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Abstract: This study presents the development and analysis of a technique for planning the au-
tonomous vehicle (AV) motion references using sequential optimization. The method determines the
trajectory plan, speed and acceleration distributions, and other AV kinematic parameters. The ap-
proach combines the basics of the finite element method (FEM) and nonlinear optimization with
nonlinear constraints. First, we briefly described the generalization of representing an arbitrary
function by finite elements (FE) within a road segment. We chose a one-dimensional FE with two
nodes and three degrees of freedom (DOF) in a node corresponding to the 5th-degree polynomial.
Next, we presented a method for defining the motion trajectory. The following are considered: the
formation of a restricted space for the AV’s allowable maneuvering, the motion trajectory geome-
try and its relation with vehicle steerability parameters, cost functions and their influences on the
desirable trajectory’s nature, and the compliance of nonlinear restrictions of the node parameters
with the motion area boundaries. In the second stage, we derived a technique for optimizing the
AV’s speed and acceleration redistributions. The model considers possible combinations of objective
functions, limiting the kinematic parameters by the tire slip critical speed, maximum speed level,
maximum longitudinal acceleration, and critical lateral acceleration. In the simulation section, we
compared several variants of trajectories and versions of distributing the longitudinal speed and
acceleration curves. The advantages, drawbacks, and conclusions regarding the proposed technique
are presented.

Keywords: autonomous vehicle; trajectory planning; speed planning; nonlinear optimization;
nonlinear restrictions

1. Introduction

Planning AV motion is characterized by using various techniques and methods (Clauss-
mann et al., 2019) [1], many of which originate from tasks of modeling trajectories for
robots [2,3]. The difference in planning for robots and AVs lies primarily in the fact that
vehicles are high-speed, unsafe transport means experiencing the significant influence of
physical characteristics at the vehicle–road interaction. In this regard, high-quality planning
using optimization can be obtained based on differential equations representing the vehicle
model behavior in the state space [4]. Due to the internal relations between dynamic and
kinematic parameters in the equation system, it is possible to search for the distribution of
vehicle model positions and velocities. However, there are also problems here, basically
due to a need to numerically solve the system of differential equations at each iteration
step of the nonlinear optimization. Moreover, the equation system and parameters are
defined in the time domain [5,6], not in the space domain. Consequently, a small integration
time step is required to maintain the stability of the equation system’s numerical solution.
In addition, the vehicle model itself should not be overly complex, which is why kinematic
models [7] are often used for this.

Most well-known techniques for planning the motion trajectory are based on smooth
functions [8] connecting the lanes’ midpoints along the road segments. However, estimating
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these midpoints through computer vision may be scattered even for a straight road section.
After prediction, this may lead to excessive fluctuations of the planned trajectory’s curvature
because if the lane’s midpoints are fixed, its relative displacement already implies flexures
within a section. This may affect the frequent change of the curvature sign, which requires
excessive steering control followed by decreasing the speed and, consequently, the overall
AV performance (fastest speed with satisfactory safety).

Another planning option is the search for continuous functions defined in the space
domain based on the optimization process in the presence of geometric, kinematic, and
physical restrictions limiting the vehicle–road interaction. The root-mean-square curvature
of a path optimized within the motion boundaries can be much less than for a trajectory
built by midpoints. At the same time, the technique of simultaneous trajectory and speed
planning is the most desirable goal. However, with this approach, a challenge in forming
a universal cost function occurs because of many variations. The latter leads to increas-
ing the optimality search time, which can only be regulated with numerous conditions
and constraints.

The solution of the issues above lies in applying sequential optimization. First, the
optimal trajectory is searched, and then the kinematic parameters are distributed according
to the geometric, dynamic, and physical criteria. At the same time, the question arises about
the optimality criteria, their interactions, and their influence on the quality and rapidity of
the optimization process. The primary characteristics of selected studies on planning the
AV motion are briefly summarized in Table 1. The studies may be divided into three groups.
The first group is based on the state–space vehicle modeling for using the constrained
model predictive control (MPC) [4,5,9], which is often applied as a tracker of a pre-set
reference curves. The second group [2,7,9–11] considers the trajectory and speed models
separately by Lagrange polynomials or Bézier curves. At the same time, some approaches
are realized in the natural (Frenet) coordinates, where all parameters are functions of the arc
element. The optimal trajectory is sought from the conditions of minimizing the curvature
or its derivatives under physical constraints. The third group [12–14] uses graph algorithms
and trees of possible trajectories to be selected along the best routes for minimizing the
risks of movement in the presence of static and moving interferences. In studies, a complex
objective function is mostly used in which the geometric and kinematic parameters of the
vehicle motion are penalized.

Table 1. Characteristics of selected studies on planning AV motion a.

Reference Path Model Speed Model Optimization Model Other Main Features

[2]

Seventh-order
POLY curve for

independent
representing in the

fixed local coordinates.

Robot motion with
constant linear velocity.

Minimizing the
maximum absolute
value of the angular

ACC along the
planned path.

The set of possible
curves: lane-change,
line segment, cubic

spiral, generic twirl arc,
and circular arc.

[3]

State–space vehicle
kinematics model, sets
of clothoids, straight
line segments, and

circular arcs.

Constant jerk and an
arc approximation

over time.

Optimal path sections
to ensure minimum

total length with
appropriate

curvature transients.

Local and global path
planners, car-like robot

technique for low
speeds, no obstacles.

[4]

Centerline of driving
lane, cubic splines with

multiple knots along
the path.

Speed deviation as part
of the total

cost function.

Combine MPC tracker,
minimization of the
blind spot, terminal
cost, and speed cost.

Continuous state–space
of a bicycle model.

Rectangular obstacles.

[5]

LG, LT, and heading
angle positions based

on a unicycle kinematic
model of ego vehicle.

Vehicle speed as a
variable of discrete
state–space model.

Constrained MPC,
objective function

includes LG and LT
distances to destination,

minimizes jerk.

Lane selection,
lane-associated

potential field, collision
avoidance,

fail-safe strategy.
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Table 1. Cont.

Reference Path Model Speed Model Optimization Model Other Main Features

[6]

Determined by
integrating over time

according to the
optimal LG ACC and

yaw rate.

Determined based on
desired ACC by

integrating over time.

Potential risk fields for
LT and LG

control independently.

Fixed time horizon,
output yaw rate and

deceleration,
pedestrian a

moving obstacle.

[7]

Cubic POLY spiral for
curvature, path is

function of
curvature/arc length,

lattice trajectories.

Constant ACC along
the trajectory and

initial speed.

Cost function includes
obstacle avoidance,
physical limitations,

rate of change of
path curvature.

Bicycle model
kinematics, Jacobian of

the endpoint state
vector, physical

limitations
of performance.

[8]
5th-order Bézier curves
oriented on centerline

reference points.

ACC profile between
reference points/speed

limit curve.

First and second
curvature derivatives

to reflect path
smoothness along

the curve.

Bounds for speed, LG
and LT ACC, collision

checking with
dynamic obstacle.

[9]

3rd order POLY for LG
and 2nd order for LT

displacement at
discrete time-step.

2nd order POLY for LG
and 1st order for LT

speeds at
discrete time-step.

MPC based on sum of
quadratic penalties for
LT and LG ACC, LG

jerk, LG and LT speed
deviations, LT road

boundaries,
obstacle avoidance.

Straight 3-lane road
section, road

boundaries, collision
avoidance, MPC,

dynamic programming
to produce initial
guess trajectory.

[10]

5th-order polynomials
for independent

modeling X and Y
path references.

2nd-order integrator
model and MPC.

Weighted squares of
LG speed, LG and LT

coordinates, and
obstacle parabolas.

9-DOF vehicle model,
bounding parabola for

obstacles, fixed
horizon time.

[11]

5th order POLY for
independent

representing the path
segment in LG and

LT directions.

3rd order spline
without initial ACC
and with arbitrary

initial ACC.

Static costs: path
length, curvature and

its derivative, LT offset.
Dynamic costs:

maximum velocity
and ACC.

Static and
dynamic obstacles.

[12]
Waypoints from offline
map, graph for nodes,

shortest path algorithm

Speed depends on the
current waypoint cost
and the target speed.

Waypoint costs as
measured driving risk,

cost equals 1 if one
more obstacles are

near AV.

Static obstacles as
circular regions,

moving obstacles as
single points
with speeds.

[14]

Extended rapidly
exploring random tree

algorithms for
feasible trajectories.

Based on controller
processing after
path generation

Choose the best and
safest trajectory, check
feasibility with latest

drivability map,
evaluate exploration

vs. optimization

Risk evaluation based
on trajectory collision

with obstacles or
violating any rule

through the
drivability map.

[15]
2-layered path model,

POLY local planning in
Frenet coordinates.

Constant LG speed.
Target configuration of

LT offset, speed,
and ACC.

Improved Bidirectional
Rapidly-exploring

Random Tree (Bi-RRT).

3-DOF vehicle model,
Vector Field Histogram

for choosing
obstacle-free path.

[16]

Optimization-free
elastic band, discrete

search
space, and modelling

parametric path spirals.

Finding time-optimal
plan under speed and

ACC constraints.
Linear speed profile

along path.

Minimize equilibrium
positions, penalizing

deviations from speed
profile/excessive

proximity to
moving objects.

Speed-based temporal
planning, trajectories
for static and moving

objects
using simulation.
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Table 1. Cont.

Reference Path Model Speed Model Optimization Model Other Main Features

[17]

Reference path as a
curvature profile, local
path and curvature to

obtain global
coordinates by the
Fresnel integrals.

The minimum-time
speed profile without
exceeding thresholds

based on tire–road
adhesion limits.

Formulate a path
update step as a convex

optimization that
minimizes the path
curvature norm for

distance, time-varying
model for

model solution.

Linearized equations of
vehicle motion states,

equality and inequality
constraints,

optimization lowers
path curvature.

[18]

Possible navigation
corridors, graph search
for a lane-let sequence

for each corridor,
waypoints as ending
points for candidates,
path candidates using

5th-order Bézier curves,
path selection by
merit assessment.

Traffic-based speed
profile using the

inter-distance model
based on a leading
virtual vehicle to

determine the required
ACC of the ego-vehicle

for keeping distance.

Merit score assigned to
each candidate with

weighted sum
providing an intrinsic
filter, criteria are based

on both LG and LT
average and maximum

ACC and jerk,
smoothness, safe chase,

closeness, lane
invasion, path length,

average speed.

