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Abstract: The real-time application of powertrain-based predictive energy management (PrEM)
brings the prospect of additional energy savings for hybrid powertrains. Torque split optimal control
methodologies have been a focus in the automotive industry and academia for many years. Their
real-time application in modern vehicles is, however, still lagging behind. While conventional exact
and non-exact optimal control techniques such as Dynamic Programming and Model Predictive
Control have been demonstrated, they suffer from the curse of dimensionality and quickly display
limitations with high system complexity and highly stochastic environment operation. This paper
demonstrates that Neuroevolution associated drive cycle classification algorithms can infer optimal
control strategies for any system complexity and environment, hence streamlining and speeding up
the control development process. Neuroevolution also circumvents the integration of low fidelity
online plant models, further avoiding prohibitive embedded computing requirements and fidelity
loss. This brings the prospect of optimal control to complex multi-physics system applications. The
methodology presented here covers the development of the drive cycles used to train and validate
the neurocontrollers and classifiers, as well as the application of the Neuroevolution process.

Keywords: minimum energy control; optimal control; intelligent systems; artificial intelligence;
hybrid powertrain; Neuroevolution

1. Introduction

Hybrid electric vehicles (HEV) are often optimized and calibrated around a stan-
dard set of drive cycles such as the Environmental Protection Agency (EPA) Federal Test
Procedure (FTP75), Highway Fuel Economy Test (HWFET), and Supplemental Federal
Test Procedure (US06, SC03 cycles). Due to the stochastic nature of real-world driving
conditions and its effect on fuel economy [1], adaptively changing torque split calibra-
tion on the fly is of interest. The academia and the automotive industry have proposed
various optimal control strategy derivation techniques throughout the years [2]. Notably,
Dynamic Programming (DP) has been applied to hybrid and plugin-hybrid (PHEV) control
strategies [3,4]. As exact optimization methods require higher computing resources, their
real-time embedded implementations are especially compromised. To remedy this, new
methods have used DP as a training source for Neural Networks [5] or combined its process
with Reinforcement Learning [6]. Receding Horizons of different sizes also have demon-
strated lowering computing requirement of DP [7]. However, translating accurate physics
within a DP language is time consuming and, in general, ignores multi-physics interactions
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by design. Alternatively, non-exact methods such as Model Predictive Control (MPC) based
algorithms have been developed to enable real-time applications [8–10]. However, MPC
also requires the development of a set of simplified equations of state set to reduce the
optimization run-time, thus inducing inaccuracies. This also limits their application to short
local rolling e-Horizons, neglecting the full route information and hence the potential for
further fuel economy reduction. In this paper, we show that Neuroevolution (NE) can learn
directly from the complex system behavior within its stochastic operating environment
without the necessity for any system and/or subsystem model simplification. Indeed, it
treats the system’s model as a black box, enabling high fidelity, multi-physics modeling
to be used in the training process if desired. Recently in the powertrain field, DP and
Neuroevolution have been jointly used for transmission shift optimization [11]. This paper
demonstrates that a NE controller can generate optimal strategy without optimum external
knowledge (such as DP) while performing faster than in real-time. We show that NE is eas-
ily parameterizable and hence effectively capable of interactive cooperation with Machine
Learning (ML) based features such as drive cycle classification. In this paper’s materials
Section 2, the heuristics used to generate a base controller architecture are discussed. The
training data generation process is explained. Additionally, the equations defining the
training plant model are provided in reference to the chosen hybrid architecture. In the
Methods’ Section 3, the Neuroevolution process is presented as well as the application of
clustering aimed at enhancing the NE controller adaptive behavior. Results are demon-
strated across the training and validation sets and detailed drive cycle analysis is provided.
Finally, the paper discusses the advantage of Neuroevolution and concludes on the future
usage of this technique.

2. Materials

Ideally, a controller or agent shall instinctively react to stimuli from its immediate
surrounding, shall have an understanding of how to survive in its operating environment,
and be able to use short-term foresight to detect operating deviations so as to locally reassess
its survival strategy. Knowledge and foresight provide the robustness needed for an agent’s
“survival” in a dynamic environment. The proposed NE controller architecture is designed
based upon these heuristics. While neuroevolution is theoretically capable, given a large
amount of evolution time, of deriving an entirely new architecture, engineering judgment is
used here to define the base NE structure. Three intelligence sources are defined to support
its operation:

• First, the NE controller input layer receives an instantaneous stream of stimuli in the
form of vehicle and powertrain sensor signals.

