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Abstract: Road surface friction, or in other words, a pavement’s skid resistance, is an essential
attribute of highway safety, acting as a liaison between the infrastructure condition and the driver’s
response to it through proper vehicle maneuvering. The present study reviews aspects related to
the tire–road friction, including affecting factors, monitoring systems and related practices, and
demonstrates the efficacy of using smart tires, or tires embedded with sensors, for the purpose of
evaluating roadway friction levels in real-time while traveling. Such an approach is expected to
assist drivers in adjusting their behavior (i.e., lowering their speed) in the event that signs of reduced
skid resistance are observed in favor of road safety. The current challenges and research prospects
are highlighted in terms of tire manufacturers’ perspectives as well as future mobility patterns with
autonomous driving modes. Overall, smart tires are commented as a tool able to enhance drivers’
safety for both current and future mobility patterns, help to control pavement deterioration and
complement existing practices for infrastructure condition assessment.

Keywords: roadway infrastructure; safety; tire–pavement interaction; skid resistance; smart tire
sensors; effective management

1. Introduction

Rubber tires play one of the most important roles regarding both vehicles’ performance
and driving safety since these are the only parts of the vehicle that come in direct contact
with the road surface [1]. Hence, there have been various studies from both tire and road
pavement perspectives trying to assess the interaction between vehicle tires and the road
surface to obtain valuable information regarding vehicle stability through the developed
friction [2].

It is a well-acknowledged fact that the road friction is drastically related to safe driving
conditions and road incidents [3–5]. According to [6], nearly 120,000 people were killed on
US roadways between 2010 and 2013. The economic costs are undeniably unaffordable even
in the case of non-fatal incidents [7], together with the social disturbance that can come as a
result of unsafe and non-friendly infrastructures. Therefore, a critical number of studies
have been devoted to road safety issues. However, this is a multi-parametric issue that
can be addressed by different scientific disciplines (Figure 1) that can be related to vehicle
tires, driving behavior, road geometry features, pavement condition and meteorological
conditions [3,8–11].

Focusing on the tire–pavement interaction, the importance of reducing road crashes
by improving road infrastructure characteristics and ensuring a safe ride quality becomes
a top priority in several Pavement Management Systems (PMS) [4,12,13]. This is because
pavement surface friction is an essential attribute of highway safety. In this context, mea-
suring friction becomes a rational approach for both vehicle tire industries and highway
agencies. However, the previous domains approach friction from a different perspective.

In road engineering, the purpose is to periodically monitor road surface characteristics
at predefined intervals (e.g., once or twice per year, or even more frequently) depending
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on the established priorities and the considered PMS strategy of the in-charge highway
agency [14]. A multitude of systems exists to measure pavement friction, or its skid
resistance, that measure both the longitudinal and lateral friction coefficient [15]. The goal
of such measurements is to assess the current pavement condition and propose a timeline
of when appropriate actions are needed to maintain friction at a sufficient level or even
restore it in the case of significant serviceability loss. Nevertheless, in the absence of a
well-established PMS system, which is not something unusual, especially for urban or
secondary rural roadways, the procurement and the transportation logistics of multiple
and expensive equipment becomes a deterrent factor. This is why smart sensing system
data acquisition platforms (e.g., unmanned aerial vehicles, ground vehicles for contactless
measures, smartphone-based assessment, etc.) have been revealed during recent decades
as practical, cost-effective and resilient assessment tools in many aspects of roadway
engineering [16–20].
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conditions, damaged tires, contaminated grooves, etc.). Thus, considering the need to 
provide drivers with timely and accurate information about road surface characteristics, 
there have been relevant investigations focusing on the utilization of sensors adjusted on 
vehicle tires in order to alternatively collect friction datasets [1,21–23]. The main reason 
for conducting targeted research efforts on tire sensors is that they can be used as effec-
tive vehicle controllers and provide, at the same time, information about road condi-
tions, tire conditions and their interaction too. It is believed that this approach can signif-
icantly improve ground vehicle safety. This is especially true when it comes to assessing 
weather-related incidents. 

According to [1], a weather-related crash is defined as occurring “in the presence of 
rain, sleet, snow, fog, wet pavement, snowy/slushy pavement, and/or icy pavement”. 
Therefore, a major question arises regarding the potential benefits of using smart sensors 
embedded in vehicle tires with the view of obtaining real-time information and proper 
alerts for adjusting the driving behavior. In addition, tire sensors can provide useful in-
formation for tire conditions (e.g., tire inflation pressure, damage to grooves, etc.) [24]. 
Most vehicle active safety systems, such as the Anti-lock Braking System (ABS), aim ul-
timately to make the tires controllable [25–27], meaning that the status information of 
the tire is especially important for all kinds of active safety systems and especially for 
self-driving vehicles [28,29]. In this context, it cannot be overlooked that a significant 
portion of weather-related incidents could be potentially prevented by the use of tire 
sensors able to collect and generate real-time information. Nevertheless, improving driv-
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In the meantime, road safety from a vehicle perspective highly depends on the instanta-
neous driving attributes (e.g., localized areas with poor friction, adverse weather conditions,
damaged tires, contaminated grooves, etc.). Thus, considering the need to provide drivers
with timely and accurate information about road surface characteristics, there have been
relevant investigations focusing on the utilization of sensors adjusted on vehicle tires in
order to alternatively collect friction datasets [1,21–23]. The main reason for conducting tar-
geted research efforts on tire sensors is that they can be used as effective vehicle controllers
and provide, at the same time, information about road conditions, tire conditions and their
interaction too. It is believed that this approach can significantly improve ground vehicle
safety. This is especially true when it comes to assessing weather-related incidents.