Topological relation
between road elements

as a graph network,
borderlines, centerlines

of reachable lanes,
select best available

corridor using
lane-changing model to

evaluate
safety indicator.

[19] Any method ensuring
the travel feasibility.

Shortest traveling time
with checking for

possible collisions.

Evaluating the cost
function at each node,
jerk is used as input.

Safety constraints:
rollover, skidding,

steering rate. obstacle
avoiding planning.

[20]

Path model based on
integration constraints
of heading angle, east
and north positions as
functions of curvature

and curve length.

Speed profile expressed
as the desired speed

along the path,
maximum speed is

function of
path curvature.

Approximates
finite-horizon optimal

control by a convex
quadratically

constrained quadratic
program for

time minimization.

Kinematics and
dynamics constraints,
motion equations in
linearization form,

Hessian of the
objective function.

[21]
Trajectory is assumed

to be given for
different cases

Speed, ACC, and jerk
to be presented via
numeric differentia-

tion formulas.

Cost function includes
squares of absolute

ACC and jerk, squared
deviation from

reference speed, and
consistency cost.

Convex feasible set
algorithm, relax

nonlinear equality
constraints into
nondegenerate

nonlinear
inequality constraints.

[22]

Reference path consists
of a series of way

points from the route
module, nonlinear

optimization algorithm
in the space domain to

smooth the
reference road.

Permissible ACC and
arc length, SQP solver

to calculate the optimal
speed profile.

Objective function
includes reference cost,

obstacle cost,
consistency cost, LT

ACC
cost, and jerk cost, LT

optimized path
planner: curvature, LT
distance, relative angle,

and control inputs.

Multilayered search to
find a suitable path
boundary, motion

controller can provide
optimal control

command, kinematic
error model to control

LT and heading
deviations for
desired path.

[23]

Paths are generated by
connecting sampled

endpoints using cubic
and quartic curvature

POLY, which are
functions of the

arc length.

Cubic POLY functions
of arc length, which

include speed
and ACC.

Static cost by modules
of path length,

curvature, LT offset,
obstacle distance,

dynamic cost by time
duration, speed, ACC,

jerk, dynamic
obstacle distance.

Robust replan
mechanism to react to a
dynamically changing
environment, partial

motion
planning scheme.



Vehicles 2022, 4 348

Table 1. Cont.

Reference Path Model Speed Model Optimization Model Other Main Features

[24,25]

Concept of Frenet
frame to assist on path
planning according to a

hypothetical smooth
guide line.

Piecewise-jerk
method

Non-linear
optimization algorithm

for guide line
smoothing, fast

quadratic
programming (QP)
based algorithm.

Collision-free path,
minimal lateral

deviation, minimal
lateral movement,

maximal
obstacle distance.

a POLY = polynomial, LG = longitudinal, LT = lateral, ACC = acceleration.

We note that most referred studies are highly concise and do not fully disclose the archi-
tectures of the used methods, which reduces their engineering applicability. Further, clear
relations between the forecasting method, vehicle dynamics, and vehicle kinematics are
not always transparent, especially for constant speeds [15] or their heuristic distribution.
In addition, the transient processes of velocities and accelerations often do not differ
in smoothness.

Thus, the study aims to establish a technique to find the optimal AV motion plan in
a constrained space and moving obstacles and to form cost functions by evaluating their
priority and mutual effects. Specifically, the study (1) develops an explicit safe motion area
by optimizing the best trajectory choice in contrast to the approaches focused on conjugating
the lanes’ midpoints by smooth curves; (2) elaborates a comprehensive mathematical model
to implement the method of planning AV motion in a constrained space; (3) develops a
mechanism to form the boundaries of permissible movement in the presence of a movable
obstacle, (4) determines the criteria for finding the optimal trajectory and distribution of the
kinematic parameters, considering geometric, kinematic, and physical restrictions; and (5)
validates the proposed technique by carrying out a series of virtual tests for the generalized
case of motion predictions.

2. Generalization of Mathematical Tools
2.1. Representing the Parameters of Planning Functions by Finite Elements

This approach represents all geometric and kinematic parameters by continuous
piecewise functions based on the same basis functions of a one-dimensional finite element.
Briefly consider the description of forming an arbitrary function z(x) as a superposition of
basis functions weighted by the parameters’ values in the grid nodes along the x-coordinate.

Approximation. Let us suppose that the position of the vehicle mass center along the x-
coordinate is represented by piecewise functions based on a set of Lagrangian polynomials
with N DOF in a node determining the ordinate value z and its derivatives. Thus, each final
element on the x-axis grid possesses m = 2·N DOF. Within one segment, a function z(x) may
be decomposed with a set of form functions and influence coefficients that are DOF values.
Introduce vectors

fi =

 f1
...

fm

, f =

 f1
...
fn

, pi =

 q1
...

qm

, p =

 p1
...

pn

 (1)

where fk, qk = k-th basis function and its impact coefficient (k = 1, . . . , m); f i, pi = vector of
basis functions and vector of its DOF for i-th final element (i = 1, . . . , n).

Since the basis functions are equal to zero out of a segment considered, a function z(x)
on the entire interval consisting of n segments can be expressed as follows

z(x) = ∑n
i=1 ∑m

j=1 fij(x)qij = ∑n
i=1 fT

i pi = fTp (2)
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Then, if a k-th derivative exists, it can be evaluated using Equation (2), (k = 1, . . . ,
N − 1) as follows

dkz
dxk = ∑n

i=1 ∑m
j=1

dk

dxk fij(x)pij = ∑n
i=1

dkfT
i

dxk pi =
dkfT

dxk p (3)

Basis functions. Let us consider an i-th final element with 3 DOF in a node along the
x-coordinate based on a 5th-order polynomial [10], the length of which equals Li. If x = Liξ,
then dx = Lidξ, where parameter ξ ∈ [0, 1]. The system of basis functions for an FE with
Li = 1 (Figure 1) and its three derivatives yield

fξ =



(1− ξ)3 (6 ξ2 + 3 ξ + 1
)

ξ (3 ξ + 1) (1− ξ)3

ξ2 (1− ξ)3/2

ξ3 (6 ξ2 − 15 ξ + 10
)

− ξ3 (3 ξ2 − 7 ξ + 4
)

ξ3 (ξ − 1)2/2


,

dfξ

dξ
=



−30 ξ2 (ξ − 1)2

(ξ − 1)2 (−15 ξ2 + 2 ξ + 1
)

− ξ (5 ξ − 2) (ξ − 1)2/2

30 ξ2 (ξ − 1)2

−ξ2 (15 ξ2 − 28 ξ + 12
)

ξ2 (5 ξ2 − 8 ξ + 3
)
/2


(4)

d2fξ

dξ2 =



−60 ξ
(
2 ξ2 − 3 ξ + 1

)
−12 ξ

(
5 ξ2 − 8 ξ + 3

)
−10 ξ3 + 18 ξ2 − 9 ξ + 1

60 ξ
(
2 ξ2 − 3 ξ + 1

)
−12 ξ

(
5 ξ2 − 7 ξ + 2

)
ξ
(
10 ξ2 − 12 ξ + 3

)


,

d3fξ

dξ3 =



−60
(
6 ξ2 − 6 ξ + 1

)
−12

(
15 ξ2 − 16 ξ + 3

)
−3
(
10 ξ2 − 12 ξ + 3

)
60
(
6 ξ2 − 6 ξ + 1

)
−12

(
15 ξ2 − 14 ξ + 2

)
3
(
10 ξ2 − 8 ξ + 1

)


(5)
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Every final element may be characterized with its own length Li. If we denote vector
Li, then

Li = diag
(

1 Li L2
i 1 Li L2

i
)

(6)

Thus, functions of Equations (2) and (3) for the i-th section are expressed by universal
functions of the parameter ξ, Equations (4) and (5)

fi = Lifξ , zi(x) = zi(Liξ) = pT
i Lifξ (7)

For k-th derivative,

dkzi

dxk =
d

Lidξ

(
1

Lk−1
i

pT
i Li

dk−1fξ

dξk−1

)
= pT

i

(
Li

Lk
i

)
dkfξ

dξk (8)
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2.2. Nonlinear Optimization

Let us assume that any function from Equations (7) and (8) can be represented through
F(q), and the generalized functional is written as

min
q

F(q) subject to


c(q) ≤ 0

ceq(q) = 0
Aq ≤ b

Aeqq = beq
qL ≤ q ≤ qU

, q =

 q1
...

qn+1

, qi =

 q3(i−1)+1
q3(i−1)+2
q3(i−1)+3

 (9)

where q = set of unknown nodal parameters; c(q), ceq(q) = vector functions of inequality
and equality nonlinear constraints, respectively; A, Aeq, b, beq = matrices and vectors of
inequality and equality linear constraints, respectively; qL, qU = lower and upper bounds;
i ∈ [1, n] = section number.

As a basic optimization algorithm, the sequential quadratic programming (SQP)
method is used, based on the fmincon nonlinear optimization function [26]. The SQP algo-
rithm is based on a quadratic approximation of the Lagrangian function. It is characterized
by unique properties such as strict feasibility regarding founds, robustness to non-double
results, and refactored linear algebra routines (more efficient in memory usage and speed).

3. Trajectory Search
3.1. Problem Generalization

This section considers the conditions under which determining an optimal trajectory
can be reduced to finding a function of one variable y(x) depending on the vector qy of
parameters in the nodes. According to the generalized model in Equations (1)–(3), the
lateral deviation and its two derivatives are specified in each trajectory node. Then, the
optimization goal is to define the vector qy of dimension 3(n + 1), which unambiguously
determines the trajectory function in the interval [0, D] (Figure 2).

qy(i) =


yi
dyi
dx

d2yi
dx2

, qy =


qy(1)

...

qy(n+1)

 (10)

where i ∈ [1, n + 1] = node number.
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At the same time, within each i-th segment, the set of parameters corresponds to two
adjacent nodes, that is

py(i) =

(
qy(i)

qy(i+1)

)
and py =


py1

...
pyn

 (11)

where i ∈ [1, n + 1] = node number.
In this case, the trajectory function inside a segment, considering Equation (7) is

yi(x) = yi(Liξ) = pT
yiLifξ (12)

Its k-th derivative, considering Equation (8) is

dkyi

dxk = pT
yi

(
Li

Lk
i

)
dkfξ

dξk (13)

We note that the desirable vector qy contains a unique set of nodal DOFs. The vector
py with duplicated DOF of internal nodes is easily obtained to represent the interpolation
function with the complete set of nodal parameters for each section.