• Second, NE internal parameters (weights, bias, and activation functions) are adaptively
uploaded to the NE controller based on the current route classification results. We as-
sume here that the route is known, for example, via a GPS based eco-routing function.

• Third, a local e-Horizon re-classification feature fine-tunes the NE controller behav-
ior. This provides local intelligence to temporarily modify the torque split strategy
if needed.

For example, suppose that the classifier detects a highway driving type cycle at
the start of a trip. The classifier uploads the NE parameters associated with highway
driving characteristics to the controller. The NE parameters are refreshed if the driving
characteristics are temporarily classified differently. This example may occur when traffic
increases and lower and more fluctuating speeds are encountered on the route. To start
the classification model development, a large number of drive cycles representing real-
world operations are generated. These will also support the NE controller learning and
validation phases. The development of a process to generate thousands of drive cycles
using information from the vehicle target usage is proposed here. A large amount of
driving data is available for this study. Real-world drive cycle histograms are generated
using XLFleet’s extensive telemetry databases. The data spans from 2019–2022 across more
than 4000 HEV and PHEV vehicles as used in a wide range of applications by more than
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a hundred distinct fleets across North America. Sample van data is shown in Figure 1.
Delivery trips are extracted as our target application.

Figure 1. Sample Data across XLFleet trip statistics library. Color is Fuel Efficiency (green is better).

We generated additional delivery drive cycles trace by stitching donor speed traces
together. The donor speed traces come from extracting “hills” from a 1 Hz drive cycle
database. A hill is defined as a segment with zero starting and ending speed. Around
five hundred hills are generated. A Monte Carlo (MC) simulation is used to randomly
recombine these hills into a set of new cycles, as shown in Figure 2. The MC uses a uniform
distribution to concatenate a random number of hills into a new drive cycle. Two thousand
cycles are generated at a time through this process. Cycles not fitting the delivery van
statistical target range are rejected, and so on. Finally, 2200 cycles are retained, from which
two hundred are used for the NE training, and the remaining are kept for the validation
phase. Note that the data includes many type of drivers and therefore no specific driver
habit was targeted at this time.

Figure 2. Monte Carlo approach to the generation of 2200 drive cycles for a delivery van application.

The target powertrain application is a P3 HEV van with the characteristics shown
in Figure 3. A backward-looking [12] quasi-static (QS) model is used for training and
validation purposes. This high fidelity model was correlated with test data on real-world
drive cycles and contained a proprietary XLFleet dynamic fuel map model, which accounts
for engine operation rate of change. This is critical in assessing different HEV assist and
charging strategies that will influence the transient characteristics of the engine and hence
its dynamic fueling response. The QS method enables fast run time for training which
is advantageous when offline computing power is limited. The QS simulation model is
partially based on the following equations, here leading to the Torque split calculation:
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• The road force F is computed for each time step based on the target velocity v. This
enables the exact same road load computation for every simulation iteration as it
removes driver model noise.

F =
1
2

· rho · CdA · v2 + m · g · RR · cos(rad) + (m + me) · a + m · g · sin(rad), (1)

where ρ is the density of air, a is the acceleration, CdA is the aerodynamic coefficient
multiplied by the vehicle frontal area, m and me are the mass and equivalent mass, RR
is the rolling resistance coefficient, and rad is the road grade angle.

me =
Iv

r2 +
Ie · FDR2

R · gear2
R

r2 , (2)

where Iv and Ie are the drivelines and engine inertia, FDR is the final drive ratio, r is
the wheel rolling radius, and gearR is the current transmission gear ratio at time t.

• The demand Torque To at the transmission output (and e-motor) is computed as:

To =
F · r

(FDRR) · µFDR
, (3)

where FDRR and µFDR are the final drive ratio and efficiency, respectively.
• To must be matched by a combination of the engine torque Te and e-motor torque Tem:

To = Te · µTR · TR + Tem, (4)

where TR and µTR are the transmission ratio and efficiency, respectively. The goal is to
find the optimal torque split Tratio ratio at each time step to reduce fuel consumption.