According to [1], a weather-related crash is defined as occurring “in the presence of
rain, sleet, snow, fog, wet pavement, snowy/slushy pavement, and/or icy pavement”.
Therefore, a major question arises regarding the potential benefits of using smart sensors
embedded in vehicle tires with the view of obtaining real-time information and proper
alerts for adjusting the driving behavior. In addition, tire sensors can provide useful
information for tire conditions (e.g., tire inflation pressure, damage to grooves, etc.) [24].
Most vehicle active safety systems, such as the Anti-lock Braking System (ABS), aim
ultimately to make the tires controllable [25–27], meaning that the status information of
the tire is especially important for all kinds of active safety systems and especially for self-
driving vehicles [28,29]. In this context, it cannot be overlooked that a significant portion
of weather-related incidents could be potentially prevented by the use of tire sensors able
to collect and generate real-time information. Nevertheless, improving driving safety
unambiguously depends on other factors as well that act jointly, such as, the availability of
information-communication systems for early warning.
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Understanding sensors embedded in tires as a diagnostic tool for both vehicle and
infrastructure components of a tire–pavement interaction system is usually followed by
the introduction of the term “smart” or “intelligent” tire, which appears as a practical and
cutting-edge technology wishing to assist road users while driving and potentially prevent
collisions or fatal crashes. Such a vision generates research updates and innovations among
the worldwide community of tire manufacturers that mainly act nowadays through pilot
demonstration examples. Their features are quite wide, and some of them are centered
upon the reduction in repair and maintenance costs of rubber tires, the minimization
of rubber wear and tear, the provision of a more comfortable ride with maximized fuel
efficiency and the well-ahead detection of pavement profiles or friction breakdowns in
order to adjust the driving behavior [30]. Overall, it seems that the concept of smart tires can
act in favor of increasing sustainability both in terms of the vehicle industry (i.e., effective
tire design) and infrastructure engineering (i.e., road surface condition monitoring).

Therefore, the aim of this paper is to evaluate aspects related to the tire–road friction,
which is critical for effective vehicle maneuvering and braking under various weather
conditions, and highlight the potentialities of using smart tires for friction assessments. To
meet this aim, a review of a pavement’s skid resistance aspects is first discussed in terms
of its definition, affecting factors, monitoring systems and related practices. Thereafter,
technological advances in the domain of tire sensors are presented that can act as smart data
collection and monitoring tools. The investigation proceeds with the expansion of the existing
knowledge on aspects regarding tire sensors, their capabilities and future prospects related
to the use of tire sensors as an effective and autonomous means for improving road safety for
current and future mobility patterns, where autonomous driving modes will dominate.

2. Tire–Road Friction
2.1. Definition

During vehicle movement and braking, resistance forces generate between tires and the
pavement surface, which are determinants for vehicle stability and overall safe driving [31].
A common approach to understanding the mechanism of tire friction forces is the assessment
of the friction circle concept illustrated in Figure 2. The vector sum of the longitudinal (FX)
and lateral (FY) force components is controlled by the coefficient of friction (µ) times the
vertical load (FZ). In other words, the friction coefficient is a dimensionless parameter equal
to the maximum normalized traction force, defined as:

µ =

√
F2

X + F2
Y

FZ
(1)
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While a vehicle is braking, which is the most crucial interaction between the road
surface and vehicle tires for road safety, friction appears as the developed resistive force
that enables a controlled skidding action along the pavement surface [33]. Friction is more
determinant in wet surfaces due to the risk of hydroplaning [34]. When a tire encounters
more water than it can scatter, water pressure in the front of the wheel pushes water under
the tire, which is then separated from the road surface by a thin film of water [35]. The
phenomenon causes loss of steering, braking and power control. This is why rubber tires
have grooves that aim to channel water from beneath the tire, raising the available friction.

In general, friction does not remain constant during a vehicle’s movement (Figure 3).
In particular, when a tire is exposed to free rolling, such as moving at a straight line, the
tire-contact patch is instantaneously stationary, and there is almost no friction at the tire–
road interface [33]. However, during any kind of maneuvering, including speed changes
(i.e., braking) or direction (i.e., moving at curves), friction is developed at the interface as
a response to acceleration, braking, or steering and a reaction force is developed at the
tire–pavement interface that varies depending on the slip ratio. In more detail, for low slip
ratios, the coefficient of friction increases rapidly (Figure 3) with an increase in slip as a
result of the tire contribution. Friction increases until it reaches a peak value that usually
occurs for a slip ratio ranging from 10 to 20% (critical slip). In this area, the pavement
microtexture or, in other words, the surface aggregates’ mineralogy and shape dominate.
Thereafter, friction decreases up to a value known as the coefficient of sliding friction,
which occurs at 100% slip, corresponding to a fully blocked wheel that simply skids with no
rotation. During the reduction area, pavement macrotexture is dominant, which is related
to driving conditions at high speeds [36] and highly depends on the air void content of the
surface of the coarse asphalt mix.

Vehicles 2022, 4, FOR PEER REVIEW 4 
 

 

Figure 2. Friction circle during vehicle typical maneuvering [32]. 

While a vehicle is braking, which is the most crucial interaction between the road 
surface and vehicle tires for road safety, friction appears as the developed resistive force 
that enables a controlled skidding action along the pavement surface [33]. Friction is 
more determinant in wet surfaces due to the risk of hydroplaning [34]. When a tire en-
counters more water than it can scatter, water pressure in the front of the wheel pushes 
water under the tire, which is then separated from the road surface by a thin film of wa-
ter [35]. The phenomenon causes loss of steering, braking and power control. This is 
why rubber tires have grooves that aim to channel water from beneath the tire, raising 
the available friction. 

In general, friction does not remain constant during a vehicle’s movement (Figure 
3). In particular, when a tire is exposed to free rolling, such as moving at a straight line, 
the tire-contact patch is instantaneously stationary, and there is almost no friction at the 
tire–road interface [33]. However, during any kind of maneuvering, including speed 
changes (i.e., braking) or direction (i.e., moving at curves), friction is developed at the in-
terface as a response to acceleration, braking, or steering and a reaction force is devel-
oped at the tire–pavement interface that varies depending on the slip ratio. In more de-
tail, for low slip ratios, the coefficient of friction increases rapidly (Figure 3) with an in-
crease in slip as a result of the tire contribution. Friction increases until it reaches a peak 
value that usually occurs for a slip ratio ranging from 10 to 20% (critical slip). In this ar-
ea, the pavement microtexture or, in other words, the surface aggregates’ mineralogy 
and shape dominate. Thereafter, friction decreases up to a value known as the coefficient 
of sliding friction, which occurs at 100% slip, corresponding to a fully blocked wheel that 
simply skids with no rotation. During the reduction area, pavement macrotexture is 
dominant, which is related to driving conditions at high speeds [36] and highly depends 
on the air void content of the surface of the coarse asphalt mix. 

 
Figure 3. Friction versus tire slip (adapted from [33]). 