3.2. Description of Trajectory Planning Objective

Figure 2 shows the generalized motion case of an AV guided by computer vision
within the roadway boundaries and detecting moving obstacles. Let us assume that a road
is represented by a curved section and has at least two lanes in one direction, which allows
maneuvering between the lanes, including avoiding obstacles. The initial layout of vehicles
corresponds to Position 1, where a need for planning the AV displacement to Position
2 emerges. Considering the section curvature, this position can be determined if sufficient
visibility is ensured. We also assume that an invisible part within the outer roadway
boundaries in front of the impeding vehicle is homogeneous (monotonic curvature) and
can be virtually rebuilt based on satisfactory information before and behind a visibility
break. Let the current position of the AV be characterized by the direction of the axis ζ of the
moving coordinate system ζµ tangentially to the midline of the initial traffic lane. Then, the
destination point corresponding to Position 2 is defined under the angle -φ to the ζ axis.
The current instantaneous position can be taken as the initial relative to the new global
coordinate system xy. Both the lane boundaries and the movement of an impeding vehicle
are redefined. Thus, the AV must realize a displacement D within the safety boundaries,
avoiding the moving obstacle from an initial distance d between the vehicles.

Under the conditions that boundary marking lines along the x-axis are unambiguous,
all functions can be defined in the xy coordinate system. Consequently, the desirable trajec-
tory and distribution of kinematic parameters are functions of one variable x. The interval
[0, D] may be divided into several (n) finite elements to improve the quality of dependencies
to be found. The FE grid step can be fixed or variable depending on the curvature change
within the considered area and the presence of interferences and obstacles.

Thus, the outer boundaries can be redefined by the DOF values in the FE grid nodes
using the same basis functions for the parameters to be found. In addition to the external
boundaries, the restrictive internal conditions are imposed to limit undesirable vehicle ma-
neuvers and to exclude interaction with the obstructions. In turn, the movable obstacle con-
tinues to follow its lane, keeping a moving safety zone behind it. Thus, the AV must move
considering the evasion zone and maintain a safe space between approaching vehicles.

3.3. Determining the Maneuver Boundaries

External and Internal Boundaries. Let us assume that the marking lines are recognized
by the camera vision and are processed in such a way to generate the virtual boundaries
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by smooth functions (Medina-Lee et al., 2021), ensuring the continuity up to the 2nd
derivative in the nodes. In the case of the physical absence of internal marking lines, they
can be rebuilt virtually by estimating the required lane width within defined external
boundaries. In contrast, the nodal parameters of such boundaries can be obtained by
averaging the corresponding parameters of the upper and lower bounds. The limitation
of maneuver variations can be organized by narrowing the AV admissible motion area,
correcting external boundaries with internal conditions. This situation can be formed by a
superposition of the conditions for delimiting motion zones of other traffic participants and
the requirement to maintain safety margins between closely moving vehicles. Consider
such a procedure in Figure 3.
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Initial Position. At the initial time, the AV’s mass center position corresponds to the
coordinates (0, 0) in the xy system, and the yaw angle differs little from the average slope
of the tangents in the nodes of closest marking lines along the vehicle sides. To increase
vehicle behavior stability and limit maneuver variations near the initial position, it is
necessary to lock the outer boundaries’ initial nodes on the nodes of adjacent marking lines,
contributing to forming an entry corridor, as shown in Figure 3 regarding node 1. In this
case, the three interpolation parameters in the node 1’U of the outer border are replaced
by the corresponding DOF of the node 1U of the dividing marking line. As seen, this also
ensures a smooth transition of the boundary between the 1U and 2U nodes. In this case, the
lower boundary node 1L has already been defined; however, in the case, for example, of
driving in the second lane of a three-lane road, the same procedure would be applied to
this node as well.

Final Position. For this case, the conditions may be either strict, specifying three
restrictions at the final point (positions xf, yf of the vehicle mass center and the trajectory’s
tangent slope estimated by a close yaw angle φf), or relaxed, omitting the ordinate value or
the tangent direction, or both options together. In this case, the omitted final parameters
will be determined during optimization based on the conditions of nonlinear constraints.
Thus, the ordinate yf can be smaller or larger than that under severe conditions but sufficient
to ensure safety margins to the boundaries.

Bypassing Moving Obstacles. Unlike a fixed obstruction, when a safety area can be
easily formed, in the case of a moving obstacle, the safety boundaries depend on a larger
number of factors. The approach intensity in critical situations such as emergency braking
of the impeding vehicle is the most influential. The situation is complicated since the
maneuver prediction is based not on a finite time interval but on a combination of many
criteria. That is, the position of an impeding vehicle at the maneuver’s end can only be
estimated approximately and indirectly. Considering the AV initial position in Figure 2,
it is evident that fixing the restriction zone immediately behind the impeding vehicle is
extremely inexpedient since this significantly reduces the maneuver space. On the other
hand, the bypass must be organized before a specific position of the impeding vehicle to
reduce the likelihood of the vehicles’ critical approach. If both vehicles are in the same lane,
two cases are possible: speeding up the AV and emergency braking of the impeding vehicle.
Suppose the AV accelerates behind the impeding vehicle in the same lane. In this case, the
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distance gap between vehicles is reduced slower, requiring more lane space compared with
the moving obstacle’s emergency braking. That is, the moment limiting the same lane use is
related to the initial speeds and distance d in such a way to exclude the unsafe gap between
these vehicles during emergency braking. Two variants are possible here. The first one
is based on maintaining such a safe distance d (Figure 2) so that in the case of emergency
braking after the complete stopping in the same lane a minimum safe clearance between the
vehicles remains. The vehicles’ stopping distances will approximately differ by the value
of the initial distance d between the vehicles. Another approach proceeds from the fact that
the need for maneuvering and bypassing may appear at any time regardless the gap d and
the initial speeds of the approaching vehicles. In this case, a critically short distance may
occur even during the braking of both vehicles. Therefore, the AV’s bypass must ensure a
collision-avoidance zone, especially in the cases of full use of the longitudinal vehicle–road
adhesion ϕζ , and decrease the steerability potential. In the first option, the level of safety
is higher, but the required space is larger due to the longer initial d. In the second option,
the control aggressiveness is higher, but the compactness of using the lane’s space is much
better. It is also possible to use other algorithms, depending on the vehicles’ speeds and
curvature within the road section. Thus, with intensive traffic and lower speeds, the second
option may be more preferable and vice versa.

Estimating the stopping distances sb in such a situation can be performed according to
the following expression [27] for each set of vector components

sb = v0(tdr + tre + tin/2) + v2
0/(2ϕxg) (14)

where v0 = (Viv, Vav) = (50, 60)/3.6 = initial speeds of the impeding vehicle and AV (km/h),
respectively; tdr = (0.75, 0.5) = reaction time (s), respectively; tin = (0.05, 0.05) = time (s)
of pressure increase in the hydraulic brake circuits; tre = (0.05, 0.05) = hydraulic actuator
response time (s); ϕx = 0.85 = tire adhesion coefficient for the dry tarmac; and g = gravity
acceleration (9.81 m/s2).

Determining the difference in stopping distances after substituting the value sets in
Equation (14), we obtain the minimum allowable initial distance between the vehicles,
considering the guaranteed safe clearance of 1.5 m: ∆sb = 12.5 m. Thus, neglecting the
curvature, the initial position of the impeding vehicle’s mass center relative to the initial
position of the AV can be estimated as 15 m along the lane. According to the calculations,
the AV needs 30.4 m of stopping distance, and an impeding vehicle needs 19.6 m. Then, the
final position of the impeding vehicle corresponds to the coordinate x≈ 32 m. Consequently,
the restriction of allowable space relative to the moving obstacle on the lane is limited
(Figure 3) by transiting the lower node 6’L of the outer boundary to the node 6L of the
lane’s inner boundary. Since the final position of the AV is set in advance and corresponds
to using the second lane, the admissible space is constricted by switching nodes 7’L–11’L
to nodes 7L–11L, respectively. In the final position, the assessment of the affordable area
is repeated.

We note that the upper and lower boundaries of the AV’s permissible motion zone are
set by the same basis functions (Figure 1) as the desirable trajectory functions but through
predefined sets of nodal parameters qU, qL

qU(i) =


yUi
dyUi
dx

d2yUi
dx2

, qU =


qU(1)

...

qU(n+1)

, qL(i) =


yLi
dyLi
dx

d2yLi
dx2

, qL =


qL(1)

...

qL(n+1)

 (15)

where i ∈ [1, n + 1] = node number.

3.4. Trajectory Geometry

Unlike the planning trajectory for a robot, the overall dimensions and the vehicle
turn feature significantly influence the trajectory form because of geometric and kinematic
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relations and their restrictions. Consider the process of forming a trajectory for the mass
center based on the vehicle kinematic model in Figure 4.
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The AV moves in the xy coordinate system, as shown in Figure 2. At the same time,
a moving coordinate system ζµ is fixed on the AV’s mass center C (Figure 4). In the
general case, the vehicle moves along the x and y axes and rotates on the yaw angle φ.
Proceeding from the concept of vehicle kinematics close to ideal, point C rotates around the
instantaneous velocity center O with an instantaneous angular velocity Ω. The trajectory
curvature, in this case, is determined by the instantaneous radius R. The absolute velocity
V is directed tangentially at the angle α to the trajectory in the point C of the vehicle
mass center and is decomposed into the longitudinal Vζ and lateral Vµ components in the
moving vehicle coordinate system, respectively. The absolute speed V and its longitudinal
component Vζ are mutually located at the angle β, which is also formed between the
instantaneous radius R and the axis passing through the centers of the rear wheels distanced
on the value b from the mass center.

Let us consider the essential geometric characteristics and their derivatives given that
the function y(x) and its derivatives are defined in terms of Equations (7) and (8).

