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Abstract: With rapid transportation electrification worldwide, lithium-ion batteries have gained much
attention for energy storage in electric vehicles (EVs). State of power (SOP) is one of the key states of
lithium-ion batteries for EVs to optimise power flow, thereby requiring accurate online estimation.
Equivalent circuit model (ECM)-based methods are considered as the mainstream technique for
online SOP estimation. They primarily vary in their basic principle, technical contribution, and
validation approach, which have not been systematically reviewed. This paper provides an overview
of the improvements on ECM-based online SOP estimation methods in the past decade. Firstly,
online SOP estimation methods are briefed, in terms of different operation modes, and their main
pros and cons are also analysed accordingly. Secondly, technical contributions are reviewed from
three aspects: battery modelling, online parameters identification, and SOP estimation. Thirdly, SOP
testing methods are discussed, according to their accuracy and efficiency. Finally, the challenges and
outlooks are presented to inspire researchers in this field for further developments in the future.

Keywords: online state of power estimation; equivalent-circuit model; lithium-ion battery; electrical
vehicle; review

1. Introduction

Transportation electrification, such as electric vehicles (EVs), is a clean solution to
the replacement of traditional internal combustion engine vehicles for tailpipe emissions
reduction [1]. In recent years, lithium-ion batteries, as energy storage in EVs, have gained
much popularity in industry and academia, owing to their high specific energy and power
density, long service life, and light weight [2–4]. However, they are inclined to suffer
from potential safety issues during service, such as internal short circuit and thermal
runaway. To ensure the safety and durability of lithium-ion batteries in EV applications,
battery management systems (BMSs) are equipped to monitor battery states [5]. State
of power (SOP), as one of the key states of lithium ion batteries, plays a pivotal role
in optimising energy efficiency and choosing EV driving strategy during acceleration,
regenerative braking, and gradient climbing [6,7]. Since SOP is a non-measurable battery
state, with strong time-variability, it is of great importance to devise an effective and
efficient method to achieve online SOP estimation in BMSs for EVs. However, SOP has a
coupling effect with other battery states, including state of charge (SOC), state of energy
(SOE), state of temperature (SOT), and state of health (SOH), thereby making accurate
online SOP estimation more difficult in practice. Among them, SOC and SOE correspond
to battery open-circuit voltage (OCV) and, thus, relate to the usable voltage range for SOP
estimation in a prediction window, while SOT and SOH affect battery internal resistance
and the relationship between OCV and SOC (SOE) and, thus, have strong influence on SOP.
Although online SOP estimation has been extensively researched, challenges are still faced
in different aspects [8].

To date, SOP estimation techniques mainly fall into two groups: characteristic map-
ping (CM)-based methods and equivalent circuit model (ECM)-based methods [9]. The
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first group make use of the identified interdependences between battery parameters and
battery power characteristics to implement online feature mapping of SOP. However, they
cannot reproduce battery internal dynamics, require a large storage capacity from BMSs,
and lack robustness over battery lifetime, all of which become a major obstacle in EV
applications. Compared with the CM-based methods, ECM-based online SOP estimation
methods have been the mainstream technique, due to their accurate description of battery
internal dynamics, strong robustness and adaptability, relatively low computational cost,
and satisfactory estimation performance. Plett first applied a lumped ECM to describe
OCV variation for online SOP estimation [10]. Then, a variety of improved ECM-based
online SOP estimation methods have emerged in the past decade, and it is necessary to
systematically review and compare these methods and recognise their improvements.

The remainder of this paper is organized as follows: Section 2 introduces basic princi-
ples of online SOP estimation, in terms of different operation modes. Section 3 explains
the technical improvements and contributions in the past decade from three perspectives:
battery modelling, model parameters identification, and SOP estimation. Section 4 summa-
rizes SOP calibration methods, based on their accuracies and efficiencies. Challenges and
outlooks are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Online SOP Estimation

In this paper, SOP is defined as the peak power capability that a battery could deliver
or receive over a prediction window while keeping the battery within the safe operating
area [9]. According to this definition, online SOP estimation can be generally carried out at
three operation modes, namely constant current (CC), constant voltage (CV) and constant
current constant voltage (CCCV) modes. Thus, different open-loop prediction methods
(OLPMs) for online SOP estimation are derived accordingly.