Although the graph in Figure 3 is not to scale, it is known that the difference be-
tween the peak and sliding coefficients of friction can be as high as more than 50% of the 
sliding coefficient. The difference is more pronounced on wet pavements than dry 
pavements [10]. Nevertheless, the evolution trend of road friction has grounded the ba-
sis for the development of the most common active safety system, namely ABS. This 
technology takes advantage of the front side of peak friction and minimizes the loss of 
side/steering friction due to sliding action [33]. Driving a vehicle equipped with ABS 
implies that brakes are applied on and off repeatedly (i.e., brake pumping) in order to 
control slip and maintain it around its peak. Actually, depending on manufacturing 
conditions, braking is turned off before the peak is reached and turned on again at a cer-
tain slip ratio, lower than the peak one [33]. 

Figure 3. Friction versus tire slip (adapted from [33]).

Although the graph in Figure 3 is not to scale, it is known that the difference between
the peak and sliding coefficients of friction can be as high as more than 50% of the sliding
coefficient. The difference is more pronounced on wet pavements than dry pavements [10].
Nevertheless, the evolution trend of road friction has grounded the basis for the development
of the most common active safety system, namely ABS. This technology takes advantage of
the front side of peak friction and minimizes the loss of side/steering friction due to sliding
action [33]. Driving a vehicle equipped with ABS implies that brakes are applied on and
off repeatedly (i.e., brake pumping) in order to control slip and maintain it around its peak.
Actually, depending on manufacturing conditions, braking is turned off before the peak is
reached and turned on again at a certain slip ratio, lower than the peak one [33].

In terms of friction contributors, enough documentation exists describing the factors
affecting the skid resistance of a pavement’s surface [15,37,38]. The main factors affecting
skid resistance include aggregate type, mix composition, on-site compaction, surface
texture, traffic volume, vehicle speed, etc. [39]. Beyond the pavement surface characteristics,
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other factors from a vehicle’s perspective affect the developed friction, including tire
characteristics, vehicle’s user operation and driving behavior. Tire characteristics include
tread and groove design, rubber composition, tire inflation pressure and condition, the
load distributed through the vehicle tires and vehicle operating conditions (i.e., free rolling
or braking). Finally, environmental conditions, including dry versus wet surfaces with or
without contaminants (e.g., dust, oil, etc.) are also known to drastically affect and vary the
provided level of tire–road friction even within short time intervals [40].

2.2. Friction and Pavement Texture Components

From an infrastructure perspective, pavement surface texture is also known to be a
rather critical contributor of tire–pavement friction. Two basic texture components are
known to affect friction development, namely macrotexture and microtexture, according
to the illustrated patterns in Figure 4. They are both interrelated to the properties of the
materials used for the construction of the pavement’s surface course [41,42]. Macrotexture is
mainly affected by the aggregate gradation in the asphalt mix, air void content and binder
properties, while microtexture depends on the contact asperities of aggregates (i.e., aggregate
mineralogy) and their shape [43]. Movement at low speeds can be mainly explained by
microtexture, while movement at high speeds is mostly affected by macrotexture [36]. No
matter the speed, both texture components contribute toward friction development through
the mechanisms of hysteresis and adhesion [44], which are illustratively shown in Figure 5.
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The mechanism of adhesion corresponds to the grip between the rubber and the road
surface asperities as a result of the Van der Waals bonding phenomena [46]. The rubber’s
molecular chains continually stretch and/or break, considering its viscous origin. It has
been mentioned that the adhesion mechanism can occur in a range of stress frequencies
ranging from 106 to 109 Hz, and the separation distance between the road and the rubber
is required to be lower than 6–10 mm [47]. The adhesion mechanism is expected to consist
of three individual steps (Figure 5a). At first, bonding is developed between tire rubber
and road surface asperities. Afterward, the molecular bonds are stretched due to the
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movement of the tire, and at this stage, a friction force is generated to oppose the tire from
skidding. Finally, the developed bonds break, followed by the development of new ones
in a consecutive way. Hence, it can be summarized that adhesion is developed due to
the small-scale molecular bonds between the tire tread and the pavement surface [48,49]
and represents the shear force that is generated when a rubber tread successively reforms
its shape to conform to the shape of the road surface asperities [41]. As such, aggregate
microtexture is the main surface characteristic that affects the developed adhesion.

The road macrotexture induces a high-frequency excitation on the rubber tread with
the normal frequencies ranging from 102 to 106 Hz [47]. Hysteresis is developed due to the
continuous compression-relaxation phases of the rubber tread while it is in contact with the
surface aggregates of the pavement. As the rubber forms its inherent hysteresis, it cannot
return immediately to its initial condition, and thus, it exhibits an asymmetrical movement
(Figure 5b), which is subsequently transformed into energy loss in the form of heat [33,41].
Such an asymmetrical movement of the rubber around the pavement’s macrotexture results in
the generation of frictional force with a tangential component opposing the skidding, which is
considered the tire force [47]. Consequently, hysteresis is affected by the overall profile of the
surface aggregates, indicating that macrotexture mainly governs the hysteresis mechanism.

From a driver’s perspective, hysteresis and adhesion components can be critical when
a vehicle starts braking or in the case of moving at low speeds. Noticeably, adhesion is
dominant in the case of a dry and smooth road surface. This happens due to the asperities of
the surface aggregates that come in contact with the rubber and contribute to the generation
of friction, thus helping a vehicle to immobilize [41]. On the other hand, in case the surface
is wet, hysteresis dominates. The aggregates’ profile, i.e., the pavement macrotexture that
defines the level of hysteresis, is critical for the acceleration of the water drainage from
the interface between the rubber and the road in order to prevent the vehicle tire from
hydroplaning [35]. However, the case is very different for vehicles that move at high speeds
since neither adhesion nor hysteresis loss can effectively contribute to friction. This happens
because the asperities of the aggregates (microtexture) and the profile of the aggregates
(macrotexture) cannot be in full contact with the rubber.

2.3. Weather Effects on Tire–Road Friction

Skid resistance does not remain constant over time. It can substantially vary on
a year-to-year basis because of the traffic polishing effect [40], while it is also subject
to seasonal variations within a year due to the weather changes [10,50,51]. Among the
environmental factors related to seasonal conditions in a roadway environment, rainfall,
condensation, snow, ice and temperature are most commonly considered [52]. The presence
of contamination on the pavement surface in the form of dust, oil, rubber buildup or other
contaminants also plays a crucial role since a contaminated surface adversely affects the
vehicles’ braking efficiency [33].