Tratio = Tem/To. (5)

Figure 3. P3 HEV Powertrain architecture and conventional control schematic.

3. Methods

Neuroevolution is defined as the process of tuning the behavior of a neural network
architecture [13] while optimizing for an objective function, including multi-objective
tasks [14]. The process includes evolving the neural network architecture, weights, biases,
and activation functions. Early on, Neuroevolution learning was demonstrated for its
ability to learn and master playing video games [15,16]. More recently, engineering-based
publications have shown interest in Neuroevolution of Augmented Topology (NEAT) for
antenna beam forming control [17], and UAV autonomous soaring applications [18]. At this
time, the lack of explainability and transparency are key disadvantages to AI applications in
general. Applying engineering judgment and system engineering best practices is preferred
when integrating neural networks into powertrain control systems. Hence a fixed topology
is defined, which resembles the current control architecture. Three base Neural Networks
(Figure 4) are integrated within the base NE controller according to the heuristics and
methodology presented in the introduction section:
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• The mode switch neural network is used to decide between HEV modes, i.e. between
operating with the Internal Combustion (IC) engine only, assisting the IC engine
(including full electric mode), or charging the battery (engine charging mode). Brake
regeneration is driven by the original controller braking energy strategy, which is kept
unchanged. This neural network uses a competitive transfer function to select the
HEV mode based on three output node values (IC only, Assist, Charge).

• Two neural networks, one for the engine assist mode, and one for the engine charging
mode, output the level of Torque split to apply relative to the driver demand and
powertrain states. These are selectively activated based on the main neural network
mode output. The assist neural network outputs a positive torque value in N.m, with
a maximum value of 270 N.m. The charging neural network outputs a negative torque
value with a maximum of −270 N.m. This provides the mechanism to charge the
battery by increasing the demand on the engine. They are both deactivated when in
IC-only mode, with a corresponding torque split of zero.

Figure 4. Example HEV Neuroevolved Controller base architecture with three inter-connected neural
networks running concurrently. The Assist and Charge mode are mutually exclusive when selected.
They directly output the demand Torque to the e-motor control module.

Each Neural Network shares the same instantaneous input information. This includes
current vehicle speed and acceleration, battery state of charge (SOC), and driver torque
demand. Therefore the input layer vector IN [1 × 4] is constructed as:

IN =
[

v
vmax

a
amax

soc
socmax

To
Tomax

]
, (6)

Note that each of the inputs is normalized to keep their range between [0, 1]. For exam-
ple, a 3 node first hidden layer IH1 output with a linear activation function is computed as:

IH1 = ∑ IN ·

 W11 W12 W13 W14
W21 W22 W23 W24
W31 W32 W33 W34

+ BiasIH1 , (7)

The mode selection neural net output layer (with 3 nodes) uses a competitive activation
function that retains the node number with the highest value. This function transfer works
as shown in Figure 5 .

Figure 5. Competitive Transfer Function for mode switch selection.
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For example, if the mode selection calls for the Assist mode, the Assist neural net
will output a Torque value between 0 and 1. Assuming there are three nodes in the
previously hidden layer of a two hidden layer network for simplicity, the output layer
would compute as:

HOassist = ActF[∑ H1H2 ·

 Wo11
Wo21
Wo31

+ BiasHO], (8)

where the ActF is the activation function.
Therefore,

Tem = min(HOassist · To, Temmax ), (9)

where Temmax is the maximum torque of the e-motor at the current transmission output
speed. The final e-motor assist torque value further depends on the battery SOC and
operating limits.