2.1. SOP Estimation at a Constant Current Mode

In the OLPM for online SOP estimation at a CC mode, a battery is supposed to
continuously operate at constant current throughout a prediction window [11]. Assume
the prediction window (ranging from time k to k + L), battery current, and terminal voltage
during this period can be depicted in Figure 1, where discharge current is assumed to be
positive, while charge current is negative.

Figure 1. Battery current and temrinal voltage in SOP estimation at a constant current mode:
(a) discharge; (b) charge.

It can be seen that the terminal voltage of a battery will monotonically decline (or grow)
in the CC discharge (or charge) mode. Therefore, SOP depends on the power capability at
the end-of-window. Comparing with other constraints (e.g., current limit and SOC limit),
voltage limit is a major concern in the CC mode, which requires accurately predicting
battery terminal voltage at the end of a prediction window, based on the employed ECM.
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Battery SOP is determined once battery terminal voltage reaches its lower (or upper) cut-off
value, namely Ut,k+L = Ut,min (or Ut,max) [12].

2.2. SOP Estimation at a Constant Voltage Mode

In the OLPM for online SOP estimation at a CV mode, a battery is forced to con-
tinuously operate at its lower (or upper) cut-off voltage throughout a prediction win-
dow [13]. As depicted in Figure 2, the peak discharge current would monotonically
decrease, while the peak charge current exhibits an opposite trend in this period. Therefore,
accurately capturing the current variation trend is required, based on the employed ECM
during the prediction window, while the battery terminal voltage is deemed to be kept at
Ut,min (or Ut,max).

Figure 2. Battery current and terminal voltage in SOP estimation at a constant voltage mode:
(a) discharge; (b) charge.

2.3. SOP Estimation at a Constant Current Constant Voltage Mode

In the OLPM for online SOP estimation at a CCCV mode, a battery is operating at
current limit at a CC mode at the very beginning and will shift from the CC mode to the
CV mode once battery terminal voltage reaches voltage limit, as depicted in Figure 3 [14].
It can be observed that pinpointing the timing shift from the CC mode to the CV mode
is the key to work out the peak power of the CCCV mode. Such a critical timing occurs
when a battery is operating at its pre-set current limit, while its terminal voltage reaches
Ut,min (or Ut,max). Afterwards, the battery will turn to the CV mode, and the load current
has to reduce to avoid breaking the pre-set voltage limit.

Figure 3. Battery current and terminal voltage in SOP estimation at a constant current constant
voltage mode: (a) discharge; (b) charge.
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From the OLPMs for online SOP estimation at CC, CV, and CCCV modes, introduced
above, their correlation and corresponding pros and cons are analysed in the following:

1. The OLPMs at CC and CV modes keep a battery operating within a safe voltage range
by reducing either peak average current or peak instantaneous current in a prediction
window, which are more straightforward than the OLPM at a CCCV mode. It is worth
noting that the OLPMs at the CC and CV modes are essentially the same when the
length of the prediction window L is taken as one.

2. The OLPM at a CV mode does not take current limit into account. This may cause an
over-optimistic SOP estimation at high (or low) SOC regions during the discharge (or
charge) process. To involve current limit, the OLPM at a CCCV mode is developed.

3. The OLPM at a CC mode provides a relatively conservative, yet stable, peak current
estimation, which is of benefit to the development of a long-term (>30 s) driving
strategy for EVs. By contrast, OLPMs at CV and CCCV modes are more suitable
for a short term (<10 s) driving strategy for EVs. However, they may provide an
over-aggressive driving strategy by ideally assuming a constant OCV in a lengthy
prediction window, while making the best use of battery voltage range to supply as
much power as possible at every instant. In consequence, EVs may acquire a strong
power supply in a short period but fall into energy poverty very soon, since the
battery OCV would gradually decline, and the real peak current is going to drop more
rapidly than expected after a battery being shifted to a CV mode.