The seasonal variation of skid resistance can be illustratively explained in Figure 6. In
general, a pavement’s surface exhibits different friction levels during wet and dry seasons.
In particular, during dry seasons, after a prolonged period without rainfall events, tire–
road friction is lower due to surface contaminants—debris (fine dust, clay, loose gravel,
rubber, vehicle oil, etc.) that are deposited on the road surface and come in contact with the
tires’ external grooves [41]. In case of a rainfall event on a contaminated surface, tire–road
friction is expected to reduce even further. Intense rainfalls can be followed by a progressive
increase in the provided friction levels because contaminants are washed and cleaned from
the road surface. As such, in wet periods (i.e., at periods with frequent rainfall events), a
dry and clean surface is expected to perform even better in terms of the provided tire–road
friction. Loose debris is nearly absent due to rainfalls and traffic effects that both act against
the buildup of fine dust. In that case, a pavement’s surface becomes rougher under the
movement of vehicle tires, resulting in higher friction levels [53,54].
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from [55]).

Temperature is enlisted as another factor affecting friction [51]. Typically, friction is
reduced when temperature increases because the rubber, as a viscoelastic material, becomes
softer [51,56]. However, modern rubber compounds are formulated in such a way that
the effect of temperature in friction under normal speeds and temperatures is eliminated.
Nevertheless, the influence of temperature on the friction level is listed as an open topic
undergoing ongoing investigation [57].

2.4. Monitoring Systems and Measurement Practices

Based on the affecting factors, it can be understood that the tire–road friction is a multi-
parametric characteristic, which plays a crucial role during pavement monitoring and
management given its relationship to the provided driving safety. This is the reason behind
the need for continuous monitoring of the provided friction levels along the road networks
of many countries. Highway agencies first strive to define investigatory friction levels,
i.e., critical values that should alert them for additional and more ad-hoc investigations
at subsections where an increased incident-potential occurs. Second, systematic efforts
are undertaken in order to accurately define intervention friction levels, i.e., values below
which the skid resistance level is unsatisfactory and proper restoration actions are required.
Therefore, the need for accurate friction measurements within a PMS is imperative. As a
standard practice, most agencies perform skid resistance measurements at least once per
year, or even frequently at multiple time periods (i.e., in dry or wet seasons) in order to
capture the seasonal variation effect.

However, there are many different friction measuring devices used worldwide. The
most commonly used systems (Figure 7) are enlisted below, and their different measuring
principles are briefly given. These are (a) the SCRIM system (Sideway-force Coefficient Rou-
tine Investigation Machine), (b) the GripTester system and (c) the British Pendulum Tester
(BPT). More details about other friction measuring systems can be found elsewhere [15,37].
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Figure 7. Typical systems for skid resistance measurements: (a) SCRIM system, (b) GripTester system
(trailer-towed) and (c) a portable BPT system.

SCRIM (Figure 7a) is utilized to provide continuous measurements of side-force
friction. More specifically, it measures the pavement’s side friction or cornering force
perpendicular to the direction of travel of one or two skewed tires. Water is placed on the
pavement surface (1.2 lt/min) and one or two skewed, free rotating wheels are pulled over
the surface (typically at 64 km/h). Side force, tire load, distance, and vehicle speed are
recorded. Data are typically collected every 25 to 125 mm and averaged over 1 m intervals.

The GripTester device (Figure 7b) is utilized to provide continuous friction measure-
ments as well. It consists of a three-wheeled system, including a standardized wheel with
smooth-tread tire that is utilized for measurement purposes. The axle of the test wheel is
connected to a chain-system that controls and fixes the wheel’s slip at a constant rate of
14% (rolling wheel). GripTester produces a water flow of 0.5 mm water-film depth, and
measurements are taken at a constant speed of around 50 km/h. These circumstances allow
GripTester to continuously measure a wet pavement surface producing the dimensionless
friction measurement that is referred to as Grip Number (GN). The produced output can be
averaged at predefined intervals (i.e., weighted values for 5 or 10 m intervals).

The BPT system (Figure 7c) is a portable friction device developed in the 1960s in the
United Kingdom. BPT is a static device and needs to be set up at a specific test location on
a road surface. Its use is standardized according to [58]. A smooth rubber slider mounted
on the pendulum arm is released from the horizontal position. The slider reaches a certain
speed (~10 km/h, by gravity) when the rubber touches the road surface. The post-contact
pendulum swing height (or angle) is determined by how much the slider kinetic energy is
dissipated during the contact (e.g., the pendulum will swing higher from a more slippery
surface). By measuring this post-contact swing height (or angle), the coefficient of friction
named British Pendulum Number (BPN) is derived [59]. A low angle corresponds to a
higher BPN measurement (more kinetic energy is dissipated) as the pendulum arm passes
from the higher BPN values and moves to the lower ones for a smooth surface. A zero BPN
value corresponds to a totally smooth surface, while 150 BPN is the upper limit representing
practically an abnormal rough surface.

2.5. Discussion

Overall, different systems are expected to provide different friction indexes because
of the variable measuring principles. There have been attempts to develop a harmonized
friction value (aiming to be non-device specific), such as the International Friction Index (IFI)
developed by the PIARC World Road Association. Reviews of those efforts [60–62] generally
agreed that harmonizing the output of a large number of different devices is a formidable
task and may not be achievable (due to a large number of factors and the associated complex
interactions). An alternative (and more practical) approach for routine practice would be the
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standardization of the type of devices used for network measurements, and a lot of effort
has been devoted to that [63].

Finally, it is quite common within many studies to make indirect estimations of tire–road
friction based on road profile indications and, in particular, texture measurements [64,65].
Texture data are collected from laser profilers that collect other data as well, such as rough-
ness and rutting, making this approach rather attractive since multiple types of information
can be collected with a single system. However, the validity of such approaches is still
under discussion since most of them have been developed on scaling laboratory data and
extrapolating predicted results to field performance [66,67]. Therefore, erroneous estima-
tions of the available friction levels in the field can be made. In addition, it has been proved
that the relationship between friction and texture exhibits a variable trend depending on
the traffic volume that a pavement has been exposed to, making any kind of modeling a
difficult task. Based on long-term traffic data, it has been observed that macrotexture and
friction exhibited a slow decrease with fluctuations during their initial evolution period (i.e.,
until a certain amount of cumulative traffic) [10]. At later stages of a pavement’s lifespan
(i.e., after a certain amount of cumulative traffic), macrotexture exhibits an inverse trend
with friction; as the former increases, the latter decreases [10].