Starting with the base NE architecture, the weights, biases, and activation functions
are tuned during the learning process. This step is driven by a Particle Swarm Optimization
(PSO) [19]. Eighty-one weights and biases are optimized simultaneously. Each layer’s
activation functions (ActF) account for additional parameters with two possible values:
ReLU (Rectified Linear Unit) or Linear for minimum compute cost:

Linear(a) = a, (10)

ReLU(a) = max(0, a). (11)

The PSO varies these parameters using a total of 108 particles for each optimization
iteration. The 200 training cycles are simulated using each particle encoded control strategy.
Each particle returns the mean percent fuel economy benefit (HEV vs. base non-hybrid ve-
hicle) to the objective function. The objective function also includes the standard deviation
of Tem to minimize noisy torque responses. Based on the fuel economy benefit, the PSO
refines the neural networks’ parameters until the maximum optimization time or objective
function convergence is reached. The maximum optimization time is limited to ten hours
on a 36-core total dual Xeon Gold computer with a 128GB RAM. The resulting optimum
set of parameters will be designated here as the General NE controller parameters as they
are optimized across the entire training drive cycle set.

The PSO driven training algorithm (See Figure 6) is summarized below:

• 108 Swarm particles are initialized with random weight, bias, and activation function
encoding values. If transfer learning is applied, one or more particles are initially set
with the donor NE controller parameter array.

• NE controllers are uploaded to the drive cycle simulation with their corresponding
tuning parameters.

• For each NE controller, two-hundred cycles are simulated, and the average HEV
fuel economy benefit and Tem standard deviation is computed and fed back in the
optimization loop.

• The PSO algorithm modifies the tuning parameters based on the position of the local
and global optimum in the search space. This causes a swarming effect while still
exploring most of the search space and hence avoiding staying at local optima. This
provides a good balance between global and local exploration to keep convergence
time within the set limits.
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Figure 6. Simulation based offline learning process driven by the PSO algorithm.

4. Results

The General NE controller outperforms the conventional controller for 95% of the
cycles (see Figure 7). Note that MPG is corrected for the end of SOC for all results presented
here. Similar to the conventional controller, the General NE controller is constrained by
the necessary fuel economy benefit trade off across the different training drive cycles.
However, it manages to perform the trade-off in a very effective manner by design since it
evolved across a larger selection of scenarios. This performance is also confirmed across
the 2000 validation cycles with a similar percentage of success in Figure 7.

Figure 7. General NE Controller MPG % improvement over the Base Conventional controller across
the training (in black) and validations cycles (in blue).

To identify the potential fuel economy improvement or optimal gap from the general
NE controller, “cycle beater” NE controllers are developed for each of the 200 training
cycles. In this step, each cycle is independently used for the derivation of its own optimal
NE controller parameters, using the same PSO process. One of the 108 PSO particles is
initialized with the general NE controller parameters to promote transfer learning from the
general solution. The PSO is only allowed to change the weight and bias of the general NE
controller when generating NE Beaters. The maximum optimization time is limited to five
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minutes for each drive cycle. The resulting controllers consistently outperform both the
general NE and the conventional controllers on their associated cycles, as seen in Figure 8.

Figure 8. MPG improvement over the base IC vehicle over the 200 training cycles for three controllers:
Conventional, General NE, and Cycle Beater NE(s).

As the NE controller performs faster than in real-time (simple linear algebra), improve-
ments can be implemented by including Machine Learning (ML) features. Conceptually,
drive cycle characteristics would allow identifying which controller to use if a choice ex-
isted. In this application, the choice would simply mean that a new set of weights and
biases are uploaded to the updated controller (NE Cluster) based on driving conditions.
Drive cycle characterization is a key concept in improving the adaptiveness of a control
process. Early work on characterizing drive cycles includes the derivation of the Kinetic
Intensity [20]. More recently, clustering was used to generate six drive cycle categories
among a set of Heavy Duty cycles to improve the flexibility of an Equivalent Consumption
Minimization Strategy (ECMS) [21]. We are here proposing a 2-step approach, driven by
the fact that drive cycle characteristics alone are too abstracted from the target system, and
hence the effectiveness of any hybrid architecture (Series, P2, P3, Powersplit, etc.) and its
specific complex control abilities cannot be simplified on the basis of driving statistical
data. Hence, optimal control information from the target application is needed as part of
the clustering input set. The training cycle NE Beater results are hence used at this stage.
K-means is used to generate drive cycle categories (clusters). Note that other methods such
as Principal Component Analysis (PCA) were not tested but are obvious candidates for
this step. The clusters are generated using ten characteristics for each cycle:

• The achieved cycle beater MPG percent benefit.
• The mean speed and mean moving speed (non-zero speed).
• Maximum speed.
• The mean acceleration and deceleration rates.
• The number of stops per mile.
• The speed, acceleration, and deceleration standard deviations.