4. The OLPMs at CV and CCCV modes may risk batteries in overcharging and over-
discharging, since they require fairly accurate knowledge about SOC and battery
model in real-time to perfectly hold a battery at voltage limit throughout a predic-
tion window.

3. Improvements on ECM-Based Method for Online SOP Estimation
3.1. Improvements on Battery Modelling
3.1.1. Improved 1-RC Model

To date, a variety of well-performed ECMs, with complex model structure, are pro-
posed to capture battery electrochemical processes in great detail for battery state estimation.
Relevant reviews can be found in [15–18]. Nevertheless, 1-RC model, as shown in Figure 4,
is still the first choice for online SOP estimation, mainly because of its simplicity and ease
of implementation. However, two apparent shortages limit its performance in real appli-
cations. (1) Structure imperfections: basic 1-RC model is unable to accurately reproduce
some specific reactions and nonlinearities of lithium-ion batteries (e.g., hysteresis effect
and diffusion process); (2) Parameters variability: model parameters of 1-RC model are
in relation to various intrinsic and extrinsic factors (e.g., SOC, current, and temperature).
Neglecting these dependencies would affect model accuracy under varying battery states
and changeable operating conditions. Thus, efforts have been made on these two aspects
to facilitate its competitiveness in online SOP estimation.

Figure 4. 1-RC model.
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In pursuit of a more accurate battery model in SOP estimation, some specially designed
components are introduced into a basic 1-RC model to reflect battery diffusion phenomenon,
hysteresis effect, and self-discharge process.

In [19], a 1-RC model with diffusion resistance, as shown in Figure 5, is constructed
to mimic battery diffusion phenomenon in a low frequency region for long-term SOP
estimation. The time-dependent diffusion resistance is characterised based on a mass of
experimental data. As an advantage, the alteration of the model structure will not influence
the derivation of peak discharge and charge current. The experimental results show that
the proposed model could effectively improve the SOP estimation accuracy in a prediction
window over 10 s. However, the adaptability and robustness of the empirically-derived
diffusion resistance needs to be further examined under different driving scenarios.

Figure 5. 1-RC model with diffusion resistance [19].

In [20–23], a 1-RC model with one-state hysteresis, as shown in Figure 6, is employed
to capture battery hysteresis effect between battery charge and discharge trajectories. The
peak power characteristics of LiFePO4 batteries are investigated under different operating
conditions in [20]. According to the authors, the absence of hysteresis dynamics in basic
1-RC models will significantly affect SOP estimation of LiFePO4 batteries. Referring
to [16], from the same authors, 1-RC model with one-state hysteresis is found as the best
choice for LiFePO4 batteries, amid 12 commonly used ECMs, which offsets a notable
voltage hysteresis and alleviates the model error by 7.9%, compared to basic 1-RC model.
However, a main challenge of this model for online SOP estimation lies in that it is unable to
directly formulate an analytical expression of peak discharge and charge current, due to the
high nonlinearity of the current-dependent hysteresis voltage. Consequently, a numerical
method, such as the bisection and Levenberg–Marquardt algorithms, is often resorted to,
in order to solve the peak currents from a strong nonlinear equation.

Figure 6. 1-RC model with one-state hysteresis [20–23].

In [24], a joint estimation algorithm of both SOC and SOP is proposed, based on a 1-RC
model considering the self-discharge phenomenon. As shown in Figure 7, a runtime-based
model (in the left part) comprises of a capacity, self-discharge resistance, and controlled
current source in parallel, aiming to simulate the effects of battery cycling and calendar
aging on available battery capacity in the long run.
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Figure 7. 1-RC model considering self-discharge phenomenon [24].