Such findings highlight the need for systematic friction measurements for both new
and in-service pavements with specialized equipment. Lack of correlation between macro-
texture and frictional performance of a roadway, especially during the first years of its
operation [10], should stimulate highway agencies and roadway operators to include
distinct friction measurements at periodical time-intervals. In fact, the initiation of such
measurements immediately after the construction or reconstruction of a roadway is a
necessary action in order to maintain a track record (i.e., database) of the road, which
will be useful for the maintenance management during its lifespan and the enhancement
of pavement sustainability. Nevertheless, searching for other alternatives and promising
ways to estimate friction levels (such as through laser systems or other innovative sensing
systems, e.g., smart tires) is continuously revived through popular research initiatives given
the strong social and economic impact factor of road safety.

3. Smart Tire as a Tool for Sensor-Based Monitoring

Towards this, smart tires appear as a sensor-based monitoring tool developed to act,
among others, for the provision of real-time information related to the tire–road friction. In
addition, the need for a radical update into intelligent tires makes sense so that they can
adapt to the available friction levels in order to assist drivers in controlling vehicles under
various weather and road surface conditions. Recall that reducing road crashes by improving
road infrastructure characteristics is a rational approach considering that road surface
condition needs to be maintained at a sufficient level while being consistently monitored.
However, the need to provide real-time information on road surface characteristics seems to
be a challenge for the technology of tire sensors in terms of data collection and interpretation.

Tire sensors act as integrated dynamic controllers, operated to provide information
on vehicle states [68]. State estimators provide data, including, among others, the sideslip
angle and vehicle speed. According to [69], the accurate calculation of those variables can
give essential information on a vehicle’s condition for various driving scenarios, including
a quasi-steady vehicle state and transient operation, as well as concurrent longitudinal and
lateral accelerations. All these aspects are eventually connected to the provided friction,
which is a crucial driving safety factor [69].

Considering that tire sensors can act as a monitoring and real estimator tools, it appears
that an appropriate combination of information on their own state might be very determinant
for the estimation of tire–road friction [24,28,29,70]. Related information may include tire
temperature, air inflation pressure, tire forces and other characteristics [24,70]. Basically,
the measured characteristics that can be useful to a vehicle safety control system wishing
to measure tire forces in real–time include, according to [70], tire longitudinal force (Fx),
tire lateral force (Fy), tire vertical force (Fz), tire–road friction coefficient (µ), tire aligning
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moment (Mz), tire air inflation pressure (p), and temperature in tire’s body (T). These
components are illustrated in Figure 8. Depending on the measurement type, sensors can
usually be attached to the inner part of a tire (Figure 9a) or along the tire tread (Figure 9b).
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accelerometer).

Regarding the air inflation pressure that is listed as an important characteristic, this
is mainly because it significantly affects the driving performance, and this is why many
vehicle manufacturers have added tire pressure information as a basic feature in modern
cars [24]. In addition, tire air pressure is also a matter of concern for the damage induced
into the pavement infrastructure and many relevant studies are devoted to an accurate
determination of tire contact stresses [71,72]. Nowadays, in many countries, information on
tire pressure systems is mandatory in passenger cars and trucks, while in some countries,
information on truck tires constitutes a homologation requirement. Similar interest exists
for the tire temperature as well, mainly due to the fact that temperature affects the tire’s
viscosity, which plays a crucial role in the developed tire friction [70], also considering
those issues mentioned in Section 2.3.

However, apart from the inflation pressure and temperature, the other characteristics
cannot be directly measured while vehicles are in motion. This can be feasible only with
the incorporation of indirect measurement and estimator systems (e.g., tire sensors) that
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can be implemented by qualified technical staff. Once properly designed and installed, a
multitude of information can be obtained, such as:

• Tire radial displacement, which can be measured between the wheel and the inner
liner of the tire, and displacement of the tire sidewall. Regarding the measuring
devices, it has been reported that they can vary from some simple string potentiometer
devices [73] to optical systems using a light source and a lens [74]. The majority of
such devices are reasonably efficient, but their durability is a matter of concern [70].

• Tire acceleration can be easily measured considering the various accelerometers that
are widely available, quite efficient and physically strong. However, in-tire accelerom-
eters measure impacts, and thus, they are suitable for establishing the tire angular
position, especially with respect to identification of the tire–road contact. There are
also those tire sensors that directly measure the acceleration or deformation of the tire
once installed inside the tire [75,76]. In general, although it may be possible to relate
tire–road contact patch location and length to tire forces, it is more likely to generate
information about forces when considering tire strain measurements directly [70].

• Tire strain is affected by the stiffness of the measuring sensors and their adhesive,
which is normally much higher than the stiffness of tire rubber. In order to overcome
this incompatibility, the utilized sensors are elastomer substrates [77–79]. Wheel
angular velocity and position can be measured using the rotary wheel encoder, which
is part of an ABS system. In addition, the angular position can be estimated using the
ABS information and information on tire acceleration and critical friction.

Noticeably, the achieved angular velocity also relates to the critical friction coefficient
(i.e., maximum friction value) that can be developed based on the road surface characteris-
tics (recall Figures 3 and 10). The lateral or longitudinal slip value at which µmax is located
varies significantly with the road characteristics and the tire tread. As a reference, low
values are seen on competition tires (high longitudinal and lateral tire stiffness), and high
values are obtained on loose surfaces (e.g., deep snow, gravel). Combining this information
and the acceleration (specifically deceleration during braking), it is possible to estimate
the angular position and obtain useful information about friction. A summary of analysis
methods and experimental models used to generate friction parameters is shown in Table 1,
together with a brief summary of each invention.
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Table 1. Experimental-based methods to estimate friction parameters (adapted from [1]).

Study Estimated Parameters Summary of Invention

Klein [80] Friction coefficient Use of a steering system controlled by a control module
to estimate steering gain and steering load hysteresis.

Miyazaki [22] Tire forces,
friction coefficient

Several strain sensors attached to the vicinity of the
wheel on the axle generate strain signals that are used to
estimate the tire forces and tire–road friction coefficient.