Three cluster sets of different sizes are constructed as shown in Figure 9. A 44 cluster
set is identified as most effective via the Optimal Cubic Clustering Criterion (CCC) [22]. A
five-cluster set is used as the smallest example set. A 14-cluster set is retained as the first
cluster set where only one cycle is contained within its own single cluster.



Vehicles 2022, 4 950

Figure 9. Three sets of K-means clusters, 44 clusters (top), 14 clusters (middle) and 5 clusters (bottom).
Each set was generated from the training drive cycle characteristics and their associated NE Beater
controller performance.

Ideally, each cycle would have its own cluster associated with its NE Beater controller
parameter set. This is, however, unrealistic due to an infinite number of cycle variations in
the real world. Importantly, as the cycle beater MPG percent benefit is unknown for a given
route, a classification algorithm is needed to match a new set of cycle characteristics (mean
speed, acceleration, etc.) to the clusters generated above in a second step. The application
of such a classifier is constrained by its ability to avoid false positive results. As such,
the five-cluster set achieves 100% classification success using a basic neural network. The
14-cluster set achieves low misclassification while the 44-cluster set becomes unfeasible due
to poor classification performance. Their corresponding Receiver Operating Characteristic
curves (ROC) are shown in Figure 10.

Figure 10. Classification ROC curves are shown for each cluster set. The five-cluster set achieves
100% classification accuracy while the 44-cluster set shows poor performance. The 14-cluster set
shows good classification accuracy, with Clusters 5 and 11 being the least accurate.

The five and fourteen cluster sets are chosen for the next steps. Based on their classifi-
cation results, the PSO optimization is applied to each cluster using only their associated
training cycle. This step generates five and fourteen NE controller weights and biases sets.
While the use of a smaller number of clusters reduces misclassification to zero, it provides a
limited set of parameters that barely improves from the general NE controller performance.
Instead, the fourteen clusters based NE controllers (“NE Cluster controllers”) consistently
achieve better performance than the General NE Controller while having low misclassifica-
tion errors, and hence are retained as a realistic and effective PrEM alternative to the single
General NE controller concept (see Figure 11). The other clusters are shown in Appendix A
Figures A1 and A2. The NE Cycle controllers generally show better performance and/or
more robust performance versus cycle variation within a cluster.
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Figure 11. Controller performance comparison for Cluster 1 to 6 showing the improvement of the NE
Cluster controller from the General NE controller. The remaining optimal gap is shown versus the
NE Beater controller.

The 2000 validation drive cycles are classified using the same classifier. The existing NE
Cluster controllers are run across the validation cycles using the assigned cluster parameter
set. While misclassification may occur, the performance of the NE Cluster controllers shows
consistent improvement from the NE General controller (Figure 12) on the validation cycles
as well. The clusters also significantly improve the controller robustness in minimizing
cycle to cycle performance fluctuations. Note that the General NE controller manages to
match the Cluster NE performance for 42% of the cycles, likely due to misclassification and
using 14 clusters instead of the optimal 44 cluster scenario. This identifies the opportunity
loss between achieving robust classification and approaching the NE Beater optimal gap
with a high number of clusters.

Figure 12. The Classification of each drive cycle and subsequent uploading of updated NE Controller
parameters enable sustained and more robust MPG improvement (from the base conventional van)
than the General NE controller by itself.

Figure 13 shows the difference in strategy for cycle 3 (classified as cluster type 3) as
an example. The NE Beater and NE Cluster assist early in the cycle, hence gaining fuel
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efficiency. They both utilize engine charging mode during the first cruise event, which
reduces the earlier efficiency gain but enables more assist availability later in the cycle,
especially after the 200 s mark when lower speed and increase in acceleration events
are present. In Figure 14, the NE Cluster controller takes a similar assist strategy as the
Base controller and uses a charging strategy in between the General NE and NE Beater
controllers (cycle 176 with Cluster type 13).