Arc Element. The elementary arc length in the case of an explicitly given function y(x)
is calculated as follows

ds =
√

dx2 + dy2 =

√
1 + (dy/dx)2dx (16)

Then, the change of arc length along the x coordinate is

sx =
ds
dx

=

√
1 + (dy/dx)2 and ds = sxdx (17)

Its first derivative concerning the x-coordinate is

dsx

dx
=

1

2
√

1 + (dy/dx)2

d
dx

(
dy
dx

)2
=

1
sx

dy
dx

d2y
dx2 (18)
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The second derivative concerning the x-coordinate is

d2sx
dx2 = d

dx

(
1
sx

dy
dx

d2y
dx2

)
= d

dx

(
1
sx

)
dy
dx

d2y
dx2 +

1
sx

d
dx

(
dy
dx

d2y
dx2

)
= 1

sx

((
d2y
dx2

)2
+ dy

dx
d3y
dx3

)
− 1

s2
x

dsx
dx

dy
dx

d2y
dx2 = 1

sx

((
d2y
dx2

)2
+ dy

dx
d3y
dx3 −

(
dsx
dx

)2
) (19)

Tangent Angle. The derivative at any trajectory point is the tangent of the slope angle

dy/dx = tan(α(x)) (20)

The expressions of Equations (16) and (17) may be rewritten as follows:

sx =
√

1 + tan2(α(x)) = sec(α(x)) = 1/cos(α(x)) (21)

The slope angle of the tangent at any trajectory point is

α(x) = arctan(dy/dx) (22)

The change of the tangent slope angle along an arc s is

dα

ds
=

dα

dx
dx
ds

=
dα

dx
/

ds
dx

=
1
sx

dα

dx
(23)

In turn, the first derivative is

dα

dx
=

d
dx

arctan
(

dy
dx

)
=

1

1 + (dy/dx)2
d2y
dx2 =

1
s2

x

d2y
dx2 (24)

The second derivative, considering K to be the curvature is

d2α
dx2 = d

dx

(
1
s2

x

d2y
dx2

)
= d

dx

(
1
s2

x

)
d2y
dx2 +

1
s2

x

d
dx

(
d2y
dx2

)
= 1

s2
x

d3y
dx3 − 2

s3
x

dsx
dx

d2y
dx2 = 1

s2
x

d3y
dx3 − 2K dsx

dx

(25)

Curvature. Curvature is defined as the rate change of the arc angle rotation along the
arc itself, i.e.,

K(s) = dα/ds (26)

With an explicitly given function y(x) and considering the change of bend direction, it
is given as

K(x) =
1
sx

dα

dx
=

1
s3

x

d2y
dx2 =

d2y/dx2(√
1 + (dy/dx)2

)3 (27)

The change of curvature along an arc s is

x =
d
ds

K(s) =
d
ds

dα

ds
=

d
dx

(
1
sx

dα

dx

)/
ds
dx

=
1
sx

dK(x)
dx

(28)

In turn, the change of curvature along the x-coordinate is

dK
dx = d

dx

(
1
s3

x

d2y
dx2

)
= d

dx

(
1
s3

x

)
d2y
dx2 +

1
s3

x

d3y
dx3

= 1
s3

x

d3y
dx3 − 3

sx
dsx
dx

1
s3

x

d2y
dx2 = 1

sx

(
1
s2

x

d3y
dx3 − 3K dsx

dx

) (29)

The second derivative concerning the x-coordinate is
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d2K
dx2 = d

dx

(
1
sx

(
1
s2

x

d3y
dx3 − 3K dsx

dx

))
= d

dx

(
1
sx

)(
1
s2

x

d3y
dx3 − 3K dsx

dx

)
+ 1

sx
d

dx

(
1
s2

x

d3y
dx3 − 3K dsx

dx

)
= − 1

s2
x

dsx
dx

(
1
s2

x

d3y
dx3 − 3K dsx

dx

)
+ 1

sx

(
d

dx

(
1
s2

x

)
d3y
dx3 +

1
s2

x

d4y
dx4 − 3

(
dK
dx

dsx
dx + K d2sx

dx2

))
= 1

sx

(
1
s2

x

d4y
dx4 −

(
2
s3

x

d3y
dx3 + 4 dK

dx

)
dsx
dx − 3K d2sx

dx2

) (30)

Immediate Radius. The instantaneous radius is defined as the reciprocal of the curva-
ture. In this case, the radius sign determined by the curvature sign shows the direction of
the immediate radius rotation and, consequently, the direction of the angular velocity Ω.

R(s) = 1/K(s) or R(x) = 1/K(x) (31)

Central Slip Angle. The angle β characterizes the deviation of the lateral component
of the mass center velocity from the longitudinal one and can be evaluated geometrically
(Figure 4)

β(s) = arcsin(b/R(s)) = arcsin(bK(s)) or β(x) = arcsin(bK(x)) (32)

Changing the angle β along an arc s of the trajectory is given by

x =
dβ

ds
=

dβ

dx

/
ds
dx

=
1
sx

dβ

dx
(33)

In turn, the component

dβ

dx
=

d
dx

(arcsin(bK)) =
b√

1− (bK)2

dK
dx

= kβ
dK
dx

(34)

The coefficient
kβ =

b√
1− (bK)2

(35)

Its derivative along the coordinate x is given by

dkβ

dx
=

d
dx

 b√
1− (bK)2

 =
b
2

2b2K(√
1− (bK)2

)3
dK
dx

=

 b√
1− (bK)2

3

K
dK
dx

= k3
βK

dK
dx

(36)

Then, the second derivative of β concerning x is

d2β

dx2 = d
dx

(
kβ

dK
dx

)
=

dkβ

dx
dK
dx + kβ

d
dx

(
dK
dx

)
= k3

βK dK
dx

dK
dx + kβ

(
d2K
dx2

)
= kβK

(
kβ

dK
dx

)2
+ kβ

d2K
dx2 = kβ

(
K
(

dβ
dx

)2
+ d2K

dx2

) (37)

Yaw Angle. As a result, in contrast to the vehicle dynamic models, the vehicle yaw
angle φ can be obtained through the angle of the tangent slope and the central slip angle
(Figure 4) as follows:

φ = α− β (38)

Both the first and second (or curvature) derivatives of the considered point influence
the yaw angle φ.

3.5. Cost Functions

This section explores the appropriate objective functions for composing an optimiza-
tion basis that provides acceptable performance, has good convergence, and gives qualita-
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tive prediction models of the motion trajectory. The criteria may be represented in quadratic
and normalized forms [23].

Path. The first natural criterion is the travelling distance, which, ideally, should be
minimum [11]. It can be written for the desirable trajectory s as

Is =
∫ s

0
ds (39)

Using Equation (17), for the variable x, which varies within [0, D], split the integration
interval into finite elements with boundaries [xi, xi+1] and piecewise functions sxi. Then,

Is =
∫ D

0
sx(x)dx = ∑n

i=1

(∫ xi+1

xi

sxi

(
pyi, x

)
dx
)

(40)

The function sxi(x) can now be represented in terms of the parameter ξ using Equation (7):

Is = ∑n
i=1 Li

∫ 1

0
sxi

(
pyi, Liξ

)
dξ (41)

The derivative function dy/dx is already included in sx(x). Thus, the integral mini-
mization of Equation (41) also helps decrease the tangent slope and straighten the trajectory
curve. Since a quadratic form is absent in this criterion, its influence may be excessive in
terms of the sensitivity of the entire functional, and the criterion itself can be reduced as

Is = ∑n
i=1 Li

∫ 1

0
sxi

(
pyi, Liξ

)
dξ/D (42)

Central Slip Angle. From the point of view of the vehicle kinematics and primarily
such a phenomenon as the lateral slip, it is expedient to ensure a trajectory minimizing the
deviation β of the absolute velocity vector V from the longitudinal vehicle axis. This re-
quirement indicates the need for moving with the largest instantaneous radius or the
smallest curvature. One can require that the quadratic deviation of β on the trajectory s
be minimum.

Iβ =
∫ s

0
β2(s)ds =

∫ D

0
β2(x)sx(x)dx (43)

Following the sequence of Equations (39)–(42), the approach for integration in finite
elements gives

Iβ = ∑n
i=1 Li

∫ 1

0
β2

i

(
pyi, Liξ

)
sx

(
pyi, Liξ

)
dξ (44)

From the perspective of the minimum average curvature, the trajectory should as
much as possible resemble a constant curvature arc. This also helps reduce the intensity of
vehicle steering use by equalizing the curvature along the trajectory. An alternative to the
Equation (43) integral can be found using the curvature

IK = ∑n
i=1 Li

∫ 1

0
K2

i

(
pyi, Liξ

)
sx

(
pyi, Liξ

)
dξ (45)

Rate of Curvature. From the point of view of maximum smoothness of transitions
between the adjacent sections, the trajectory should correspond to the minimum average
intensity of the curvature rate. Thus, using Equations (28) and (29),

IdK =
∫ s

0

(
dK(s)

ds

)2
ds =

∫ D

0

(
1

sx(x)
dK(x)

dx

)2
sx(x)dx =

∫ D

0

(
dK(x)

dx

)2 dx
sx(x)

(46)
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Passing according to the scheme above to the parameter ξ and considering Equations (8) and (46),
we obtain

IdK =
∫ D

0

(
dK(x)

dx

)2 dx
sx(x)

= ∑n
i=1 Li

∫ 1

0

dKi

(
pyi, Liξ

)
dx

2

dξ

sx

(
pyi, Liξ

) (47)

Minimization. The function Wy to be minimized can be represented in the matrix form
as a linear combination of the criteria considered above:

Wy

(
qy

)
= wT

y Iy

(
qy

)
→ min (48)

where qy = vector of unknown nodal parameters, Equation (10); Iy = vector of criteria
functions, wy = vector of weighting factors.

wy =

 ws
wβ

wdK

, Iy

(
qy

)
=


Is

(
qy

)
Iβ

(
qy

)
IdK

(
qy

)
 (49)

where ws, wβ, wdK = weighting coefficients for the path, slip angle (curvature), and curvature
rate, respectively.

3.6. Constraints

The constraints help narrow the optimum search area and reduce the required number
of iterations, affecting the calculation speed.

3.6.1. Dimensional Constraints

When planning the trajectory and its derivatives, combining the vehicle safety zone
with the allowable motion area’s boundaries is necessary. Figure 5 depicts the possible
cases limiting the safe movement near the borders, expecting that their curvature provides
the same sign within the overall vehicle length.

Vehicles 2022, 4, FOR PEER REVIEW 15 
 

 

𝑊 𝒒 = 𝒘 𝑰 𝒒 → 𝑚𝑖𝑛 (48)

where qy = vector of unknown nodal parameters, Equation (10); Iy = vector of criteria func-
tions, wy = vector of weighting factors. 

𝒘 = 𝑤𝑤𝑤 ,   𝑰 𝒒 = 𝐼 𝒒𝐼 𝒒𝐼 𝒒  (49)

where ws, wβ, wdK = weighting coefficients for the path, slip angle (curvature), and curva-
ture rate, respectively. 

