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Abstract: In recent decades, the trend of using zero-emission vehicles has been constantly evolving.
This trend brings about not only the pressure to develop electric vehicles (EVs) or hybrid electric
vehicles (HEVs) but also the demand for further developments in battery technologies and safe use of
battery systems. Concerning the safe usage of battery systems, Battery Management Systems (BMS)
play one of the most important roles. A BMS is used to monitor operating temperature and State
of Charge (SoC), as well as protect the battery system against cell imbalance. The paper aims to
present hardware and software designs of a BMS for unmanned EVs, which use Lithium multi-cell
battery packs. For higher modularity, the designed BMS uses a distributed topology and contains
a master module with more slave modules. Each slave module is in charge of monitoring and
protecting a multi-cell battery pack. All information about the state of each battery pack is sent to
the master module which saves and sends all data to the control station if required. Controlled Area
Network (CAN) bus and Internet of Things technologies are designed for requirements from different
applications for communications between slave modules and the master module, and between the
master module and control station.

Keywords: unmanned electric vehicles; lithium batteries; battery management system; state of charge;
controlled area network; Internet of Things

1. Introduction

Unmanned vehicles (UVs) are defined as vehicles without the physical presence of a hu-
man operator on board [1–4]. UVs can fully autonomously operate with a pre-programmed
plan or be remote-controlled [1,2]. Since the late 1950s, military UVs have been used in
multiple functions such as reconnaissance, surveillance, etc., to minimize human casual-
ties [5–8]. In recent wars and armed conflicts, UVs have asserted their irreplaceable role in
various complex missions [7–9]. With indisputable advantages in operation, especially in
combat and reconnaissance, UVs have recently become an indispensable element of each
country’s military and military doctrine [9,10]. Figure 1 shows examples of UVs used in
different militaries. Based on the environment where UVs move and operate their missions,
they are categorized into four main groups:

1. Vehicles moving in the air: Unmanned Aerial Vehicles (Systems)—UAV, UAS;
2. Vehicles moving on the ground: Unmanned Ground Vehicles—UGS;
3. Vehicles moving at the sea surface: Unmanned Surface Vehicles—USV;
4. Vehicles moving in the water column: Unmanned Underwater Vehicle—UUV.

In each group, UVs can be classified by using various systems among which the
most used one is based on the weight [7]. The classification can be also different between
governments and organizations. Table 1 shows the NATO Classification for UASs. This
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article focuses on small UVs, which do not require high technologies and costs to manufac-
ture and operate. Therefore, they will be more suitable for small militaries and militaries
of developing countries. Traditionally, small UVs are powered by internal combusting
engines (ICEs). These engines are characterized by not-so-high efficiency, slight hysteresis
of dynamic behavior, and low power density in comparison with full-electric drives [3–5].
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Figure 1. UVs used in different militaries: (a) Vietnamese combat UGV [11]; (b) Reconnaissance 
UGV-PzV in Czech Army [12]; (c) Chinese combat UGV Ruizhao I and Ruizhao II [13]; (d) NATO 
UGV General Dynamics MUTT [14]; (e) Vietnamese UAV Shikra [15]; (f) Primoco UAV in Czech 
Air Force [16]; (g) Chinese UAV in PLA 71st Group Army [17]; (h) US RQ-4 Global Hawk [18]. 

In each group, UVs can be classified by using various systems among which the most 
used one is based on the weight [7]. The classification can be also different between gov-
ernments and organizations. Table 1 shows the NATO Classification for UASs. This article 
focuses on small UVs, which do not require high technologies and costs to manufacture 
and operate. Therefore, they will be more suitable for small militaries and militaries of 
developing countries. Traditionally, small UVs are powered by internal combusting en-
gines (ICEs). These engines are characterized by not-so-high efficiency, slight hysteresis 
of dynamic behavior, and low power density in comparison with full-electric drives [3–
5]. 

Table 1. NATO UAS Classification Guide [10,19,20]. 

Class Category Weight Altitude Normal Mission Radius  Example Platforms 1 

CLASS I 

Micro <2 kg 200 ft 5 km (LOS 4) Black Widow 

Mini 2–20 kg 3000 ft AGL 3 25 km (LOS) 
Desert Hawk III 

ScanEagle 

Small 20–150 kg 5000 ft AGL 50 km (LOS) Hermes 90 
Luna X-2000 

CLASS II Tactical 150–600 kg 10,000 ft AGL 200 km (LOS) Hermes 450 
Watchkeeper WK450 

CLASS III 
MALE 1 

>600 kg 
45,000 ft AGL 

Unlimited (BLOS 5) 

Hermes 900 
MQ-9 Reaper 

HALE 2 65,000 ft AGL RQ-4 Global Hawk 
Strike/Combat 65,000 ft AGL  

1 MALE—Medium Altitude Long Endurance. 2 HALE—High Altitude Long Endurance. 3 AGL—
Above Ground Level. 4 LOS—Line of Sight. 5 BLOS—Beyond Line of Sight. 

In recent decades, with increasing concerns about environmental and ecological is-
sues, troubles of emission and noise caused by ICE must be considered by many govern-
ments and corporations. Since the 1990s, electric vehicles (EVs) and hybrid electric vehi-
cles (HEVs) have been announced as promising alternatives to ICE and got a lot of devel-
opment attention. They use a concept of hybrid or full-electric drives based on electro-
chemical batteries, even fuel-cell [3,21,22]. This trend in the transport vehicles has also 
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Table 1. NATO UAS Classification Guide [10,19,20].