Figure 13. HEV operation comparison between the four hybrid controllers. The charging and assist
strategy is highlighted for the base and NE Cluster controllers on the right.

Figure 14. HEV operation comparison between the four hybrid controllers. The charging and assist
strategy is highlighted for the base and NE Cluster controllers on the right.

As discussed in the introduction, it is possible that while a drive cycle may be classified
as pertaining to a specific cluster, it may locally deviate from the global characteristics at
times. This requires updating the classification results from the current position in the
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route to the cycle end. Recurring classification of the training drive cycles while driving is
implemented by running the classification neural network at a fixed refresh rate. Several
classification refresh intervals are chosen, ranging from updating the classification and
hence NE parameters every 1 s to every 200 s. Allowing the NE controller parameters to
be updated with time shows fuel economy improvement above a percent point for 27%
of the training cycles. Again, classification would be needed to help choose the optimal
refresh rate. The best performance in doing so was achieved by using the primary cluster
probability for the entire route, the cycle characteristics (speed, acceleration, etc.), and
the number of cluster changes required across the route as inputs. The number of cluster
switches is computed by running the cluster classifier with 5 second increments across the
trace. The classification accuracy is shown in Figure 15. For our application, this feature
and risk of misclassification provides only marginal results and is retained as an optional
piece of the final control architecture as shown in Figure 16. This option may, however, be
relevant for other duty cycles and applications.

Figure 15. The Refresh option for the NE Cluster controller brings marginal benefits and requires a
classifier to be used to pick the effective refresh rate. The refresh rates shown here range from 1 to
200 s intervals.

Figure 16. The proposed Neuroevolution based control architecture with the added classification
refresh concept. Note that the classifier plot is only a static 2D view of the classification space.
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5. Discussion

Neuroevolution provides a simple methodology enabling the generation of various
types of experimental controllers such as cycle beaters and general or ML-enhanced con-
trollers within a short period of time. This provides researchers with the ability to efficiently
experiment with various concepts such as the ones that resulted in the architecture pro-
posed in this paper. One of the critical enablers of NE is the ability to use any complex
system model as a black box. The complexity of the training models used is only limited by
one’s available parallel computing infrastructure. This provides the ability to implement
thermal, after-treatment, and other dynamic models to enhance the accuracy and compre-
hensiveness of the trade off analysis. This would be extremely difficult to implement within
DP and MPC methods. The resulting NE controller performs faster than in real-time and
therefore does not require additional processing power in the embedded systems. Indeed,
the linear algebraic equations and tuning parameter arrays associated with linear activation
functions can be easily translated into C code and run on the base controller without any ad-
ditional computing enhancement needed. This provides a platform to rapidly transfer from
the Software-in-the-loop validation phase to the hardware-in-the-loop validation phase.
The resulting neural networks are shallow and computationally very efficient compared
to Deep Learning networks. However, these controllers are not transparent at this time.
Industry work on “explainable AI” will promote their acceptance further in the future.

6. Conclusions

This paper demonstrates that drive cycle classification, using optimal control informa-
tion associated with a controller parameterization scheme enables significant and sustained
improvement in HEV vehicle efficiency across a target application. The availability of test
data enabled the development of specific cycles fitting a delivery van application, which
were then used to train and validate a PrEM controller using Neuroevolution. The ability
to create prototype controllers at a fast pace enabled a new concept to emerge, which could
be the basis for future HEV controllers. Other applications and complex systems are likely
to gain advantages, especially when simulation models require high complexity modeling
and accuracy. Indeed Neuroevolution possesses the advantage of bridging complex multi-
physics optimal control with real-time applications and will undoubtedly play a stronger
role in the future.
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Appendix A

Figure A1. Controller performance comparison showing the improvement of the NE Cluster controller
from the General NE controller. The remaining optimal gap is shown versus the NE Beater controller.

Figure A2. Controller performance comparison showing the improvement of the NE Cluster con-
troller from the General NE controller. The remaining optimal gap is shown versus the NE Beater
controller. Cluster 9, containing only one cycle, shows a slightly better performance than the NE
Beater due to the transfer learning step and the extra optimization time that it was allowed to run.
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