3.6. Constraints 
The constraints help narrow the optimum search area and reduce the required num-

ber of iterations, affecting the calculation speed. 

3.6.1. Dimensional Constraints 
When planning the trajectory and its derivatives, combining the vehicle safety zone 

with the allowable motion area’s boundaries is necessary. Figure 5 depicts the possible 
cases limiting the safe movement near the borders, expecting that their curvature provides 
the same sign within the overall vehicle length. 

 
Figure 5. Scheme of the critical interactions with the motion boundaries. 

Four fixed points (1–4) and two points floating (5–6) may be accepted as controlling. 
The fixed points are characterized by radius vectors r1, r2, r3, r4 defining the configuration 
of the vehicle safety contour. The floating points change positions depending on the yaw 
angle ϕ. There are two options for interacting with the vehicle side and a movement zone 
border. In the first case, the border is convex relative to the vehicle side (left points 1, 2, 5). 
The largest displacement of the mass center and the smallest lateral distance to the border 
are set by point 5, which corresponds to the vehicle location parallel to the border’s tan-
gent at this point. In contrast, points 1 and 2 are guaranteed to keep gaps from the border. 
In the second variant, the boundary is concave relative to the vehicle side (right points 3, 
4, 6). Therefore, if its curvature is unambiguous within the vehicle length, point 6 will be 
kept out of the critical zone. Thus, the upper and lower boundaries of the mass center 
displacement in the grid nodes are mutually related to the boundaries of the yaw angle ϕ. 
The conditions for non-violation of the upper bounds by points 1, 2, and 5 can be ex-
pressed as 𝑦 − 𝑦 𝑥 ≤ 0 (50)

Figure 5. Scheme of the critical interactions with the motion boundaries.

Four fixed points (1–4) and two points floating (5–6) may be accepted as controlling.
The fixed points are characterized by radius vectors r1, r2, r3, r4 defining the configuration
of the vehicle safety contour. The floating points change positions depending on the yaw
angle φ. There are two options for interacting with the vehicle side and a movement zone
border. In the first case, the border is convex relative to the vehicle side (left points 1, 2, 5).
The largest displacement of the mass center and the smallest lateral distance to the border
are set by point 5, which corresponds to the vehicle location parallel to the border’s tangent
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at this point. In contrast, points 1 and 2 are guaranteed to keep gaps from the border. In the
second variant, the boundary is concave relative to the vehicle side (right points 3, 4, 6).
Therefore, if its curvature is unambiguous within the vehicle length, point 6 will be kept out
of the critical zone. Thus, the upper and lower boundaries of the mass center displacement
in the grid nodes are mutually related to the boundaries of the yaw angle φ. The conditions
for non-violation of the upper bounds by points 1, 2, and 5 can be expressed as

yk − yUk(xk) ≤ 0 (50)

where yk = critical point ordinate, yUk = value of the upper bound in the point xk, (k = 1, 2, 5).
The conditions for non-violation of the lower bounds by points 3, 4, and 6 are written as

yLk(xk)− yk ≤ 0 (51)

where yLk = value of the lower bound in the point xk, (k = 3, 4, 6)
At the same time, for any point k = 1, 2, 3, 4,

yk = y + rksin(φk + φ) and xk = x + rkcos(φk + φ) (52)

where x, y, φ = current values of the mass center position and the vehicle yaw angle in the
grid nodes; rk, φk = radius module and angle of the critical point k location in the vehicle
coordinate system.

For the floating points k = 5, 6:

yk = y + rµk/cos(φ) and xk = x (53)

where rµk = transversal coordinate of point k in the vehicle coordinate system.
We note that the modules and angles for the critical points’ vectors can be determined

by passing to the polar coordinate system based on the data vectors of longitudinal rζk and
transversal rµk coordinates of these points.

3.6.2. Other Constraints

The model involves three other constraints related to curvature and linear equality.
For the curvature constraints, the limiting value of the trajectory curvature is associated
with the vehicle maneuverability limitation, which is usually set by the minimum radius
R(e)

min of the outer steered wheel. It can be recalculated to the limit Rmin of the immediate
radius of the mass center trajectory in the grid nodes using the vehicle geometry (Figure 4)
and then converted to the curvature bound value.

|Rmin| =

√√√√(√(R(e)
min

)2
− (c + b)2 − B24

2

)2

+ b2 (54)

Then, the maximum allowed curvature can be found:

Kmax = 1/|Rmin| and |K| ≤ Kmax (55)

This condition also overlaps another one, following from Equation (35) that

|K| ≤ 1/b (56)

For linear equality constraints, it is necessary to form the matrix Aeq and the vector
beq according to Equation (9) since some parameters of the first and last grid nodes are
initially determined. The nodes’ positions on the x-axis and the derivatives at these nodes



Vehicles 2022, 4 360

are given by the required boundary conditions. Thus, even after optimization this should
be provided:

beq =



y1|0
dy1
dx

∣∣∣
0

yn+1| f
dyn+1

dx

∣∣∣
f


=


qy(1)

qy(2)

qy(3n+1)

qy(3n+2)

 (57)

The matrix Aeq is rectangular with dimension 4 × 3(n + 1), where all elements are
equal to 0, except for

Aeq(1,1) = Aeq(2,2) = Aeq(3,3n+1) = Aeq(4,3n+2) = 1 (58)

We note that the initial vector qy0 corresponds to the zero iteration of the optimization
process. To speed up the process, the initial trajectory shape as the first approximation was
specified with a half-sum of the parameters of the upper and lower boundaries. Thus,

qy0 = (qU + qL)/2 (59)

4. Searching Distributions of Kinematic Parameters
4.1. Problem Generalization

By analogy with Section 3, this section considers the conditions under which deter-
mining the optimal distribution of the vehicle longitudinal velocity Vζ [28] can be reduced
to the search for a one-variable function Vζ(x) depending on the set of parameters qvi in
the grid nodes. The optimization objective is to find a vector qv of dimension 3(n + 1),
which defines the law of changing the AV longitudinal speed and acceleration along the
trajectory on the interval [0, D] of the x-axis, using the already predetermined parameters
qy. Desirable vector

qv(i) =

 Vζi
dVζi
dx

d2Vζi
dx2

, qv =


qv(1)

...
qv(n+1)

 (60)

where i ∈ [1, n + 1] = node number.
Herewith, within each i-th segment, the set of FE parameters corresponds to two

adjacent nodes, i.e.,

pv(i) =

(
qv(i)

qv(i+1)

)
and pv =

 pv1
...

pvn

 (61)

where i ∈ [1, n] = section number.
In this case, the speed function within a segment, considering Equation (7)

Vζi(x) = Vζi(Liξ) = pT
viLifξ (62)

Its k-th derivative, considering Equation (8) is

dkVζi

dxk = pT
vi

(
Li

Lk
i

)
dkfξ

dξk (63)

We note that the vector qv to be found contains a unique nodal DOF. It is easy to obtain
a vector pv with duplicated DOFs of internal nodes to represent the interpolation function
with a complete set of parameters for each section.
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4.2. Kinematic Parameters and Their Derivatives

Velocity Vector of Mass Center. This velocity can be represented as the derivative of
the radius-vector concerning time, as a vector sum of the longitudinal and transversal com-
ponents in the vehicle coordinate system, and by decomposition in the fixed xy coordinate
system (Figure 2).

→
V =

d
→
r

dt
=

d
→
r

ds
ds
dt

= V
→
τ ,

→
V = Vζ

→
u ζ + Vµ

→
u µ,

→
V = Vx

→
u x + Vy

→
u y (64)

Or in the matrix form

→
V =

(
V
0

)T
( →

τ
→
ν

)
,
→
V =

(
Vζ

Vµ

)T
( →

u ζ
→
u µ

)
,
→
V =

(
Vx
Vy

)T
( →

u x
→
u y

)
(65)

where
→
τ ,
→
ν = basis vectors of the natural coordinate system;

→
u ζ ,

→
u µ = unit vectors of the

vehicle coordinate system;
→
u x,

→
u y = unit vectors of the fixed coordinate system xy.

Let us introduce a matrix M of plane rotation. Then, the relations between the coordi-
nate systems can be expressed by transitions

M(·) =
(

cos(·) sin(·)
−sin(·) cos(·)

)
,

( →
τ
→
ν

)
= M(β)

( →
u ζ
→
u µ

)
,

( →
u ζ
→
u µ

)
= M(φ)

( →
u x
→
u y

)
(66)

Correspondingly, for velocities(
Vζ

Vµ

)T
( →

u ζ
→
u µ

)
=

(
Vx
Vy

)T
( →

u x
→
u y

)
and

(
Vx
Vy

)
= MT(φ)

(
Vζ

Vµ

)
(67)

Absolute Speed Module. This is defined as the change of the arc length over time and
is directed tangentially to the trajectory of the vehicle mass center

V =
ds
dt

=
ds
dx

dx
dt

= sxVx =
Vx

cos(α)
=

Vζ

cos(β)
(68)

where Vx = projection of absolute speed on the x-axis.
Projection of Absolute Speed. This parameter inevitably appears in all kinematic

characteristics as the differential of the x-coordinate concerning time t. The linear velocity
Vζ is related to the projection Vx by the dependence

Vx = Vζ
cos(α)
cos(β)

(69)

Consider its derivative concerning the x-coordinate:

dVx
dx = d

dx

(
Vζ

cos(α)
cos(β)

)
=

dVζ

dx
cos(α)
cos(β)

+ Vζ
d

dx

(
cos(α)
cos(β)

)
=
(

dVζ

dx + Vζ

(
dβ
dx tan(β)− dα

dx tan(α)
))

cos(α)
cos(β)

(70)

Longitudinal Speed Derivatives. The speed Vζ is expressed by the desirable parame-
ters qv, which are also involved in the derivatives of Vζ to be used for accelerations and
jerks. The first and second derivatives concerning time are given by

dVζ

dt
=

dVζ

dx
dx
dt

=
dVζ

dx
Vx =

dVζ

dx
Vζ

cos(α)
cos(β)

(71)

d2Vζ

dt2 =
d

dx

(
dVζ

dx

)
dx
dt

Vx +
dVζ

dx
dVx

dx
dx
dt

=
d2Vζ

dx2 V2
x +

dVζ

dx
dVx

dx
Vx (72)
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where dkVζ /dxk for each i-th section is defined by Equation (63).
Lateral Speed. Since the kinematics model shown in Figure 4 assumes an ideal turn,

the vehicle’s lateral speed can be expressed over the longitudinal one

Vµ = Vζ tan(β) (73)