Class Category Weight Altitude Normal Mission
Radius Example Platforms 1

CLASS I
Micro <2 kg 200 ft 5 km (LOS 4) Black Widow

Mini 2–20 kg 3000 ft AGL 3 25 km (LOS) Desert Hawk III
ScanEagle

Small 20–150 kg 5000 ft AGL 50 km (LOS) Hermes 90
Luna X-2000

CLASS II Tactical 150–600 kg 10,000 ft AGL 200 km (LOS) Hermes 450
Watchkeeper WK450

CLASS III
MALE 1

>600 kg
45,000 ft AGL

Unlimited (BLOS 5)

Hermes 900
MQ-9 Reaper

HALE 2 65,000 ft AGL RQ-4 Global Hawk
Strike/Combat 65,000 ft AGL

1 MALE—Medium Altitude Long Endurance. 2 HALE—High Altitude Long Endurance. 3 AGL—Above Ground
Level. 4 LOS—Line of Sight. 5 BLOS—Beyond Line of Sight.

In recent decades, with increasing concerns about environmental and ecological issues,
troubles of emission and noise caused by ICE must be considered by many governments
and corporations. Since the 1990s, electric vehicles (EVs) and hybrid electric vehicles (HEVs)
have been announced as promising alternatives to ICE and got a lot of development atten-
tion. They use a concept of hybrid or full-electric drives based on electrochemical batteries,
even fuel-cell [3,21,22]. This trend in the transport vehicles has also been applied to UVs,
especially small UVs, to minimize these above-mentioned disadvantages of ICE [3,23,24].
Figure 2 shows the efficiency of using Electric Vehicles to reduce carbon dioxide (CO2)
pollution. The scenario of comparison is presented in detail in [24]. The results show that
using Electric Vehicles (powered by batteries or Fuel Cells) can reduce a large amount
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of CO2 emissions. In the most interesting scenario, the equivalent amount of CO2 can
be reduced from 787 g/km (Coal-to-Liquid fuel) to about 50 g/km (BEVs in low-carbon
countries—Austria, Sweden, Norway, Iceland) [24].
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Figure 2. CO2 pollution comparison between ICE Vehicles (ICEVs) and Battery Electric Vehicles
(BEVs) [24].

2. Electric Vehicles Power Supply

The electric vehicles are based on the battery’s technologies providing power sup-
ply. Batteries can be defined as an electrochemical power source that directly converts
chemical energy into electric energy using an electrochemical reaction [25,26]. Because the
Carnot cycle dictated by the second law of thermodynamics cannot restrict the electrochem-
ical reactions, batteries can gain more efficient energy conversion [26]. The elementary
unit of a battery system is called a battery cell, which consists of three main parts: the
anode–negative electrode, the cathode–positive electrode, and the electrolyte—medium for
the transfer of electric charges inside the cell

Battery cells are available in multiple shapes and sizes, and the most common shapes
are cylindrical cells and wound prismatic cells. Based on the ability to be electrically
recharged, battery cells are classified as primary and secondary ones. Primary cells cannot
be electrically recharged and then, can be discharged only once. In contrast, secondary cells
can be electrically recharged after discharging. Therefore, they can be used in several cycles
of charge-discharge (life cycles).

By connecting multiple cells with (approximately) similar properties, we get a (multi-
cell) battery that is widely used in the military as well as industrial and commercial
applications. Batteries are packaged in various shapes, sizes, and configurations; and are
also classified as primary batteries and secondary batteries. The secondary batteries are also
called storage batteries or accumulators. Primary batteries are inexpensive, lightweight,
and easy to use but have lower capacity. Hence, they are suitable for portable electronic
and electric devices such as digital cameras, GPS devices, lightning, etc. [26]. However,
secondary batteries are usually heavier but have higher capacity, higher discharge rate,
and ability to be recharged. As a result, they are better choices for applications requiring
high operating electric current with long operation time. Obviously, in the areas of EVs,
secondary batteries are the optimum choice.

The secondary batteries have been used for almost two centuries since the late 1850s.
Their technology has been constantly involved in two directions—using high surface area
electrodes and using advanced materials [26]. The first secondary battery, which was a
Lead-Acid cell with a voltage of 2 V, was introduced in 1859 by Plante. One year later, in
1860, a series of nine connected cells was demonstrated by Plante for the French Academy of
Science. Presently, the most common Lead-Acid battery configuration contains six battery
cells in series for a combined voltage of 12 V. They are used widely in automotive SLI
systems, EVs, HEVs, industrial trucks, aircraft, and other applications.
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Since the beginning of the 20th century, Nickel batteries have been developed and
used in industrial applications. With higher energy density, power capability, and other
advantages, Nickel batteries dominated the rechargeable battery market for aircraft engine
starting systems, communications applications, and portable devices during the 20th
century [26]. The most used types of Nickel batteries are Nickel Cadmium (Ni-Cd) and
Nickel Metal Hydride (Ni-MH). The NI-Cd batteries have significant issues with the toxicity
of Cadmium and the so-called “memory effect”. Ni-MH batteries eliminate these issues;
however, their rate of self-discharging is larger and increases with the rise of batteries’
capacity. Therefore, at present, Ni-MH batteries are mostly used in the pencil battery form
with low capacity.

The century of Nickel batteries came to an end when Lithium batteries were marketed.
The first Lithium battery in the market was launched by Sony in 1991 [26]. From the first
decade of the 21st century, Lithium battery technologies rapidly took place of the standard
power source in multiple fields [3,23,25,26]. Now, various types of Lithium are widely used
every day by people all over the world. The most common types of Lithium batteries are
LiCoO2, LiFeO4, and LiMn2O4. Lithium batteries are widespread because of the higher cell
voltage, longer life cycle, long shelf life, rapid charge capability, no memory effect, broad
temperature range of operation, and so on. Table 2 shows the major outstanding features of
Lithium batteries over their predecessor.

Table 2. Comparison of mainly used secondary batteries [5,22,25,26].