Hattori [81] Tire strain state

A series of conductors composed of many conductor
pieces (embedded in lines at specific intervals in the

circumferential direction of the tire) is used to provide
the strain states of the tire and a monitoring device

releases strain signals and also receives the reflected one
to assess the stress–strain state of the tire.

Singh et al. [82] Tire sidewall force

A piezo sensor is used to generate a signal within the
contact patch area indicating the sidewall deformation.
The power-to-load map for different tire pressure is used

to estimate the force.

Balkwill and Hopkins [83] Surface friction

A method of measuring surface friction in which drag
due to contaminant lying on a said surface is isolated,

and a continuous friction measuring device for effecting
the measurement.

Abe and Sawa [84] Dynamic friction coefficient

A new device was developed, including a disk with a
measuring rubber member, a driving disk adapted to

rotate co-axially with the disk and a dynamometer that
interconnects the disk and the driving disk. Using the

output signal records from friction measurements leads
to the estimation of the dynamic friction coefficient.

Miyoshi et al. [85] Tire longitudinal force

Two magnetic sensors were used to measure the rotation
angle of the wheel and wheel axle. A computing device

was used to calculate the tire warp angle, which is
derived from the difference between tire rotational angle
during load and no-load conditions. Tire longitudinal

force is estimated as a function of tire warp angle.

As previously mentioned, various types of sensors have been developed to directly
measure the acceleration or deformation. Some studies use sensors to investigate intelli-
gent tires that can estimate characteristic features of road conditions using the waveforms
of acceleration sensor signals for different types of road surfaces through experimental
data [32,86]. For instance, Singh et al. [87] developed a sensor system that measures the
frequency response of the vibrations while moving (Figure 11). The level of the vibrations,
which is within a predetermined frequency band, may then be used to calculate the fre-
quency spectrum of the time signal through a band-pass filter. According to this approach,
it is possible to have an estimation of the road surface profile. Hence, this approach can be
subsequently used to estimate the provided tire–road friction coefficient, especially when
very low levels are indicated based on the surface profile.

Regarding the limitations of the method, for high slip conditions when high force is
needed, increased vibration is recorded due to the stick/slip phenomenon linked to the
tread block vibration modes, thus making the proposed method inefficient. In that case, a
model-based approach for the estimation of tire friction is proposed. All in all, the authors
proposed a combined approach to estimate the friction levels using both measurements
and model-based estimators for a wider range of excitations [87].

Another approach based on vibration has been analyzed in the study of [88], which pre-
sented a monitoring method to estimate the coefficient of friction by using the tire rotational
vibration. They used a simple tire rotational model and derived a transfer function relating
the road disturbances and the wheel speed responses. Acosta et al. [45] reviewed various
study approaches that are not only vibration-based, but are also considered slip-based
approaches focusing on longitudinal dynamics, lateral dynamics, and tire self-alignment
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moment. Since the purpose of this review paper is not to evaluate or compare the available
different approaches, readers are referred to [45] for further relevant information.
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Apart from those studies focusing mainly on experimental data, there are limited
ones using algorithms that can classify road surface types from sensor signals in real-time.
In particular, Lee et al. [86] developed an algorithm that estimates road surface type in
real-time by using a Deep Neural Network (DNN) based on signals from an intelligent tire
system with an accelerometer attached inside the tires (Figure 12). The authors presented
an intelligent tire system with a three-axis accelerometer to measure the response to the
tire–road surface interaction during the contact period under various road conditions. The
sensor is attached inside the tire using an adhesive material (Figure 12a). The hermetically
electric connecter sends the signals and receives power between the sensor and the telemetry
device that is attached outside of the tire (Figure 12b). The telemetry transmits the signal
from the sensor at a rate of 1 kHz using Bluetooth wireless communication to the data
acquisition system.
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No matter the complexity of the system developed, a common aspect is how the
collected data are interpreted. An innovative process to design a Fully Connected Neural
Network (FCNN) and a one-dimensional Convolutional Neural Network (CNN) was
developed [86]. The concept of FCNN is that a typical structure of an artificial neural
network consists of fully connected layers, such that one layer’s node is linked to the next
layer’s node. The link is successful once good communication is ensured between the
internal parameters of the structure and the produced output data. A CNN is a peculiar
type of Deep Neural Network (DNN) architecture used to train spectral variations and
model spectral correlations, commonly applied to learning images [86,89]. A typical CNN
consists of three consecutive layers:

• A convolutional layer, responsible for extracting the spatial features from the imported
images inside the layer so that the CNN can identify the patterns or objects,

• A pooling layer, responsible for gathering the output data generated from the convo-
lution layer in order to reduce the size of the output data or to highlight specific sorts
of data [86], and

• A fully connected layer, which is flattened and connected to the pooling layer once
all the features of the image or sequential data are sufficiently recognized, thereby
leading to the final classification output.

Based on the developed methodology, it became feasible to form a database containing
tire–road interaction information in contact patches regarding various road surfaces. This
database was used for training purposes of the two aforementioned types of algorithms in
order to classify the road surface conditions. It was concluded that a one-dimensional CNN
was more suitable than a FCNN [86]. The proposed algorithm was considered more practical
because it can continuously provide road surface indications and be effectively incorporated
into the chassis controller of a vehicle. It seems that if this approach is combined with addi-
tional information such as tire type, tire pressure, vehicle load—which is a key technological
issue for both the automotive sector [90] and the damage induced into infrastructure as
well [91]—then it can help vehicle manufacturers assist with driving conditions.

4. Potentialities of Smart Tires: Challenges and Prospects
4.1. State of Practice

Smart tires have been introduced in both research and industry communities as innova-
tive sensing systems capable of numerous dynamic features, including estimation of wheel
forces, slippage in contact, tire–road contact area on dry and wet roads, and hydroplaning
potential [92]. Of course, installing smart sensors in a tire encompasses several problems
that have to be considered, such as compatibility of the sensors with tire rubber, battery
installments, and effectiveness of wireless transmission and data interpretation [93]. In
the previous years, research has systematically dealt with such issues in order to address
limitations and weaknesses and transform them into strengths and opportunities for an
advanced vehicle control integrated with an intelligent tire system. Areas of benefit include
tire performance analysis [92], limited uncertainties in tire modeling aspects and most
importantly, improved driving behavior and enhanced road safety.