The derivative concerning time is given by

dVµ

dt
=

dVµ

dx
dx
dt

=
dVµ

dx
Vx (74)

which, concerning x, becomes

dVµ

dx
=

d
(
Vζ tan(β)

)
dx

=
dVζ

dx
tan(β) + Vζ

d
dx

tan(β) =
dVζ

dx
tan(β) +

Vζ

cos2(β)

dβ

dx
(75)

Yaw Rate. First, distinguish the instantaneous angular velocity Ω of the mass center
and the actual vehicle yaw rate ω (Figure 4). Then, the first one depends only on the speed
Vζ and curvature K at the trajectory point, while the second one is characterized by the
changes in the curvature and tangent slope angle. That is,

Ω =
V
R

= VK =
Vζ K

cos(β)
(76)

Using a purely mathematical approach to the expression of Equation (38), we obtain

ω =
dφ

dt
=

d(α− β)

dt
=

d
dt
(α− β) =

dα

dx
dx
dt
− dβ

dx
dx
dt

=

(
dα

dx
− dβ

dx

)
Vx (77)

Determine the derivative with respect to the x-coordinate

dω
dx = d

dx

(
dα
dx −

dβ
dx

)
Vx +

dVx
dx

(
dα
dx −

dβ
dx

)
=
(

d2α
dx2 −

d2β

dx2

)
Vx +

dVx
dx

(
dα
dx −

dβ
dx

) (78)

Angular acceleration. ε is represented by the derivative of the yaw rateω concerning time:

ε = dω
dt = dω

ds
ds
dt =

dω
dx / ds

dx V = 1
sx

dω
dx

Vx
cos(α) =

dω
dx Vx

=
(

d2α
dx2 −

d2β

dx2

)
V2

x + dVx
dx

(
dα
dx −

dβ
dx

)
Vx =

(
d2α
dx2 −

d2β

dx2

)
V2

x + dVx
dx ω

(79)

Longitudinal and Lateral Accelerations. The accelerations in the vehicle coordinate
system ζµ are derived by first differentiating Equation (67):

→
a =

d
dt

(
Vζ

Vµ

)T
( →

u ζ
→
u µ

)
+

(
Vζ

Vµ

)T d
dt

( →
u ζ
→
u µ

)
=

 dVζ

dt −Vµω
dVµ

dt + Vζ ω

T( →
u ζ
→
u µ

)
(80)

Considering Equation (73), the decomposition components along the axes are given by

(
aζ

aµ

)
=

 dVζ

dt −Vµω
dVµ

dt + Vζ ω

 =

 dVζ

dx Vx −ωVζ tan(β)
dVµ

dx Vx + ωVζ

 (81)
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Jerk. The jerk characterizes the dynamic balance’s transient processes, which results
in the intensity of the acceleration change. This indicator can be used to evaluate the
smoothness of non-stationary motion.

→
j = d

→
a

dt = d
dt

 dVζ

dt −Vµω
dVµ

dt + Vζ ω

T →
u ζ
→
u µ

+

 dVζ

dt −Vµω
dVµ

dt + Vζ ω

T

d
dt

 →
u ζ
→
u µ


=

 d2Vζ

dt2 − 2 dVµ

dt ω− dω
dt Vµ −Vζω2

d2Vµ

dt2 + 2 dVζ

dt ω + dω
dt Vζ −Vµω2

T →
u ζ
→
u µ

 =

(
jζ
jµ

)T
 →

u ζ
→
u µ


(82)

Substituting predefined expressions in Equations (69)–(79) into the longitudinal com-
ponent of Equation (82), we obtain

jζ =

(
d2Vζ

dx2 Vx +
dVζ

dx
dVx

dx
− 2

dVµ

dx
ω

)
Vx −Vζ

(
ω2 + εtan(β)

)
(83)

4.3. Objective Functions

Let us consider the appropriate objective functions for composing the optimization
basis for distributing the speed. They must provide the best performance and give feasible
predictions of the vehicle’s behavior. We note that the set of nodal parameters qy that
determine the trajectory geometry is already determined and used in the cost functions
and kinematic parameters.

Travelling Time. One of the basic requirements for fastest moving to the final position
is the minimum time tmin [19]. It can be represented as an integral

It =
∫ T

0 dt =
∫ s

0
ds

V(s) =
∫ D

0
dx

V(x)cos(α(x)) =
∫ D

0
dx

Vx(x)

= ∑n
i=1

(∫ xi+1
xi

dx
Vxi(x)

)
= ∑n

i=1 Li
∫ 1

0
dξ

Vxi

(
pyi ,pvi ,Liξ

) (84)

It is seen that the higher speed values, the smaller the integral. In addition, this integral
can be used to form a matrix of time intervals and a time scale vector for subsequent use in
estimating motion parameters over time during the tracking.

Longitudinal Speed. An alternative to Equation (84) for forming the speed distribution
is to apply the integral of the squared deviations of the actual velocities relative to preset
upper-level Vζmax as

Iv =
∫ s

0

(
Vζmax −Vζ

)2ds =
∫ D

0

(
Vζmax −Vζ

)2sxdx

= ∑n
i=1

(∫ xi+1
xi

(
Vζmax −Vζi(x)

)2sxi(x)dx
)

= ∑n
i=1 Li

∫ 1
0

(
Vζmax −Vζi(pvi, Liξ)

)2sxi

(
pyi, Liξ

)
dξ

(85)

Yaw Rate. Further, the lowest intensity of the yaw rate ω can be determined as

Iω =
∫ s

0 ω2ds =
∫ D

0 (ω(x))2sx(x)dx =

∑n
i=1 Li

∫ 1
0

(
ωxi

(
pyi, pvi, Liξ

))2
sxi

(
pyi, Liξ

)
dξ

(86)

Angular Acceleration. Similarly, for ε the integral criterion Iε

Iε =
∫ s

0 ε2ds =
∫ D

0 (ε(x))2sx(x)dx

= ∑n
i=1 Li

∫ 1
0

(
εxi

(
pyi, pvi, Liξ

))2
sxi

(
pyi, Liξ

)
dξ

(87)
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Longitudinal Acceleration. When changing the vehicle speed, it is essential to ensure
a smooth increase in the speed and minimize acceleration [9], which affects the overall
power balance of the vehicle’s engine. Then,

Iaζ =
∫ s

0 a2
ζds =

∫ D
0

(
aζ(x)

)2sx(x)dx

= ∑n
i=1 Li

∫ 1
0

(
aζi

(
pyi, pvi, Liξ

))2
sxi

(
pyi, Liξ

)
dξ

(88)

Lateral Acceleration is one of the most substantial criteria for motion safety. The lateral
acceleration characterizes the transversal reactions, the slip phenomenon, and the stability
of steerability.

Iaµ =
∫ s

0 a2
µds =

∫ D
0

(
aµ(x)

)2sx(x)dx

= ∑n
i=1 Li

∫ 1
0

(
aµi

(
pyi, pvi, Liξ

))2
sxi

(
pyi, Liξ

)
dξ

(89)

Longitudinal Jerk characterizes the intensity of acceleration change in the longitudinal
direction and combines almost all of the kinematic parameters. The minimization provides
a smooth acceleration transient [21], ensuring a propulsion system’s stable, realizable, and
predictable operation. Thus, the jerk criterion is written as follows:

Ijζ =
∫ s

0 j2ζ ds =
∫ D

0

(
jζ(x)

)2sx(x)dx

= ∑n
i=1 Li

∫ 1
0

(
jζi

(
pyi, pvi, Liξ

))2
sxi

(
pyi, Liξ

)
dξ

(90)

Minimization. The function Wv to be minimized can be represented in the matrix form
as a linear combination of criteria considered above:

Wv(qv) = wT
v Iv

(
qy, qv

)
→ min (91)

where qv = vector of unknown node parameters, Equation (60), Iv = vector of criteria
functions, wv = vector of weighting factors.

wv =



wv
wω

waζ

waµ

wε

wjζ

, Iv

(
qy, qv

)
=



Iv

(
qy, qv

)
Iω

(
qy, qv

)
Iaζ

(
qy, qv

)
Iaµ

(
qy, qv

)
Iε

(
qy, qv

)
Ijζ

(
qy, qv

)


(92)

where wv, wω , waζ , waµ, wε, wjζ = weighting coefficients for the speed, yaw rate, longitudinal
and later accelerations, and longitudinal jerk, respectively.

We note that, in the general case, the vector function Iv is determined by the set qy of
trajectory nodal parameters and qv of velocities. However, due to the constant values of qy,
the cost function Wv depends only on the required qv.

4.4. Optimal Kinematics Restrictions
4.4.1. Slip Critical Speed

Consider the equilibrium of the adhesion forces in the lateral vehicle direction and the
transverse component of the centrifugal force that caused them:

m
V2

R
cos(β) = mgϕµ (93)
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where m = vehicle mass; g = gravity acceleration; ϕµ = adhesion coefficient corresponding
to the vehicle’s lateral direction.

If we express the speed V via Vζ of Equation (68), then the longitudinal critical speed
Vsl by the adhesion condition [16,27] is

V2
sl = V2

ζ , Vsl =
√

gϕµRcos(β) (94)

where
ϕµ = ϕmax

√
1−

(
ϕζ/ϕmax

)2 (95)

where ϕmax, ϕζ = maximum and lateral tire-road adhesion coefficients.
Considering the planned acceleration and speeds, ϕζ may be estimated as follows:

ϕζ = aζ /g + fa + fr (96)

where fr = total rolling resistance coefficient; fa = specific drag force.

fa = Fa/(mg) = ρaCx A f /(2mg) (97)

where Fa = drag force; ρa = air density under the normal conditions; Cx = aerodynamic
drag coefficient, and Af = frontal (projective) vehicle square.

Assuming that the turning angles of steered wheels differ little from the angle β, fr can
be estimated as

fr ≈ ((Fr1 + Fr3)cos(β) + Fr2 + Fr4)/(mg) (98)

where Fr1, Fr2, Fr3, Fr4 = forces of wheels’ rolling resistance.
In turn,

Frk = Rzk frk (99)

where Rzk = vertical wheel load (may be accepted as mg/4); frk = wheel rolling resistance coefficient.
Each wheel moves at its speed; then,

frk = qsy1 + qsy3
∣∣Vζk

∣∣+ qsy4
(
Vζk/Vm

)4 (100)

Vζk = longitudinal speed in the k-th wheel coordinate system, Vm = speed at which the
empirical measurements were made; qsy1, qsy3, qsy4 = coefficients [29].