Type Voltage per Cell
[V]

Energy Density
[Wh/kg]

Energy Density
[Wh/L]

Self-Discharge
[%/Month] Life Cycles

Lead—Acid 1.80–2.10 30–40 60–75 4–8 500–700
Nickel—Iron 0.85–1.35 50 - 20–40 500–1000

Nickel—Cadmium 0.85–1.35 40–60 50–150 10–15 500–1500
Nickel—Metal Hydride 0.85–1.35 30–80 140–300 15–30 500–1000

Lithium-Ion 3.00–4.20 >200 >300 5–10 >1000
Lithium—Ion Polymer 2.70–4.20 >150 >300 <5 1000–1500

Lithium Iron Phosphate 2.50–3.65 >100 >150 <5 >1000

Recently, the military, aerospace, transportation, and automotive industries have
shown an interest in the remarkable Fuel cells technology, which can support the capa-
bilities of existing battery types. In comparison with batteries and supercapacitors—see
Figure 3—fuel cells have limited power density but much higher energy density. The other
advantage of fuel cell technology is that it is a cleaner technology using alternative fuels
such as Hydrogen, Methanol, . . . [3].
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Fuel cells, as well as batteries, are electrochemical power sources that produce elec-
tricity by combining a fuel (electroactive material) and an oxidant. The main difference
between batteries and fuel cells is that the active materials for fuel cells are provided from
an external source that is not an integral part of the device as in batteries. Therefore, a fuel
cell can generate electrical energy as long as the active materials are provided [3,25,26].
Based on the types of fuel, fuel cells are classified into two categories: Proton Exchange
Membrane (PEM) Fuel Cell and Solid Oxide Fuel Cell (SOFC) [25].

In PEM Fuel cell systems, electrolytes conduct hydrogen ions (H+) from anode to
cathode. The fuel source; therefore, can be pure hydrogen or pure H2 or H2 generated from
a fuel reformation process. In contrast, the fuel source of SOFC systems is oxygen ions
(O2−). The SOFC systems have the advantage of having higher efficiency; however, they
operate at high temperatures (800–100 ◦C). Therefore, PEM Fuel cell systems recently are
the most promising alternative to ICE and battery system in the automotive, military, and
transportation industries. Figure 4 shows a Hydrogen PEM Fuel Cell system in practice,
including its structure and power characteristics.
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The characteristics of Fuel Cell systems, as shown in Figure 4, are different from the
characteristics of batteries. However, they are similar to the photovoltaic system while
the output current is dependent on voltage. The output power then is the function of the
output current. Therefore, like the photovoltaic systems, the Fuel Cell system requires a
power electronic processing block, for example, Maximum Power Point Tracking (MPPT)
controller, to acquire maximum efficiency. The mathematical model of Fuel Cell is also
an important and knowledgeable topic to design an efficient controller. An example of a
mathematical model of a Fuel Cell can be found in [27].
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Currently, the usage of Fuel Cell technology is limited by several barriers. The biggest
barrier is the high initial cost of the system since the technology has not been produced
on a large scale yet. The other issues can be the heat as a by-product, noise (mainly from
ventilation), and the limited operability under critical conditions (air impurities, freezing,
thawing, underwater, etc.). Figure 4d shows the discharge current of a fuel cell at different
loads with temperature dependence. The figure shows that while the differences in currents
at a certain load between 20 ◦C and 50 ◦C are negligible, the variances between 20 ◦C, 10 ◦C,
and 0 ◦C are significant, over 10 times different for each value of current.

Regarding electrochemically power storage and ecological power source, in recent
years, there are increasing concerns about the Hybrid Renewable Energy Systems (HRESs),
which contain one or several renewable power sources and energy storage solutions such as
battery or Fuel Cell systems [28–33]. Such a combination can eliminate the disadvantages
of each power source by using the advantages of others. In such HRESs, battery and
Fuel Cell systems are used to store the generated power to create an autonomous mobile
uninterruptible electric power system. On the other hand, renewable power sources can
also be used as a power harvesting solution to increase the efficiency and operating time
of battery or Fuel Cell systems. Currently, in many countries, one of the most popular
and promising renewable power sources is the Photovoltaic (PV) system [29–37]. Figure 5
shows the scheme of HRESs based on PV systems. More detailed discussions about these
systems can be found in [28–37].
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3. Design of Battery Management System

This article presents a design of a Battery Management System (BMS) for multi-cell
Lithium battery packs used in small electric UVs from the hardware and software point of
view. The examples of electric UVs, to which the designed BMS is applied, are introduced
in [38–42]. One of them is a four-wheel UGV, which is designed to carry a jamming system
with a horn antenna [38–40]. The power source of this UGV consists of three Lithium
batteries, each of which contains seven battery cells in series and a supply voltage of 25.9 V,
with a capacity of 5000 mAh. The second one is a small quadrotor UAV designed to perform
a variety of investigating and studying tasks in laboratories at the Department of Aviation
Technologies, the University of Defence in Brno. This UAV is powered by three Lithium
batteries, each of which supplies a voltage of 11.2 V with a capacity 2500 mAh. This chapter
also briefly presents the necessity of BMS on a Lithium battery system as the motivation
for the design and sets forth requirements for designed BMS. As a theoretical basis, the
overview of the State of Charge estimation methods and communication protocols used by
the designed BMS will also be presented.
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3.1. Motivations and Requirements

Currently, the most popular battery type in portable electronics and EVs is the Lithium
battery, especially the Lithium-ion battery [43–45]. By means of high cell voltage and high
energy density, an individual Lithium cell can be enough to power a portable device such as
a telephone, digital camera, etc., for a long enough operation time. However, battery packs
are necessary for applications that require higher supply voltage, higher discharge current,
and more energy [43–46]. In an ideal case, all cells of a battery pack must be identical.
This requirement is impossible in practice due to different conditions during production,
storage, as well as operation.