In [25], the authors state that the model error of a basic 1-RC model can result from
a broad-frequency band. In view of this, a 1-RC model with a moving average noise, as
shown in Figure 8, is proposed.

Figure 8. 1-RC model with a moving average noise [25].

Since Gaussian white noise covers a whole frequency range, the proposed model takes
advantages of this nature to emulate the model error through a linear combination of a
sequential Gaussian white noise in a moving average window. After being transformed
to a linear regression form, the weight vector of the moving average model can be online
regressed, together with other model parameters, to realise adaptability, which contributes
to the precision of SOP estimation. Compared with basic 1-RC model, the 1-RC model
with a moving average noise could strikingly reduce the voltage error under various
load profiles.

Other than the aforementioned improvements on model structure, different depen-
dencies of 1-RC model parameters can be calibrated over a whole battery operating range
to enhance model accuracy and robustness.

In [26,27], a 1-RC model incorporating the Butler–Volmer equation (BVE), as shown
in Figure 9, is proposed to take into account the current dependency on charge transfer
resistance, due to the outstanding discharge capability of lithium-ion batteries. The BVE
describes the nonlinear relationship between overpotential and current in a charge transfer
process; thus, the growing trend of battery polarisation voltage can be better reproduced
via the proposed model at a large load current. However, the application of the BVE
remarkably raises the computational complexity of SOP estimation, which generally re-
quires a numerical method to solve the peak current estimation and, thus, demands strong
computational power from BMSs.

In [28], a so-called migrated 1-RC model, as shown in Figure 10, is proposed to improve
the robustness of SOP estimation against uncertainties from battery aging and temperature
variation, where the model parameters are all characterized as three-dimensional surfaces
of SOC and temperature.
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Figure 9. 1-RC model incorporating Butler–Volmer equation [26,27].

Figure 10. Migrated 1-RC model [28].

Two particle filtering-based linear migrations are devised to adjust model parameters
over battery lifetime. However, they totally require 10 migration coefficients to be tuned in
parameters recalibration, thereby producing a heavy computational burden for BMSs in
EV applications.

In [29], an improved 1-RC model with multi-dependent OCV, as shown in Figure 11,
is established for SOP estimation, in order to compensate the distortion phenomenon of
OCV–SOC curve. The multi-dependent OCV, is modelled as a multi-dimensional map of
SOC, temperature, aging factor, and hysteresis factor to adapt complex load conditions,
which is advantageous to both online SOC and SOP estimation.

Figure 11. 1-RC model with multi-dependent OCV [29].

For the readers’ convenience, the benefits and drawbacks of the improved 1-RC models
have been listed in Table 1.
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Table 1. Benefits and drawbacks of the improved 1-RC models in online SOP estimation.

Improved 1-RC Models Benefits Drawbacks

Structure
improvements

1-RC model with diffusion
resistance [19]

• Enhance the model accuracy
in describing diffusion process

• Remain low model complexity

• Require a mass of tests to model
diffusion resistance

• Lack of robustness

1-RC model with one-state
hysteresis [20–23] • Offset hysteresis voltage

• Increase model complexity
• Increase computational cost in

SOP estimation

1-RC model considering
self-discharge
phenomenon [24]

• Enhance the model robustness
against battery calendar aging
and cycling aging

• Require a mass of data to
establish battery aging model

• Lack of robustness under
different driving experience

1-RC model with a moving
average noise [25]

• Enhance the model accuracy
under dynamic load profiles

• Barely increase the
computational cost in
SOP estimation

• Increase model parameters
• Model accuracy depends on the

length of the moving horizon

Consider
parameter

dependencies

1-RC model incorporating
Bulter-Volmer
equation [26,27]

• Enhance the model accuracy
against current effect

• Largely increase model
complexity

• Increase computational cost in
SOP estimation

Migrated 1-RC model [28]
• Enhance the model accuracy

against the effects of SOC and
temperature

• Require a mass of tests to extract
parameter dependencies

• Largely increase model
parameters

1-RC model with
multi-dependent OCV [29]

• Enhance the model robustness
of OCV-SOC curve against the
effects of temperature,
hysteresis and battery aging

• Require a mass of tests to extract
parameter dependencies

• Increase model parameters

3.1.2. Other Models

Apart from the improved variants from the basic 1-RC model, some other ECMs have
also been employed to achieve the favourable performance in online SOP estimation.