Nevertheless, sparse research initiatives are not enough to ensure efficient transfer
in a “smart” mobility future. Cooperation between academia and industry needs to be
strengthened through joint research initiatives, including simulation studies and pilot
demonstration examples, in order to prove the increased capabilities of the smart tire
features, propose recommendations and set integrated procedures based on past and
current experience. Fostering collaboration between researchers and practitioners can bring
us in front of pilot implementation projects that constitute a promising starting point for
developing mature and scalable future concepts based on “lessons learned” experience.

Thus far, leaders in the tire industry (e.g., [94–96], etc.) have already tried to develop a
technology that will be market ready in due course to provide not only assistance to drivers
but also efficiency in connectivity and data storage. Connectivity is a key factor when
developing sensors embedded in tires since machines instead of humans are expected to
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monitor and adjust driving conditions. When developing smart tires, manufacturers focus
on increasing capabilities for adaptation to road characteristics and prevention of collisions
or crashes. An example of a high-speed car equipped with smart tires developed by [95] is
the latest McLaren Artura sports car. Tire sensors transmit readings to this luxury vehicle,
and some of the data are used to enhance driver alert systems.

In addition, since tire sensors come in direct proximity to the pavement, they are
supposed to provide valuable data to a higher extent than today’s industry-standard tire-
pressure monitoring systems. Such systems are mounted on air valves provided with
tire pressure readings [97] and have been adopted by major tire manufacturers (e.g., [30]).
Similar technology has also been adopted for measuring strains on tires [96] for a better tire
performance analysis. However, tire connectivity goes some further steps ahead.

When addressing the term “connectivity”, smart tires are expected to extend their
capabilities beyond the scope of individual vehicle control. Tire manufacturers may invest
in adding connectivity simply because they need data to improve their products, as does
the vehicle industry. This is achievable by making a host of ideas to kick off a future where
rubber tires will do more than roll down the road surface. Two illustrative examples are
given in Figures 13 and 14 for smart vehicle movement in both urban and interurban road
environments. Aspects of a V2X (“vehicle to everything”) communication are introduced
in these two figures, thereby providing a strong potential and a key enabler for automated
yet safe driving and overall intelligent mobility.
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As stated earlier, tire sensors normally monitor tire wear, inflation pressure, and the
temperature inside the tire. Once an increase in the inside temperature is detected, then an
indication for early tire damage might occur [99], thereby necessitating adjustments to avoid
a dangerous situation in the roadway environment. Therefore, if the picked-up sensor-based
information about road surface temperature, tire pressure, traction, vehicle acceleration,
etc., could be transferred via a built-in telematics device into a cloud (Figures 13 and 14),
then properly trained algorithms could work on forecasting the likelihood of a problem
occurring. Accordingly, once a vehicle approaches or passes over potholes, bumps and
several types of cracking (Figure 14), tire sensors can communicate those parts of the
highway section that may be of danger for other vehicles in real-time.

An even additional challenge is the combination of road surface data with changes in
the weather conditions. Recall that weather variabilities drastically affect the pavement’s
friction level with profoundly adverse effects on road safety. With data collected from
intelligent tire sensors and a vehicle’s on-board information system, a clear picture of the
prevailing driving conditions can be obtained, thereby providing solid alerts for driving
adjustments accordingly [94]. For instance, Continental’s automated testing vehicle is
used for conducting up to 100,000 braking tests on a variety of road surfaces each year,
including dry, wet or icy conditions along a 75 m-long test track. Hence, that intelligent
automated vehicle system would ideally learn how to respond to changing conditions,
thereby adjusting the underlying performance parameters of the vehicle at any given time
and ensuring safe performance through real-time measurements [100]. Regarding the same
content, scenarios are envisaged where tires can sense changes in road surface conditions
(i.e., detection of distresses) and predict hazardous driving potentials [95]. Tire intervention
potential is, therefore, a critical aspect under consideration.

Possible benefits from tire connectivity are twofold covering aspects for both industrial
and societal needs. First, tire manufacturers can gain access to valuable information on
driving behavior, and they can use the data to improve their products. Vehicles can be
perceived as futuristic features that can act as wheel-smartphones. Thereafter, improved
driving conditions and road safety perspectives can be spread around the communities
and human beings that can benefit from that kind of sensing innovations.

Considering these increased potentialities, it should be mentioned that some of the
next-generation tire sensors already appear on the road, primarily embedded in wheels of
heavy trucks responsible for freight transportation, thereby paving the way for applying
them to high-end consumer vehicles too. Noticeably, there are pressures from one tire
manufacturer [96] to equip all of its tires with connectivity features by 2027. In addition,
connectivity is expected to be a dominant aspect of future mobility, when cars may be
shared more and possibly operate without a driver. Therefore, tools that enable vehicles to
be more aware of their environment will be necessary to guarantee safety.

4.2. Addressing Future Needs

Considering the latter remarks, it is worth noticing that most communities worldwide
now face the challenge of moving towards the era of autonomous driving, where new
mobility patterns are expected to dominate. Terms such as Autonomous Vehicles (AVs),
Connected Autonomous Vehicles (CAVs) and truck platooning are becoming more and
more familiar among both researchers and practitioners. The scientific community is
jointly working with industry and automation technology to increase efficiency in the
movement of people and goods [101]. Related experience from AV deployment brought
to the forefront research investigations for changes in the road markings, lane width,
roadway capacity and aspects of pavement design [34,102–104]. Undoubtedly, the current
road infrastructure condition and rapid change in the loading patterns necessitate the
introduction and adoption of new continuous monitoring of pavement performance.

In this context, road safety remains an undeniable demand. Autonomous truck im-
plementation has been reported to negligibly affect the provided friction of asphalt pave-
ments [34]. However, limited or even absent lateral wander of AVs results in excessive load
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concentration that accelerates pavement damage. Indeed, a zero-wheel wander induces
rutting that can adversely affect road safety aspects, especially under wet weather condi-
tions. Rutting acts in favor of water accumulation during rainfall, thereby limiting the direct
contact between tires and the road surface. As such, an increased hydroplaning potential
appears. In this sense, autonomous driving in narrow lanes can contradict the reduction
in road incidents. Despite the several countermeasures already proposed in the literature
(e.g., an optimal scheduling of truck loading on low-temperature days to limit rutting [34]),
other more strategic actions have to be planned. The key aspect relates to connectivity and
controlled channelized traffic patterns in order to reach a balance between automation and
optimal pavement performance with less distresses [104] and thus higher safety.