Other safety-critical issues of batteries include thermal issues, over-charging or over-
discharging, over-current, and so on [43–48]. Among these issues, thermal issues are
considered to be the most critical. Thermal issues can significantly affect the operation
as well as the life cycle of batteries [23,49–51]. For example, high temperatures can cause
combustion and explosion. From a scientific perspective, thermal issues significantly
influence the internal electro-chemical of batteries. In [44,50], authors showed the effect
of over-charging and over-current on the viability of batteries. The over-charging and
over-current also lead to thermal issues because of the increase in the Joule heat [43,44].
The over-discharging does not cause a critical hazard; however, a battery cell can become
a “dead cell” after extreme over-discharging. The over-discharging results in the internal
electrochemical effects which shorten the batteries’ life cycle and safety [48,52,53]. A
more detailed and scientific analysis of these issues, especially from the electrochemical
viewpoint, can be found in [43–53].

Multiple accidents caused by improper operating conditions of Lithium batteries were
reported; therefore, a BMS is required to monitor and protect the battery against irregular
operating conditions. The most famous one was the fire of the Auxiliary Power Unit
(APU) using Lithium batteries on a Japan Airlines B-787 on 7th January 2013 [54]. Figure 6
describes the exemplar APU block and the rest of the APU block in the accident.
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Because the goal UVs use many battery packs to power their components, the BMS
is designed in a distributed topology with one Master module and more Slave Modules.
Each Slave module is responsible for monitoring an operating condition such as battery
voltage, discharge current, temperatures, or cell voltage of a battery. Based on the obtained
data about the operating conditions, Slave modules protect their batteries against cell
imbalance. The information about operating conditions and the state of each battery is
also sent to the Master module. The Master module will record these data to non-volatile
memory such as a microSD card. After that, it will send these data to the control station
for purpose of analysis in real-time according to the requirement of the control station.
The communication between Slave modules and the Master module is realized in two
ways—via Controlled Area Network (CAN) bus or wirelessly. The communication between
the Master module and control station must be wireless, using the same 2.4 GHz frequency
as Wi-Fi 802.11.

More detailed discussions about BMS can be found in multiple other papers. In [55–57],
the authors also provided specific overviews and discussions about BMSs, their necessi-
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ties, and functional requirements. The authors addressed the challenges for BMSs and
propounded future possible solutions for these challenges. In [58], the EMI issues of BMS
front-end integrated circuits (ICs) for EVs and HEVs are experimentally investigated and
discussed. The authors developed a specific test board to test the EMI susceptibility of
BMS ICs by direct power injection (DPI) and radiated susceptibility measurement in an
anechoic chamber. In [59], an interesting multicell-to-multicell battery equalizer was pre-
sented. The equalizer was developed based on a novel bipolar-resonant LC converter,
which supports flexible and efficient operation modes with stable balancing power and can
greatly improve the balancing speed [59]. The authors also provided mathematical analysis
and comparisons with typical equalizer topologies [56].

3.2. Theoretical Basis
3.2.1. State of Charge Estimation

Currently, there has not been any method to measure or compute exactly the State of
Charge (SoC) of a Lithium battery, so the SoC can only be estimated approximately based
on the parameters of the battery. There are three main methods to estimate the SoC, which
are [3–5,23]:

1. Open Circuit Voltage (OCV) method
2. Battery Internal Resistance (BIR) method
3. Coulomb Counting Method (CCM) method

The OCV method predicts the SoC of a Lithium battery by measuring its open circuit
and comparing it with the discharge curve SoC = f

(
UOpen Circuit

)
. Figure 7 presents

the typical discharge characteristics of Lithium batteries and shows the discharge curve
SoC = f

(
UOpen Circuit

)
depends on discharge current and temperature. Therefore, it is

impossible to achieve a precise discharge characteristic for estimation. In addition, the OCV
method requires the battery to be disconnected from the external circuit. For these reasons,
the OCV method is not chosen for the designed BMS.
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Figure 7. Battery power source comparison.

By applying the second method, named BIR, the SoC is estimated based on the
dependence on the battery’s internal resistance. In this test, the battery discharges with
the current up to several hundred amps in a short time of some milliseconds. The internal
resistance R of the battery is then calculated by Equation (1), where I is the discharge
current, and U0 and U1 are battery voltages during discharging and after discharging.
Hence, the BIR method requires special gauging instruments that are highly accurate and
can operate under special conditions. As a result, this method cannot be used in our system.
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R =
U0 − U1

I
(1)

CCM computes the remaining accumulated electric charge by counting the number of
flowing charges which are the integral of discharge current over time. Theoretically, the
ratio of the remaining accumulated electric charge to the nominal capacity of the battery
itself is the SoC the of battery. In practice, due to the non-ideal of components, circuits, and
technologies, the efficiency of the process is limited by the factor µ. For Lithium batteries, µ
can reach up to 94%. Given the initial state SoC0 of the battery at time t0, the SoC of the
battery at time t is estimated according to Equation (2), where I is the discharge current,
and Q0 is the nominal capacity of the battery.

SoC = SoC0 −
∑t

t0
I × ∆t

µ × Q0
(2)

This method is the most suitable for the designed system because the necessary param-
eters can be measured with acceptable accuracy by the sensor system and microcontroller.
CCM is also the most common method used on portable medical, military, and commer-
cial devices.

The charging and discharging currents of a battery are standardized by the so-called
C-rate. A C-rate of 1 C is known as a one-hour charge/discharge; 0.5 C is a two-hour
charge/discharge, and 2 C is a half-hour charge/discharge [60]. Figure 7 shows that the
charge/discharge currents significantly affect the operation of the battery. Due to the
internal resistance of the battery, high C-rates cause high Joule heat generation, which may
lead to thermal issues. Therefore, the C-rate of a battery must be limited. For Lithium
batteries, the recommended limit is considered 1 C [60,61]. In [62], the authors conducted a
number of experimental analyses and concluded that the maximum C-rate could be 3–5 C
for anodes and 10 C for cathodes.

