is resulted by this assumption. Consider a time win-
dow longer than the minimal target cycle duration. Thus, it would be possible for that
time window to contain the minimal input cycle as well as the ending part of previous
cycle and the beginning of next cycle simultaneously. This type of load corresponds to the
case of three-way transition events. The initial assumption is therefore violated. o

Using Theorem 2, the necessary number of TFBA executions is reduced from facto-
rial, i.e., (n — 1)/, down to quadratic order of the binomial coefficient (721), ie., % (n—-1).
By iteration of the proposed procedure, the limitation of minimal subcycle duration could
eventually be lifted, while the required number of TFBA to be executed remains under the
factorial order. The time frame-based analysis results of all two-way combinations in ac-
cordance with Theorem 2 are shown in Figure 6.

Comparing the results in Figure 5 within the constraint of minimum input cycle du-
ration, all peak loads could be identified based on the envelope of time-dependent con-
tinuous load curves. The approach based on Theorem 2 substantially reduces the compu-
tational complexity and is therefore practically applicable for the use case of maximum
design-relevant loads identification for up to n time series.

Assuming a certain two-way combination possesses an overall maximum continuous
load curve, the corresponding time series could be classified as most critical part of the
derived cycle regarding to thermal stresses. Therefore, there is also an option of selecting
a two-way concatenation and adjusting it properly so that it generates a maximum con-
tinues load curve over all time frames, while the representative customer drive behaviors
should be retained. With this approach, relevant parameters for thermal safeguarding can
be derived.
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Figure 6. Characteristic of time frame-based loads for two-way combinations.

3.3. Estimation of Influence Based on Subcycle Concatenations

According to the definition in [8,9], four TFBA metrics W, Tp g0, We, T, (peak load,
90% peak time window, continuous load, and continuous time window) are derived from
each input time series.

Under the scope of the presented work, a simplified and extensible metric is defined
to estimate the maximum influence for each two-way combination. Therefore, continuous
value and time window from the predecessor time series are combined with peak value
and 90% time window of the successor time series. Equation (1) shows the calculation of
maximum value estimation AW for the impact due to the varying sequences. The worst-
case assumption, that the peak of the second time series directly appears after the first
time series end, matches to the upper bound of the estimated values.

2 2
Tplgo'w/p +TC.VVC

Tp,90 + Tc

AW =

- W M

By using this parameter as well as selecting an appropriate threshold, all potentially crit-
ical two-way combinations could be identified and pre-selected for further examination.

4. Results
4.1. Derivation of the Composite Cycle

To illustrate the results of the presented method, Figure 7 shows a comparison be-
tween the accumulation of the CLC-Data and the derived cycle. As already known, the
color scheme of these diagrams represents the frequency distribution. These charts of acceler-
ation vs. velocity serve as an example. Additional comparisons are included in Figure Al in
the Appendix A.



Vehicles 2023, 5

315

Velocity inkph

CLC-Data 0.\\ fLQ\ .@\ .bQ\' .QQ\ \@\ :«LQQ\ A

& j \Q.\ © . & & \\@ g Q'QQ'
[4..] 20 %l
[2..4]

[075 ..2[

[02.. 0.75]
[-0.2 ..0.2[

[-075 ..-0.2]
[-2..-075[

Accelerationinm/s?

[-4..-2] | |
Jeo ... =4 0%

Velocity inkph

Derived Cycle

2.4
[075 ..2]
[02 .. 0.75[
[-02..0.2]
[-075 ..-02]
-2..-075[ |
[4..-2[

Jeo . —4]

Accelerationinm/s?

Figure 7. Comparison of the frequency distribution of acceleration vs. velocity.

To generate the distribution table of the composite cycle, each of the time series used
is first converted into a statistic and then merged depending on the proportion of time in
the total cycle.

In order to quantify the distribution of the combined cycle from the initial customer
data, the root mean square error (RMSE) of the deviation is calculated. This value indicates
the accuracy with which the derived cycle approximates the customer statistics. Thus, a
small value points out a good approximation. In this particular evaluation, the RMSE val-
ues of the deviation between both maps are approximately 0.4 for acceleration vs. speed,
about 0.6 for torque vs. speed and about 2.6 overall. In contrast, the RMSE value of the
deviation of only one criterion (see Figure 3 in [1]) was greater than 3. Compared to that,
the RMSE value has decreased significantly. This smaller value results from an even
smaller deviation from the CLC-data and thus indicates an even better approximation of
the customer behavior.

4.2. Time Frame-Based Analysis of the Composite Cycle

The following diagram in Figure 8 shows the time-dependent continuous load curves
of all considered time series (>20,000) using the example of mechanical power. These fig-
ures result from the time frame-based load analysis according to [6] and display the max-
imum occurring RMS value for each time frame width as described in [1].

As mentioned above, the derived cycle results from the concatenation of time series in
order to reduce the deviation as much as possible. This cycle, represented by the red dashed
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line, is shown in Figure 8 in comparison, both to the time series used for the derived cycle in
the foreground and to all time series considered transparently in the background.

T — T — T — T — T

Mechanical Power

Time frames

Continuous Load Curves
== == Derived Cycle

Figure 8. Derived cycle vs. considered time series: Comparison of the mechanical power.

This graph reflects the load of the derived cycle compared to all time series and it
becomes evident that the composite cycle does not include all of the high, infrequent
loads. The reason for this can be seen in the frequency distribution maps, e.g., in Figure 7,
as high loads, such as high accelerations and velocities, occur too rarely to be considered
in this cycle.