Rint model is the simplest ECM, by ascribing the whole battery internal voltage
response to an internal resistance and is generally employed in instantaneous SOP estima-
tion. Nevertheless, the internal resistance features high-dynamic characteristic and can be
largely affected by multiple factors, such as SOC, current, and temperature. Thus, it is up
to the need for a Rint model to determine which factor will be taken into account in the
internal resistance.

In [30], a multi-dependent Rint model, as shown in Figure 12, is constructed for online
instantaneous SOP estimation that considers the effects of SOC and current on the internal
resistance. Their correlations are calibrated offline by performing pulse tests at various
SOCs and current amplitudes. After that, fuzzy rules are adopted to realize online feature
mapping of the internal resistance for instantaneous SOP estimation.

In [31,32], the thermal effect on battery instantaneous SOP is investigated based on
a multi-dependent Rint model. Their experimental results show a positive correlation
between battery instantaneous peak power and temperature. Besides, an empirically-
derived temperature correction term is devised in [31] to further facilitate model robustness
at extreme temperatures, which guarantees 95% confidence interval in instantaneous SOP
estimation from −20 ◦C to 50 ◦C. The improved accuracy of online instantaneous SOP
estimation at different temperatures can, therefore, be achieved.
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Figure 12. Multi-dependent Rint model [30–32].

As a major limitation of Rint model and its modified versions, the existence of battery
polarisation voltage cannot be properly reflected in SOP estimation under dynamic loads.
In view of this, a linear regression model, as shown in Figure 13, is proposed in [33]. Instead
of using any specific electrical components, battery polarisation voltage is comprehensively
described in a linear regression form, with respect to a past current sequence. By virtue
of linear regression, the online parameters identification of this model contributes to the
ease of implementation, and the peak discharge and charge current in the CC mode can be
easily expressed. Moreover, a trade-off has to be made for the proposed model between
the memory length and number of its coefficients, where extending memory length could
attain a better tracking capability of battery nonlinearity but at the cost of identifying
more coefficients.

Figure 13. Linear regression model [33].

The dual polarisation (DP) model, as shown in Figure 14, is another widely used ECM
in SOP estimation [34–39]. Compared with the 1-RC model, the DP model takes advantage
of two RC networks with different time constants to describe the charge transfer process
and double-layer effect at the mid frequency region, as well as the diffusion phenomenon
at the low frequency region, thereby showing the improved model accuracy over basic
1-RC model, especially at extreme SOC regions [40].

In [34,38], a DP model is associated with a two-state thermal model to reproduce
battery electrical and thermal dynamics. The thermal effect inside a battery on model
parameters can be reflected in real-time, aiming to enhance the robustness of SOP estimation
at varying temperatures. In [35], a multi-constraint SOP estimation is implemented, based
on a DP model. The authors evaluate the performance of the DP model with adaptive
model parameters in SOC estimation, which demonstrates a SOC error of less than 2%,
compared to 3% of a basic 1-RC model over a whole battery operating range. However, the
experimental validation of the DP model in SOP estimation was not directly performed.
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Figure 14. Dual polarisation model [34–39].

Due to the fact that integral order models with ideal resistors and capacitors are inca-
pable of accurately capturing the frequency domain impedance of lithium-ion batteries, a
number of fractional order models have been devised for SOP estimation. In [41], a simpli-
fied fractional order model, comprising of an ohmic resistance and a Warburg element, is
proposed for SOP estimation, as shown in Figure 15.

Figure 15. Simplified fractional order model [41].