4.4.2. Linear Inequality Constraints

Maximum Speed. This corresponds to the range of preferred speeds in a given
planning area. That is, the conditions in each node must be satisfied:

Vζi −Vζmax ≤ 0 (101)

where i ∈ [1, n + 1] = node number.
Then, according to Equation (9), to optimize the kinematics,

b = Vζmax


1
1
...
1

 ≤


qv1
qv4

...
qv(3n+1)

 (102)

Matrix A in this case is rectangular with dimension (n + 1) × 3(n + 1) with non-zero
elements corresponding to positions Ai,3i−2 = 1, i ∈ [1, n + 1]. We note that additional
checkpoints within the intervals ξ ∈ [0,1] can improve reliability. However, these conditions
must be added to the nonlinear constraints.
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4.4.3. Linear Equality Constraints

In this problem, no restrictions are imposed on the values of kinematic parameters in
the final node of the distribution function. For the starting point, it is essential to comply
with the conditions of the current longitudinal speed and its derivative, which is included
in the expression for longitudinal acceleration. Then, according to Equation (9),

beq =

 Vζ1
∣∣
0

dVζ1
dx

∣∣∣
0

 =

(
qv1
qv2

)
(103)

The matrix Aeq is a rectangular matrix of dimension 2 × 3(n + 1), where all elements
are equal to 0, except for Aeq(1,1) = Aeq(2,2) = 1.

4.4.4. Vehicle Maximum Performance

One of the limiting factors is the vehicle’s maximum possible longitudinal acceler-
ation, which can be estimated by the empirical or theoretical acceleration characteristic
corresponding to the full power use. Figure 6 shows the acceleration characteristic of an
Audi A4 3.2 Quattro depending on the speed of the rectilinear motion. As seen, despite the
automatic transmission, the throttle response potential changes stepwise and non-linearly
in general.
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These restrictions should be included in the nonlinear optimization constraints, which
allows proceeding from the vehicle’s physical capabilities depending on the peed mode.
The characteristic can be represented by interpolation for the current calculations. Thus, in
the checkpoints within the intervals and in each node, the conditions must be satisfied:

aζk − aζmax ≤ 0 (104)

where k = number of the checkpoints.

4.5. Initial Conditions

We note that in the general case of curvilinear motion, the acceleration aζ 0 at the initial
point cannot directly characterize the derivative of the longitudinal speed, being related
to the dependence of Equation (81). This means that the required initial parameter can be
obtained from the condition

aζ0 =
dVζ

dx

∣∣∣∣
0
Vx0 −ω0Vζ0tan(β0) and

dVζ

dx

∣∣∣∣
0
=

aζ0 + ω0Vζ0tan(β0)

Vx0
(105)

With the virtual simulation, the required values can be obtained as the final ones of a
previous cycle, and with real-world planning—by evaluation using the vehicle sensory system.

Vector of Initial Solution. In general, only the current speed value can be set in
Equation (103), assuming the node’s derivatives values are zero. In the zero iteration, the
following distribution of the initial speed values can be taken for the vector qv0 such that
qv(i,3i−2) = Vζ1(0), i ∈ [1, n + 1].
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5. Simulation Example

The MATLAB code using the basic nonlinear optimization function fmincon was
composed to test the proposed approach. Thus, several planning trajectories and speeds
were performed. Table 2 shows the primary necessary physical, kinematic, and geometric
data (Figure 4) of the vehicle Audi A4 Quattro [30].

Table 2. Data for simulating the AV motion prediction.

Parameter Value Parameter Value Parameter Value

c, [m] 1.43 m, [kg] 1960 ρa, [kg/m3] 1.225

b, [m] 1.37 ϕmax 0.85 Cx 0.24

B24, [m] 1.551 Vζmax, [km/h] 100 Af, [m2] 2.04

|rζk|, [m] 2.5 Vζ1(0), [km/h] 60 D, [m] 61.32

|rµk|, [m] 1.2 n 10 d, [m] 12.5

5.1. Trajectory Search

Using the criteria and technique of Section 3, let us consider the possible trajectories
shown in Figure 7a and the curves of the vehicle yaw angle in Figure 7b. Each curve
corresponds to a different combination of weights wy Equation (49): wy1—trajectory 1,
wy2—trajectory 2, wy3—trajectory 3.

wy1 =

 2
1
0

, wy2 =

 0
0
3

, wy3 =

 0.25
1
2

 (106)
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The sets of weighting coefficients in Equation (106) were chosen to reflect the funda-
mental trends ensuring, at the same time, the feasibility within the boundaries considered
in Figure 3. We note that the influence of the coefficient wS in Equation (49) is quite weighty,
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and the curve under its effect tends to straighten out, which sharply increases the curvature
at the inflection point (approximately corresponds to x = 30 m, Figure 7a). Therefore, tra-
jectory 1 (green) situation is softened by adding the influence of the distributed curvature
factor in the vector wy1. Trajectory 2 was formed only based on the curvature intensity
criterion Equation (44), excluding the influence of the minimum path and the curvature
alignment on the vector wy2. The third option is represented by a combination wy3 of all
factors to create a compact and smooth trajectory 3.

5.2. Speed Search

For optimizing the speed distribution with the SQP algorithm [22], trajectories 2 and 3
were used to provide a compromise between smoothness and average curvature, which is
essential to forecast stability. Thus, it is possible to form four variants of speed planning
by two for each of the found trajectories 2 and 3. Variants v1, v2 are based on trajectory
2, and v3, v4—on trajectory 3, respectively (Figure 8). For these options, the following
combinations of weighting coefficients wv of Equation (92) are proposed:

wv1 =



5
0
3
0
0
1

, wv2 =



5
0
3
0
3
3

, wv3 =



5
0
3
0
0
1

, wv4 =



5
0
3
0
3
3

 (107)
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Figure 8 shows the variants of distributing the main kinematic parameters such as
longitudinal speed and longitudinal and lateral accelerations—to reflect their connection
with the physical limitations and to demonstrate their relations with the distributions of
motion trajectory. Figure 8a,b reflects the longitudinal speed Vζ and acceleration aζ changes
along the motion path determined by the integral of Equation (91). Figure 8c depicts the
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longitudinal acceleration aζ in the speed domain Vζ to compare the declared accelerations
with the ones provided by the vehicle physical limits (Figure 6), considering the road
adhesion conditions limited by the coefficient ϕmax. Figure 8d reflects the distributions
of lateral accelerations along the path, simultaneously characterizing the curvature and
the values of lateral reactions needed to maintain the vehicle on the trajectory. Figure 8e
presents a phase portrait of the accelerations aζ and aµ, reflecting their mutual influence
and the limitation of adjacent physical characteristics ϕζ and ϕµ by the adhesion ellipse [29].
Figure 8f shows the distribution of the absolute value of the vehicle mass center acceleration
along the trajectory concerning the maximum possible acceleration amax = gϕmax.

5.3. Results
5.3.1. Trajectories

As seen in Figure 7a, trajectory 1 (green) provides the shortest path but leads to
significant curvature in the inflection point (x = 30 m), which requires a substantial change
in direction within a relatively short path segment. In addition, some smoothing of the
inflection zone results in frequent fluctuations of the vehicle yaw angle (Figure 7b), which
may negatively affect the vehicle’s control. It can be assumed that for the vehicle’s high-
speed mode such a trajectory will be dangerous and acceptable only when maneuvering at
low speeds. Trajectory 2 (blue, Figure 7a) is formed only by the curvature intensity criterion
dK/ds of Equation (28) and has the largest length S2 = 64.95 m. An increase in the trajectory
length significantly compensates for the curvature in the inflection point region, which
favorably distinguishes this trajectory variant from others. On the other hand, in the second
phase, the trajectory deviates more towards the upper limit, which is undesirable even
with a satisfactory safety clearance, given the tire lateral elasticity and sideslip in actual
conditions. Trajectory 3 (red, Figure 7a) includes all criteria where the average curvature
plays a key role. The trajectory length is S3 = 64.75 m. It differs from the most straightened
yaw angle curve, moderate curvature at the inflection point, and trajectory’s layout close
to the conditional lane’s midline in the second phase of the maneuver. We note that other
variations of the weighting coefficients do not provide a unique trajectory nature, which
characterizes the optimization process as stable and unambiguous. Thus, any combinations
that exclude the excessive influence of wS lead to variants of curves close to trajectories 2
and 3.

5.3.2. Speed and Accelerations

Trajectory 2 (variants v1, v2). A distinctive feature of the speed and acceleration
distributions in these cases (Figure 8a–c) is a more intensive phase preceding the inflection
point and a less intense phase after the trajectory inflection point (approximately x = 30 m).
As noted, the influential decrease of the curvature in the trajectory’s inflection area allows
increasing the speed before the inflection point, keeping it in the entry zone of the second
lane corridor, and increasing it but with lesser intensity in the final phase. Since the angular
acceleration aµ (Figure 8d) reaches a close to critical value even before the inflection point;
to ensure stability when entering a turn, the acceleration intensity aζ decreases to 0 at
the beginning of the second path phase. The subsequent intensity of the aζ increase is
moderate because of the simultaneous increase in aµ, largely determined by the nature of
the trajectory curvature.

The time needed to overcome the path tv1 = 3.32 s, tv2 = 3.33 s, and the speed varies
from 60 to about 85 km/h. The relation between speed and time is entirely consistent with
the characteristics of the vehicle Audi A4 maximum performance [30], which regulates the
acceleration time: 0–60 km/h—3.1 s, 0–80 km/h—4.6 s. Therefore, maximum performance
acceleration will take about 1.5 s from 60 to 80 km/h, which is much less than tv1 and tv2.
The curvilinear motion nature is the most limiting factor in the vehicle’s performance.

Trajectory 3 (options v3, v4). In these variants, a more intense phase of increasing the
speed and accelerations is realized after the inflection point, which is also caused by the
greater local curvature reflected in the lateral acceleration aµ. Therefore, the initial intense
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acceleration aζ stipulates increasing the speeds up to values at which a smooth passage of
the aµ peak value is ensured, after which the vehicle enters the second lane corridor with
an increased intensity of acceleration aζ owing to the reduced curvature and, consequently,
of component aµ as well. This contributes to a stable speed increase to values higher than
those for v1, v2.