As the diagram shows, the derived cycle contains all combined time series. Therefore,
as expected, the TFBA of the composite cycle represents an envelope curve of the com-
bined time series.

4.3. Investigation of Subcycle Sequences Variation

Based on the previous analysis, the sequence of the selected subcycles has an impact
on the course of the continuous load curves. With n selected cycles, there are n! possibili-
ties for a concatenation of these cycles. Therefore, there are 720 (6!) possible concatenations
based on the six selected cycles shown in Figure 8, but only 120 (5/) compounds are unambig-
uous (cf. Section 3.1). Figure 9 shows the corresponding continuous load curves. The time-
dependent continuous load curves of the unambiguous concatenation are shown in turquoise
and represent the possible range between maximum and minimum loads.
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In addition, the continuous load curves of the two-way combinations and the time frame
of the minimal subcycle duration are shown in Figure 9. As explained in Section 3.2, the rele-
vant loads for the time frame up to the duration of the minimum subcycle can be identified
by analyzing the two-way combinations. The computed enveloping continuous load
curve is also visible. This curve corresponds to the maximum of all permuted composite
cycles in the admissible range of the minimum subcycle duration.

It can be seen that in this example the sequence of the cycles has low influence on the
course of the continuous load curves. The maximum relative deviation between the de-
rived cycle and the enveloping continuous load curves of the two-way combination is less
than 0.2% in the admissible range.

Moreover, using the method from Section 3.3, the potentially relevant combinations are
identified, which could critically influence the maximum time frame-based loads. Figure 10
illustrates the result.

Successorsubcycle
5 2 1 4 6 3 AW

high

Predecessorsubcycle

W O == DU

low

Figure 10. Estimation of influence based on various two-way combinations.

For this purpose and to place the focus on the influence of the peak of the following
cycle, the input cycles are sorted in descending order with regard to their RMS value and
only combinations where the following subcycle has a lower RMS are considered. Poten-
tially relevant concatenations can be identified, and their impacts are estimated via the
level of AW, assuming that a cycle can only occur once in the combination. In further
analysis, these pre-selected combinations can be examined more precisely.
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5. Conclusions and Future Work

The methods presented in this paper transfer statistical customer data into discrete
time series in order to approximate the original distribution statistics as closely as possi-
ble. A composite cycle is derived and evaluated against related maximum time frame-
based loads to identify the relevant design parameters.

The existing derivation method is based on a first criterion for the selection of suitable
time series, the distribution statistics of acceleration vs. velocity. Consideration of addi-
tional CLC data will increase the accuracy in selecting appropriate time series. Therefore,
the method is extended by the distribution statistics of torque vs. speed as well as the
mechanical power of the machine. This reduces the number of relevant time series and
increases the approximation of actual customer behavior. Moreover, when concatenating
the time series, it must be ensured that the signal is still continuous; kinks or even jumps
need to be avoided. Finally, limiting the total length of the composite cycle to the range of
the vehicle is another innovation of this method.

These enhancements to the method ultimately result in a very small deviation of the
derived cycle from the original customer data, as the results show. The RMSE of the devi-
ation serves as measure for the approximation of the derived cycle to the customer statis-
tics. This value ranges approximately between 0.4 and 0.6 for all customer data considered
which indicates a very small deviation and thus a good approximation of customer be-
havior. However, as mentioned above, the method requires a valid and plausible data-
base, which was assumed here.

Furthermore, the correlation between subcycle sequences and time frame-based load
characteristics are investigated. Both subcycle and transition events within the composite
cycle could generate loads on certain time window. The latter could result in varying time
frame-based maximum loads, which do not occur in this form within a subcycle. Assum-
ing that these loads can actually occur connected in reality, this leads to differences in
design-relevant parameters, which could significantly affect the overall cost factors of a
customer-specific drive system. The introduced approach of subcycle sequence analysis
provides an evaluation framework regarding this issue and quantifies the impact of se-
quences as a deviation between the derived cycle and the computed maximum envelope
of time frame-based loads.

In order to reduce complexity of the evaluation process, two theorems are intro-
duced. Theorem 1 points out the unambiguous one-to-one relation between time series
sequences and time frame-based load characteristics. Theorem 2 provides a foundation
for the efficient computation of maximum envelope of relevant time frame-based loads in
their admissible range using two-way combination. As a result, the required number of
TFBA executions decreases from factorial down to quadratic order. Hence, it is possible
to integrate the evaluation of a subcycle sequence’s influence on the mentioned derivation
process of design-relevant parameters based on a different dataset.

The application of the evaluation method shows no significant deviation in the ad-
missible range based on the selected dataset, so that the derivation of relevant parameters
based on the original composite cycle is justified. However, if the evaluation process
demonstrates a relatively large deviation between the composite cycle and the overall
maximum time frame-based loads, certain thermal reserve must be considered within the
derivation process of design-relevant parameters.

By applying the simplified metric from Section 3.3, the impacts of potentially critical com-
binations in terms of maximum load can be estimated and selected for further analysis.

In summary, the aforementioned derivation and evaluation methods generate a con-
tribution to the improved customer-specific drive system design, which is thoroughly
safeguarded against potential thermal stresses according to the region of interest of cus-
tomer behaviors.

Future work for these methods could include the quantitative analysis between time
frame-based loads and the related component-specific thermal behavior, e.g., using ther-
mal simulations. Furthermore, the impact of frequency of time frames should be further
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investigated. Based on these aspects, an extended algorithm for the identification of max-
imum thermal stresses over the total length of the composite cycles could be implemented.
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Figure Al. Comparison of the frequency distribution of Torque vs. Speed.
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