3.2.2. Controlled Area Network

Controlled Area Network (CAN bus) is a massage-based communication protocol
which is developed for the in-vehicle network in 1983 [63–67]. CAN bus network is a
highly reliable, inexpensive, and real-time network that allows multiple CAN devices to
communicate with each other. With an uncomplicated structure, as shown in Figure 8, CAN
system has great advantages regarding flexibility, ability to extend, and wiring cost [63,66].
In the automotive industry, CAN bus is one of the most common protocols for vehicle
monitoring and controlling systems [63]. Besides this, CAN bus is an excellent choice for
electrical work and communication in harsh environments [66,67]. The use of CAN bus;
therefore, has been continuing to increase in other industries, such as aerospace, robotics,
and automation instrumentation [67]. Due to these advantages, the CAN bus is chosen
as one of the communication protocols used in our design. As shown in Figure 8, each
CAN node contains a microcontroller, CAN controller, and CAN transceiver. In some
microcontroller families, for example, the ESP32 family, the CAN controller is an integral
part of the microcontroller. However, other microcontroller families, for example, the AVR
Atmega 328 family, do not have an integrated CAN controller but require an external one.
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3.2.3. Internet of Things

Internet of Things (IoT) can be defined as a concept that describes a network of
interconnected devices enabling new forms of communication between people and things,
as well as between things themselves [68–70]. The 21st century is considered as “Internet
Century” since the Internet Boom affects every aspect of life. This deep fact opens up
opportunities to connect every physical object to share information [68,70]. With the
rapid development of related technologies, like information technology, computer, and
computing technologies, as well as the communication and informatics infrastructure,
over the past few years, IoT has become one of the fastest-growing and most important
technologies in the Internet century. IoT allows the “Things”—which are in practical
devices, instruments, sensors, embedded systems, and so on—to become smarter and be
able to communicate with people all over the world via the Internet. People, using IoT, also
can monitor, and control Things wherever, whenever the via Internet. The most important
and interesting applications of IoT can be mentioned as:

• Smart Homes and Cities
• Healthcare Monitoring
• Environment Monitoring
• Automotive Industry
• Smart Industry and Agriculture
• Energy Management

Regarding the purpose of monitoring and sharing information, applying IoT to the
BMS is also a useful upgrade. The information about the state of batteries and operating
conditions can be obtained by a low-cost, simple system (in our case, a microcontroller-
based BMS). After that, the data can be sent to a more powerful workstation to perform
more complex processing and analysis.

3.3. Hardware Design

Slave Modules oversee the operating conditions of battery packs, protect them against
critical conditions, and send the information about battery packs to the Master Module.
Therefore, the hardware of a Slave Module contains 5 main blocks:

1. Control block—microcontroller, control the entire system to perform its missions;
2. Sensing block—sensor systems, monitor operating conditions of the battery packs;
3. Balancer block—electronic circuit, protect battery packs against cell imbalance;
4. Power converter—DC/DC converter, power the whole system;
5. Peripheries block—Auxiliary block, indicate, and display the state of system.

3.3.1. Control Block

In fact, the control block is a microcontroller. The reason is that microcontroller can
operate its functions based on a pre-programming plan. The functions of the microcontroller
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can be easily changed by changing its program. The control block must have the ability to
communicate with other blocks to control their functions. This requirement is also easily
fulfilled by a microcontroller since it usually has several integral peripheral interfaces such
as I2C, SPI, UART, and so on. Another requirement that slave modules can wirelessly
send the data to the Master module is usually realized by using a dedicated wireless
communication module such as HC-05 and HC-06 for Bluetooth, or NRF24L01 for the
2.4 GHz band. In our design, the chosen microcontroller for the control block is the ESP32
family from Espressif Systems company, which has integral communication protocols
Bluetooth, Wi-Fi, and ESP-NOW. This advantage of the ESP32 family allows for minimizing
the number of components. Regarding the performance, the ESP-32 family also has great
benefits with a dual-core 32-bit LX6 microprocessor, being clocked at up to 240 MHz, and
the ability to perform up to 600 DMIPS. The dual-core microprocessor allows the system to
operate more complex tasks at the same time and fasten the process of the system.

3.3.2. Sensing Block

The sensing block contains sensor systems that monitor the operating conditions of
battery packs and estimate the SoC of batteries. As mentioned above, the system estimates
the SoC by using the CCM method. Therefore, the important parameters that the sensing
block must be able to overview are battery voltage, cell voltage, charge/discharge current,
and temperature of battery packs. To measure charge/discharge currents, there are several
types of currents with different underlying physical principles, such as Ohm’s law of
resistance, Faraday’s law of induction, Hall effect, Faraday effect, . . . [71]. For the design
of Slave modules, the Hall effect current sensor ACS712 is chosen because of its small size,
large sensing range, low offset, and high precision. An application circuit of ACS712 is
shown in Figure 9.

For temperature sensing, there are three main types of sensors: thermocouples, ther-
mistors, and integral thermal sensors. Integral thermal sensors are easy to use with a
standard interface to communicate with microcontrollers, but their accuracy is lower and
the sensing range is smaller than the others. Although the newer technologies allow higher
accuracy, the cost is also higher. Besides this, the thermal couples are advantageous because
they do not require a power supply and have a large sensing range. However, their accuracy
is smaller than the thermistor, and the output voltage is usually in the millivolt range. Thus,
they require a high precision component in the output. In addition, the very large sensing
range of thermal couple is redundant for the BMS system. Last but not least, the thermistors
are the most suitable option for our system due to their large enough sensing range, simple
required circuit, and high stability. The thermistor is a thermally sensitive resistor. By measuring
its resistance (using a simple voltage divider), the temperature is sensed. According to the
dependence of its resistance on temperature, the thermistors are classified as:

• Thermistor with Positive Temperature Coefficient—PTC thermistor—resistance in-
creases with rising temperature;

• Thermistor with Negative Temperature Coefficient—NTC thermistor—resistance de-
creases with rising temperature.