Advanced control systems during platooning and optimization of a vehicle’s lateral
position along a lane’s width may decrease pavement damage by 30–40% [104,105]. Given
their features, smart tires do offer a unique opportunity to foster connectivity challenges
among vehicles in the future mobility era. Similar to those mentioned earlier for defects or
water detection while traveling, smart tires can indicate the need for optimization of the
lateral position of each platoon or group of platoons at a highway section with increased
surface defects (e.g., cracking, rutting, etc.) or reduced friction levels. Once a distressed
section is detected by a preceding vehicle, reliable and real-time alerts can be communicated
to a succeeding vehicle so that it can adjust its lateral position with a twofold objective;
(a) to ensure a safe ride—driving perspective—and (b) to contribute less to pavement
deterioration—infrastructure perspective. In this context, systematic research needs to be
supported to extend the capabilities of smart tires such as the traffic regularization, highway
safety increase and the potential contribution to infrastructure condition monitoring.

4.3. Integration with Current Techniques for Infrastructure Monitoring

It was revealed earlier that performing friction measurements for roadway asset man-
agement within a PMS is imperative. Diversity in the utilized systems and their measuring
principles has been mentioned in Sections 2.4 and 2.5, which has stimulated investiga-
tions to deal with the harmonization potential during the assessment of friction levels.
No matter the utilized system, highway agencies that operate heavy-duty motorways
plan friction measurements at specific time intervals yearly and perform the necessary
decision-making so that their pavements remain serviceable and meet safety requirements.
However, seasonal variations of friction and sharper fluctuations that can be observed
because of the weather conditions at individual parts of a bigger road network (e.g., intense
rainfalls or prolonged periods of drought that refer to dusty contamination) cannot be
captured in a continuous mode because of limitations relating to the procurement and
transportation logistics of standardized equipment at short sections for ad-hoc investiga-
tions at non-scheduled periods. In the meantime, for the majority of urban or secondary
rural roadways, friction measurements may take place even more occasionally because of
budgets or specialized equipment limitations of the owners of these roadways.

As commented earlier throughout the paper, smart sensing systems for data acquisition
are very popular and cost-effective assessment tools [16,20]. Considering the potentialities
of smart tires towards the rapid assessment of friction levels, a major research challenge
reveals: are smart tires capable of detecting black spots in a roadway network in terms of
infrastructure condition monitoring? Because of a lack of relevant experience, the stand-
alone use of smart tires for frictional evaluation and the related decision-making seems
impossible as it contradicts the well-established knowledge and practice from the use of
standardized systems (e.g., SCRIM, GripTester, etc.). Instead, integrating existing systems
(conventional) with practical, innovative ones (non-conventional) appears as a promising
approach toward assisting a PMS with better and more accurate maintenance planning.

In other words, the idea of potentially adjusting smart tires on conventional commer-
cial vehicles for the purpose of routine use can provide a portable measurement tool, easily
adaptive for more frequent measurements (e.g., on a monthly basis) at areas of high risk
in terms of road safety, such as sections with observed friction loss, raveling issues, or
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areas with road geometry restrictions (e.g., a reduced radius of curvature and/or a large
longitudinal grade). Thereafter, targeted measurements with standardized equipment
should be performed, even earlier than initially planned, in favor of developing a reliable
action plan. In this context, a smart tire itself cannot directly support decision-making;
rather, it alerts for the need for additional distinct measurements with those systems that
are responsible for supporting decision-making processes.

It is believed that the multi-parametric nature of road friction, together with the
diversity in the materials that can be observed in pavement surface courses (i.e., traditional,
recycled, etc.), induces evaluation challenges related to comparability issues with existing
systems and measurement conditions (e.g., type of vehicle and wheel, slip ratio, water flow,
speed, etc.). Necessary supportive actions and research initiatives need to be taken to shed
further light on these prospects and potential capabilities through small-scale laboratory
simulation experiments with test wheels and tire sensors or full-scale field experiments at
pilot roadway sections monitored through both standardized equipment and vehicles with
intelligent tires. Such actions may pave the way for more cost-effective and sustainable
road infrastructure management.

5. Conclusions and Prospects

The present study provided a review of aspects related to the tire–road friction as
well as a popular and innovative way to assess this important road safety feature, i.e.,
through the use of smart tires or tires embedded with sensors. The main findings can be
summarized as follows:

• A pavement’s skid resistance is directly related to tire–road friction thereby affecting ve-
hicle maneuvering and braking under various weather conditions reflected through dry,
wet, dusty and icy road surfaces or combinations of the aforementioned circumstances.

• Given its significance and its relationship to road incidents, friction is normally mea-
sured by almost every road entity at periodical time intervals with standardized
equipment in the framework of a PMS.

• In parallel, the benefits of using smart sensors embedded in tires were introduced
mainly as a tool to promote advanced vehicle control but also as a cost-effective yet
necessary approach to evaluating in real-time the friction level of a roadway section
while traveling.

• Such an approach is expected to assist drivers in adjusting their behavior (i.e., lower
their speed) in case indications of reduced skid resistance are observed in favor of
road safety.

Apart from the current capabilities of smart tires, mainly for vehicle-based applications,
the following key points and prospects can be introduced for future consideration:

• Smart tires appear as an intelligent means for enhancing road safety both for current
traffic modes as well as for future mobility patterns with AVs and CAVs.

• Thanks to the connectivity aspects of smart tires, it might be feasible not only to
improve driving safety but also to help to control pavement deterioration. Focusing
on skid resistance, it also appears that smart tires can assist in effective roadway
monitoring. Of course, the goal is not to substitute existing systems in terms of
decision-making; rather, it is to complement and even ameliorate the current state of
practice by identifying areas where additional monitoring effort needs to be considered
for condition assessment. More relevant research is needed in these directions.

• Particular research challenges should be addressed, such as the impact of icy surfaces on
the efficacy of smart tires. Icy conditions are critical for vehicle stability, and the presence
of ice on a road surface induces dangerous driving conditions that require systematic
investigation in conjunction with potential benefits from the use of smart tires.

Overall, continuous research efforts have to be fostered to efficiently address current
challenges and transform them into future opportunities.
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