The time for completing the path is tv3 = 3.26 s, tv4 = 3.32 s, and the speed varies from
60 to the maximum of about 87 km/h. As in the previous cases, the ratios of the speeds and
time are consistent with the performance limits. The acceleration from 0 to 90 km/h takes
5.4 s. Therefore, for accelerating with maximum performance from 60 even up to 90 km/h,
about 2.3 s is needed, which is also less than tv3 and tv4.

5.3.3. Satisfaction of Physical Constraints

Figure 8c,f shows the physical limitations caused by the vehicle’s internal potential
and external factors of interaction with the road surface. We note that the optimal solution
is well coordinated with the imposed restrictions, and the results do not violate the pre-
established limitations. It is evident that such an approach expands the capabilities of
finding stable optimal motion modes for any combination of external conditions.

5.3.4. Weighting Coefficients and Their Influence

A separate issue is the search for the best linear combination of the cost functions
defined by the weighting vectors. In this regard, a sufficient number of virtual experiments
have also been carried out, which allows the following conclusions concerning trajectories
and kinematics.

Trajectories. Each combination of weighting factors reflecting the uniqueness of a
trajectory variant provides both advantages and drawbacks. Obviously, in the general
case, the best trajectory is determined by a compromise between the curvature, its intensity,
and straightness (path length). The coefficients may vary depending on a task, where
the quality of trajectory curvature distribution plays a decisive role. It can be concluded
that it is desirable to distribute the weight of the coefficients in such a way as to defocus
the curvature at the points of trajectory inflections (change of the yaw angle sign). At the
same time, it is desirable to avoid an excessive number of inflections, which contributes to
minimizing the fluctuation of acceleration aζ .

Kinematics. We note, first of all, that in Equation (107), weighting coefficients wω, wε

corresponding to the impact of the yaw rate and angular acceleration are assumed to be zero.
It is explained by the fact that their influences in the qualitative trajectory prediction are
practically indistinguishable because of the path smoothness and its curvature alignment.
The role of these criteria may be more essential when maneuvering under conditions of
frequently changed curvature of the motion area boundaries. The first weighting coefficient
wv is responsible for the rapid increase in speed, and therefore, its value is the largest.
At the same time, it is desirable to redistribute the longitudinal speed that the intensity of
its change was as even as possible. The coefficient waζ = 3 is responsible for reducing speed
fluctuations and ensuring the evenness of its change. The next factor waµ (0 or 3) reflects the
same aspects of lateral acceleration but its influence is situational. Its non-zero value is more
suitable when the sign of trajectory curvature changes often. One of the most obligatory
and vital factors is the coefficient wjζ , which reduces the intensity of transient processes
in longitudinal dynamics and ensures the overall smoothness of resulting acceleration
forecasts. Its weight must be balanced with the coefficient waζ in such a way to prevent an
excessively abrupt increase in longitudinal acceleration with a simultaneous decrease in
fluctuations of the longitudinal acceleration itself.

Thus, in the general case, the basic parameters for optimizing the kinematics distri-
bution are the quadratic deviations of the longitudinal speed, acceleration, and jerk if the
minimum curvature and its intensity of a trajectory model are ensured.
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6. Conclusions

This paper has presented the development and analysis of a sequential optimization
method for planning the AV motion reference parameters. The method determines the
trajectory plan, speed and acceleration distributions, and other AV kinematic parameters.
Based on this study, the following comments are offered:

Comparison with Other Approaches and the Uniqueness of the Method

• the approach combines the advantages of representing solutions by FEs and nonlin-
ear optimization;

• the technique for limiting allowable space was considered;
• the complete mathematical apparatus was developed providing clear connections

between geometric and kinematic parameters in the spatial domain, which abolishes
the need for setting a time of prediction horizon;

• geometric restrictions are clearly defined in the form of nonlinear constraints, which
guarantees the vehicle location within the boundaries;

• the kinematic parameters are strictly interconnected, which is shown in the formulas
for acceleration and sharpness unlike other works;

• the distribution of speed and accelerations is performed directly along the trajectory
without reference to time and provides natural smooth curves in contrast to the speed
representation as a time function based on 2nd- or 3rd-degree polynomials proposed
in many works. In this case, the acceleration and jerk are considered only along the
longitudinal coordinate and are often assigned as either linear or constant, which does
not reflect the real nature of the propulsion system operation;

• all the necessary procedures (unlike other works) for implementing the method in the
computer simulation environment are reflected.

General validation of the approach. From the point of view of reducing the necessary
procedures in motion planning, the simultaneous optimization of the trajectory and kine-
matic parameters would be preferable. However, with such an approach, it is not easy
to satisfy all criteria, which often contradict each other, and the final objective function
requires detailed study. In contrast, the proposed technique offers a two-stage prediction
of the AV motion, demonstrating its mathematical logicality, clarity, workability, and ef-
ficiency in a generalized example of curvilinear movement under conditions of external
boundaries and a moving obstacle. The first stage is based on ensuring movement safety
in the zone of admissible limits and stability of control due to the optimal smoothness
of the predicted trajectory, considering the geometric and kinematic characteristics of the
AV model. The second stage ensures the distribution of kinematic parameters along the
trajectory length, of which the main ones are the longitudinal speed and acceleration,
based on minimizing the complex criteria determined by the internal vehicle potential and
the physics of tire–road interactions. The geometric, kinematic, and physical nonlinear
constraints used in the optimization steps contribute to the realism and feasibility of the
proposed planning technique.

Contributions. A distinctive feature of the proposed technique is an explicit restriction
of the safe motion area by optimizing the best trajectory choice in contrast to the approaches
focused on conjugating the lanes’ midpoints by smooth curves. The middle line approach,
especially when planning over long distances, is qualitatively worse than the optimization
within the boundaries. The latter reduces the path, the average curvature, and the task
of vehicle control owing to the optimally smoothed curve and satisfaction of nonlinear
constraints. The complex mathematical apparatus has been developed to implement the
procedure for planning the AV motion in a constrained space. The mechanism of forming
the boundaries of permissible movement in the presence of a movable obstacle is stipulated.
Criteria for finding optimal trajectory plans and distribution of kinematic parameters
are determined and analyzed, considering geometric, kinematic and physical restrictions,
including the vehicle performance potential. Many virtual tests have been carried out for
the generalized example of searching for motion predictions, demonstrating the consistency
of the proposed technique and the quality of the resulting plans.
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Advantages. The fundamental advantage of the proposed approach consists of obtain-
ing a significant number of reference curves mathematically related to each other, which
contributes to improving the quality of AV control in tracking. The forecasting stability is
ensured by the smoothness of the higher derivative functions of the desired trajectory and
speed distributions. Furthermore, the vehicle has a sensory system (MEMS gyroscopes
and accelerometers, wheels’ angular speed sensors) capable of evaluating in real-time the
longitudinal speed, longitudinal and lateral accelerations, yaw rate, and other parameters
directly. Thus, in organizing the tracking of references, the control accuracy is higher than
when controlling only the speed and lateral position. The optimization settings can be
tuned concerning the type of vehicle drivetrain and the presence of intelligent traction
control systems. As shown in Figure 8b, entering the second lane’s corridor is possible
with acceleration and deceleration. The first technique is more typical for vehicles with
front-wheel drive, while the second fits rear-wheel drive. With Torque Vectoring or Sport
Differential technology, the nature of the control plans can be more intense towards higher
speeds and accelerations. We note that forming a complete set of parameters in the final
node is unnecessary in this method, which is compensated by nonlinear constraints.

Disadvantages. The proposed model has some limitations. The search for the optimum
within the permissible boundaries requires more computational procedures but provides
better quality than other approaches. Furthermore, the method requires the trajectory to
be strictly unambiguous along the longitudinal coordinate x, and the module of rotation
angles in the nodes of boundaries must be less than 90◦. On the other hand, this method
corresponds to the physical and technical capabilities of computer vision technology for
recognizing road marking lines. Thus, the approach’s applicability is limited by one
direction movement along the boundaries with moderate curvature. To apply this technique
for autonomous parking problem, for example, a modification is required.

Recommendations. Based on a series of virtual experiments, suggestions can be
formed regarding the staged planning of the priority criteria and their weights in the cost
function. Thus, when planning a trajectory, the preference should be given to a balance of
the distributed curvature and its intensity criteria with a slight influence of the path length
criterion. Furthermore, the weighting coefficients must be chosen to simultaneously meet
the requirements of the trajectory curve compactness, reduce the local curvature value
about the average one, and minimize fluctuations of the vehicle yaw angle—that is, to
ensure the maximum trajectory unambiguity. For planning the kinematic parameters, it is
recommended to focus on the criteria that ensure using a speed close to the desired level in
a quadratic sense and a compromise between the intensities of longitudinal speeds and
accelerations. The latter provides both smoothness of speed and acceleration (Figure 8a,b).
At the same time, it is desirable to choose the weighting coefficients’ balance in such a way
to preserve the physical capability of reproducing such control laws for an actual vehicle.
This might occur when the transient delay problem arises due to the features of the vehicle
propulsion system. If the acceleration prediction requires only non-negative values, the
minimum acceleration value in the constraints must be set to a negative value close to 0.
First, this will narrow the range of scattering and search for accelerations. Second, it will
exclude the variants with more significant negative acceleration values, which would mean
the need for using the braking system. Thus, the weighting coefficients must correspond to
the task of maintaining a speed mode.

Connections with future projects. This study was aimed at confirming the effectiveness
of the proposed approach for AV motion planning in general. However, many issues arise
and need to be considered in future studies. First, the work used a regular FE grid, and the
section length was tied to the overall vehicle dimension. However, due to the three DOFs in
a node, it is possible to simulate the trajectory curvature change within a finite element in a
wide range. Therefore, with a monotonically changing curvature, the length of sections may
be redistributed, and the grid density can be increased in areas of obstacles localization,
unsafe maneuvers, and significant curvature. The number of trajectory variations will
decrease in this case. However, the grid irregularity and the reduction of the node number
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will positively improve the optimization procedure performance. Second, the problem of
returning an AV to its initial motion lane in the presence of a moving obstacle should be
addressed. In this case, it is not enough to solve only in the space domain, as considered,
but a comparison of two vehicles’ motion modes in the time domain will also be required.
To potentiate traffic safety and increase the productivity of computational procedures, it
is necessary to increase the number of restrictions that reflect the vehicle–road interaction
physics and to work out their integral descriptions for use in the equality constraints
according to Equation (9).
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