Dependence of the temperature T (in Kelvin) on the thermistor’s resistance R is given
by Equation (3), where R0 is reference resistance (resistance of the thermistor at 25 ◦C), A,
B, C, D are temperature coefficients.

1
T

= A + B × ln
(

R
R0

)
+ C ×

[
ln
(

R
R0

)]2
+ D ×

[
ln
(

R
R0

)]3
(3)

Under common operation conditions, the third and fourth operands can be ignored.
The equation then can be reduced to

1
T

=
1
T0

+
1
β
× ln

(
R
R0

)
(4)
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T =
1

1
T0

+ 1
β × ln

(
R
R0

) (5)

where T0 = 25 ◦C or 298.15 K is a reference temperature, at which the thermistor’s resistance
is R0; β is the standard temperature coefficient of a thermistor.

From the above analysis, the most important part of the sensing block now is Analog
to Digital Converters (ADCs), which are responsible for measuring battery voltage, cell
voltage, the output voltage of the Hall effects current sensor, and drop voltage on the
thermistor. ADC block is the basic feature of each microcontroller. However, the integral
ADCs of a common microcontroller are not good enough for serious applications because of
their low resolution and accuracy. Especially, ADC block with poor linearity is considered
as Achilles’ heel of the ESP32 microcontroller family. Therefore, it is necessary to use
dedicated ADCs to achieve acceptable accuracy. In our design, the MCP3424 ∆Σ ADC
is chosen. MCP3424, which is an 18-bit ∆Σ ADC with four differential inputs, has a
great advantage regarding noise issues. Other remarkable features of MCP3424 are low
consumption, highly accurate onboard reference, and an onboard programmable gain
amplifier. For communication with the microcontroller, MCP3424 is equipped I2C interface
with 2 external device address pins, which can be set to a logic high, low, or left floating
and allow, therefore, eight possible addresses. The application circuit of MCP3424 is also
shown in Figure 9.

While the microcontroller ESP32 operates with a 3.3 V logic level, Hall effects current
sensor and ADC MCP3424 operate with a 5 V supply voltage and 5 V logic level. As a result,
it is necessary to design a logic level shifter for communication between the microcontroller
and sensing block. The simple logic level shifter using N-channel MOSFET is also given in
Figure 9.
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3.3.3. Balancer Block 
Based on the cell voltage measured by the sensing block, the control block must con-
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that is an essential factor affecting battery life can be caused by internal and external fac-
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Figure 9. Circuit of sensing block: (a) Hall effect current sensor ACS-712; (b) Analog to Digital
Converter MCP3424; (c) Logic level shifter using N-channel MOSFET.

3.3.3. Balancer Block

Based on the cell voltage measured by the sensing block, the control block must control
the balancer block to protect the battery against cell imbalance. The cell imbalance that is an
essential factor affecting battery life can be caused by internal and external factors [72–74].
The internal factors can be a variance in manufacturing, technologies, or storage. The
external sources can be the thermal gradient between different cells, which can cause the
different self-discharge rates of the cells [73]. The balancer is an electronic circuit that
balances the voltage between different cells of a battery pack. The balancer system for
Lithium batteries can be classified into two main groups

• Passive balancer: the electric charges from a cell with higher voltage are removed
through a resistor;

• Active balancer: the electric charges from a cell with higher voltage are delivered into
a cell with lower voltage.
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Obviously, an active balancer has higher efficiency since there is no thermal power
loss. However, the active balancer requires a more complex control algorithm and more
complex electronic circuit, resulting in higher cost and longer time to develop [73–75].
Therefore, the passive topology of the balancer is chosen for our design. The passive
balancer uses Shunting resistors to balance the cell voltage. Figure 10 also shows two
methods of passive balancer.

• Fixed Shunting Resistor: Each battery cell is directly connected to a similar number of
resistors. This method does not require any control algorithm, but it has continuous
thermal power loss and is usually used as overcharge protection in Lead-Acid and
Nickel Battery [75];

• Switch Shunt Resistor: Each battery cell is connected to the Shunting resistor via
a switch. The switches are controlled so that the cell with the highest voltage is
connected to the resistor while other cells are disconnected from the resistor.

The principle and design of a balancer block are shown in Figure 10.

Vehicles 2022, 4, FOR PEER REVIEW 14 
 

 

  
(a) (b) 

Figure 10. Balancer block: (a) Basic principle; (b) Design of balancer circuit for one cell. 

3.3.4. Power Electronics Converter Block 
The power converter block converts the battery voltage from several dozens of Volts 

to 5 V and 3.3 V to power the whole system. In the design, the power converter block 
contains DC/DC converters (voltage regulators). Based on the operating principle, voltage 
regulators can be classified as Linear voltage regulators and Switching voltage regulators. 

A switching regulator, as its name implies, uses a switching element to transform the 
input voltage level into another voltage level. Because of switching characters, the output 
voltage has a pulsed form and is smoothed by a capacitor, inductor, or more complex 
circuit. This property causes the main disadvantages of switching voltage regulators since 
it requires complex design and more external components, and the output is less stable 
with more noise. The major advantages of switching voltage regulators are high efficiency 
with low heat by-produce and the output voltage can be greater than the input voltage.  

In contrast, a linear regulator uses linear components to regulate the output. In some 
situations, a linear regulator is also called a series of regulators because of this series prop-
erty—the input current and output current are the same. Therefore, the efficiency of a 
linear voltage regulator is equal to the ratio of output voltage to the input voltage. Due to 
the required minimum voltage drop on itself, a linear regulator usually has small effi-
ciency and cannot supply a high current. The main advantages of the linear regulator are 
simple configuration with few external parts and smooth output voltage with low noise. 

Regarding the accuracy of the sensing block and control block, a stable supply volt-
age is required. Therefore, in the design, a combination of two voltage regulator types is 
used to achieve high efficiency and stable, low noise output voltage to power the whole 
system. The used switching regulator is an integrated circuit (IC) Switching Step-Down 
Regulator LM2596 with adjustable output voltage. The liner regulator part contains ICs 
Linear Regulator AMS1117 with 5 V and 3.3 V fixed output voltage. 

3.3.5. Peripheral Block and Master Module 
The Master module has a less complex hardware design as it does not directly per-

form the measurement and equalization functions. Therefore, it contains only the control 
block, power converter block, and peripheral block. The control block and power con-
verter block of the Master module and Slave modules share the same structure. The pe-
ripheral block of both Mater and Slave modules contains a display and LED diodes that 
indicate the necessary information as well as a CAN transceiver and connector for com-
munication between individual modules. The only different part is that the Master card 
contains a microSD card slot. The display and LED diodes are optional components and 
can be omitted to reduce system power consumption. The CAN transceiver used in our 
design is the SN65HVD230, which operates with a single 3.3 V supply for compatibility 
with the ESP32 microcontroller. The communication between the microcontroller and mi-
croSD card is performed via Serial Peripheral Interface (SPI). Electrical schematics for the 
connection of all systems, without balancer blocks, are given in Figure 11. 

Controller BAT1+CTRL1+

CTRL1-

BAT1-

A

K

C

E

1

2

4

3

1
2

Figure 10. Balancer block: (a) Basic principle; (b) Design of balancer circuit for one cell.

3.3.4. Power Electronics Converter Block

The power converter block converts the battery voltage from several dozens of Volts
to 5 V and 3.3 V to power the whole system. In the design, the power converter block
contains DC/DC converters (voltage regulators). Based on the operating principle, voltage
regulators can be classified as Linear voltage regulators and Switching voltage regulators.

A switching regulator, as its name implies, uses a switching element to transform the
input voltage level into another voltage level. Because of switching characters, the output
voltage has a pulsed form and is smoothed by a capacitor, inductor, or more complex
circuit. This property causes the main disadvantages of switching voltage regulators since
it requires complex design and more external components, and the output is less stable
with more noise. The major advantages of switching voltage regulators are high efficiency
with low heat by-produce and the output voltage can be greater than the input voltage.

In contrast, a linear regulator uses linear components to regulate the output. In some
situations, a linear regulator is also called a series of regulators because of this series
property—the input current and output current are the same. Therefore, the efficiency of a
linear voltage regulator is equal to the ratio of output voltage to the input voltage. Due to
the required minimum voltage drop on itself, a linear regulator usually has small efficiency
and cannot supply a high current. The main advantages of the linear regulator are simple
configuration with few external parts and smooth output voltage with low noise.

Regarding the accuracy of the sensing block and control block, a stable supply voltage
is required. Therefore, in the design, a combination of two voltage regulator types is
used to achieve high efficiency and stable, low noise output voltage to power the whole
system. The used switching regulator is an integrated circuit (IC) Switching Step-Down
Regulator LM2596 with adjustable output voltage. The liner regulator part contains ICs
Linear Regulator AMS1117 with 5 V and 3.3 V fixed output voltage.
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3.3.5. Peripheral Block and Master Module

The Master module has a less complex hardware design as it does not directly perform
the measurement and equalization functions. Therefore, it contains only the control block,
power converter block, and peripheral block. The control block and power converter block
of the Master module and Slave modules share the same structure. The peripheral block
of both Mater and Slave modules contains a display and LED diodes that indicate the
necessary information as well as a CAN transceiver and connector for communication
between individual modules. The only different part is that the Master card contains a
microSD card slot. The display and LED diodes are optional components and can be
omitted to reduce system power consumption. The CAN transceiver used in our design
is the SN65HVD230, which operates with a single 3.3 V supply for compatibility with the
ESP32 microcontroller. The communication between the microcontroller and microSD card
is performed via Serial Peripheral Interface (SPI). Electrical schematics for the connection
of all systems, without balancer blocks, are given in Figure 11.
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3.4. Firmware Design

Functions performed by the control block are categorized into two main groups
of functions:

• Sensing and protecting functions;
• Transmitting function.

Due to the reliability requirement, these two groups must be independently performed.
The reason is that the instability of the communication channel can cause some delays or
even the loss of some transferred data. In this case, the lost data must be retransmitted.
Unless two groups of functions are performed independently, the collision will occur, and
the functions will not be performed as intended. This requirement confirms again the
advantages of the ESP32 microcontroller. This microcontroller has a special feature called
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dual-core, so it is capable of performing the two groups of functions in parallel. The first
core, called Core 1, oversees the sensing and protecting functions. The information obtained
by Core 1 is stored in the internal memory. The second core, named Core 0, is in charge
of performing the transmitting function. If the transfer is realized without any errors,
Core 0 removes the transferred data from internal memory and transmits other measured
data. In the case of wireless communication between modules, the power consumption of
the ESP32 microcontroller with the Wi-Fi functions on is much greater than that with the
Wi-Fi functions off. Therefore, to reduce power consumption between successful transfers,
the Wi-Fi functions of ESP32 will be disabled. The simplified algorithm flowchart of the
microcontroller’s firmware is given in Figure 12.
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4. Verification and Discussion

The required functions of the designed BMS are verified by several testing and
experiments. Firstly, the most important function—protecting the battery against cell
imbalance—is verified. For the testing, a prototype of the Slave Module is realized. The
prototype contains a module of ADC 3424, a CAN transceiver SN65HVD230, a connector
CAN232, and a balancer circuit for a four-cell battery pack. For safety, the microcontroller is
connected to the prototype via a prepared connector. The prototype is shown in Figure 13.
The battery is simulated by a laboratory DC power supply E3633A. The dependence of
balance current on cell voltage is measured and shown in Figure 14. The characteristic
shows that the balancing current increases with the rising of cell voltage. For a Lithium
battery, the voltage of each cell is in the range from 3.6 V to 4.2 V, and the balancing current
is in the range of 80 mA to 200 mA.

Then, the sensing block is calibrated and its accuracy after calibration is verified. The
experiment setups for calibration and accuracy testing are given in Figures 15 and 16.
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Figure 15 shows the experimental setup for the measurement of current and voltage. A
battery pack is connected to the BMS system and an electronic load. To calibrate the Hall
effect current sensor, the digital multimeters are also connected to the system to measure
discharge current. The value measured by a multimeter is considered a reference value for
calibration. To measure voltage, a laboratory DC power supply is connected to the BMS
system. The supply voltages measured by BMS are compared with the output voltage of
the power supply. All the instruments can be controlled by a computer using Standard
Commands for Programmable Instruments (SCPI) for automation of measuring. Figure 16
shows the experiment set up to measure temperature. The experiment uses a climate
chamber to set the reference values of temperature, which are used to compare with values
measured by Slave Modules.
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Figure 16. Experiment setup for measurement of temperature.

All the experimental results are given in Figures 17–19. By using calibrated coefficients,
the errors of measurements are significantly reduced. After calibrating, the BMS has
capabilities of:

• Measuring current with absolute error ± 50 mA
• Measuring voltage with absolute error ± 15 mV
• Measuring temperature with absolute error ± 0.1 ◦C

The function of estimating batteries’ SoC is also calibrated and verified. After cal-
ibration, the chosen value for the coefficient of efficiency µ in Equation (2) is 94%. The
estimated values of SoC during seven processes charge-discharge are shown in Table 3.
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The data shows that with the proper value of efficiency coefficient, the BMS can estimate
the SoC with an error smaller than 5%.

Finally, the communication between BMS and workstation using IoT technology is
verified. Figure 20 shows the user interface of the application Google Sheets. The data
measured by BMS systems are successfully transferred via the Internet to this application.
Then the users with permission can access these data wherever, whenever for further uses.
The uses of other IoT platforms in the BMS system also were introduced in [4,5].
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Figure 17. Measurement of Current: (a) Before Calibration; (b) After Calibration.
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Figure 18. Measurement of Voltage: (a) Before Calibration; (b) After Calibration.
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Figure 19. Measurement of Temperature: (a) Before Calibration; (b) After Calibration.

Table 3. Estimated SoC value.

Process Initial
Voltage [V]

Initial SoC
[%]

End Voltage
[V] End SoC [%] Change of

SoC [%]

Discharge 1 12.59 100 9.10 2 98
Charge 1 9.10 2 12.61 101 99

Discharge 2 12.61 101 9.10 1 100
Charge 2 9.10 1 12.60 99 98

Discharge 3 12.60 99 9.05 2 97
Charge 3 9.05 2 12.60 97 95

Discharge 4 12.60 97 8.97 −2 99
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more proper calibration coefficients. It is also necessary to replace the passive balancer with
an active balancer to gain higher efficiency and reduce the power loss.

The designed BMS is actually a Commercial off-the-shelf (COTS) system, which is
based on a microcontroller and common ICs such as ADCs, linear and switching regulators,
and current and temperature sensors. Such a design allows easy, cheap, and fast manufac-
turing, maintenance, repair, or upgrading. In this period of chip shortage, such a COTS
design is one of the most promising solutions [76] because the concept of the designed
system can be applied to almost types of microcontrollers, ADCs, sensors, etc.

The use of a microcontroller, instead of dedicated BMS’ ICs (for example BQ769x0
family from Texas Instrument or LTC68xx family from Linear Technology), allows the
flexible design and upgrade of the system. Functions of the system can easily be changed
by changing the code. The BMS can also be applied to another existing system, as an
“upgrade package”. On the other hand, the power consumption of the system is higher in
comparison with the power consumption of dedicated ICs.

From the viewpoint of accuracy, a large number of techniques such as a digital filter
or a sensor fusion can be applied to the program to reduce the noise of measurement.
For example, an extended Kalman filter can be used to predict and filtrate the measuring
errors, as presented in [77]. The errors can be compensated by using comfortable correction
coefficients in the software program.

The performance of the battery also can be informed. During the charging/recharging
repetition, the system may calculate the amount of flowing electric charges. Compared to
the nominal value of battery capacity, we can easily calculate the battery’s performance.
As presented above, the performance of the verified battery is chosen as 94% based on the
results of measurements conducted by the system.

5. Conclusions

The article presents a design of low-cost BMS for Unmanned Electric Vehicles. To
meet the demand of minimizing human casualties, UVs were rapidly developed and have
been becoming an indispensable element of each country’s military and military doctrine.
Among multiples categories of UVs, small UVs (with a weight of less than 150 kg) are
the most suitable categories for small countries, such as the Czech Republic and Vietnam.
These UVs are nowadays powered by electrochemical battery systems which are promising
alternatives for older ICE. Regarding a large number of battery types, the Lithium battery
is now the most common type. The BMS presented in this article is also designed for UVs
using multi-cell Lithium battery packs.

The BMS uses distributed topology with one Master module and more Slave modules.
Each Slave module oversees the operating condition of one battery pack and protects it
against cell imbalance. The function of protecting the battery against cell imbalance is
performed by a balancer which can be active or passive. The active balancer provides a
solution with higher efficiency but with higher initial cost and a more complex control
algorithm. The passive balancer is less complex and inexpensive, so it is chosen in our
design. However, in future work, an active balancer must be developed regarding power
loss. All the data measured by Slave Modules are transferred to the Master module, which
stores them in a microSD card and transfers them into a workstation for further processing.

All the required functions of BMS were verified using laboratory instruments con-
trolled by a computer with SCPI commands. The results of experiments show that the
BMS fulfills all the requirements with acceptable accuracy. Hence, the BMS can be used
in UVs to manage a large number of interesting applications. One of the most interesting
applications is used in the cooperation of small robots. Multiple robots that cooperate in a
mission with the help of the BMS can oversee the remaining energy of each other and then
modify the missions of each robot to get the best result.
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