As most EV driving cycles are concentrated at low frequency region (<1 Hz), the RC
network in a basic 1-RC model is simplified to a linear resistance, while a Warburg element
is added to describe battery diffusion phenomenon at the low frequency region. Besides,
according to the Grünwald–Letnikov definition and short-memory principle [42], the
complicated nonlinear dynamics of the Warburg element are in relation to all of its historical
states and load current within a memory horizon, which pose a challenge in battery peak
discharge and charge current estimation. In light of this, the authors decompose the voltage
response on Warburg element into zero-input and zero-state responses, leading to the
simplification of the nonlinearity of Warburg element. Although the proposed model
could generate a concise expression for peak current estimation, it sacrifices the model
nonlinearity (in describing battery relatively fast dynamics).

With that in mind, an improved fractional order model, with two serial-connected
resistor-constant phase element (RCCPE) networks, is proposed in [43] for the better re-
production of battery internal dynamics over a broad-frequency domain, as is shown in
Figure 16. The increased model complexity is of benefit to model accuracy; however, it is
considerably cost-intensive to solve the peak discharge and charge current in real-time. To
promote the applicability in real applications, only the initial state in a memory horizon
will pose an effect on the battery electrical behaviour at the end of a prediction window,
while the other states in-between are omitted. On the other hand, it may adversely affect
the model accuracy of the employed fractional order model.
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Figure 16. 2-RC fractional order model with a Warburg element [43].

Additionally, the comparative studies among ECMs with different numbers of RC,
RCCPE, or resistor-Warburg element (RCW) network, in series, were carried out in [44,45]
to examine their performances in online SOP estimation. The schematic diagram of model
structure is displayed in Figure 17.

Figure 17. n-RCW integral and fractional order models [44,45].

In [44], the authors compare the model accuracy of seven ECMs with a number of
RC or RCCPE networks, ranging from 0 to 3, under different operating conditions. The
electrochemical impedance spectroscopy (EIS) method is implemented, in a range from
5 k Hz to 1 m Hz, for parameters identification over a whole SOC range, while a hybrid
pulse power characterization (HPPC) test is performed to capture battery impedance
characteristics and peak power capability for validation. A particular emphasis is laid on
investigating the current dependence on the parallel resistance in RC or RCCPE networks.
A similar research is presented in [45], with an intention to figure out the optimal ECM
for online SOC and SOP estimation. The experimental outcomes reveal that the increasing
number of serial-connected RC and RCCPE networks would be conducive to model accuracy.
Meanwhile, fractional order models outperform integral order models with the same
structure in SOC and SOP estimation, over a whole battery operating range. Further,
considering the trade-off between model accuracy and computational complexity, the
fractional order model with one RCCPE network and one RCW network is observed as the
optimal ECM in SOC and SOP estimation, with an error of less than 2%, under all the
dynamic current profiles.

The benefits and drawbacks of other models with different structures to the 1-RC
model, with its variants in online SOP estimation, have also been summarised and pre-
sented in Table 2.
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Table 2. Benefits and drawbacks of other models with different structures from 1-RC model and its
variants in online SOP estimation.

Other Models Benefits Drawbacks

Multi-dependent Rint model [30–32] • Simple structure and low model
complexity

• Require a mass of tests to capture
parameter dependencies

• Incapable of describing battery
polarisation state

Linear regression model [33] • Low computational cost • Model accuracy depends on the
length of previous state

Dual polarisation model [34–39] • Relatively high model accuracy • Have trouble describing
diffusion process

Simplified fractional-order model [41]
• Simple structure
• Capable of describing diffusion

process

• Relatively high computational cost
• Incapable of describing battery

charge transfer process

2-RC fractional-order model with a
Warburg element [43] • High model accuracy • High model complexity

• High computational cost

n-RCW integral- and fractional-order
models [44,45] • High model accuracy • High model complexity

• High computational cost

3.2. Improved Online Parameter Identification Technique

Model parameters of a battery feature slow-varying characteristic and are jointly
influenced by a series of factors (e.g., SOC, current, and temperature). Considering the
accuracy, adaptability, and computational efficiency for EV applications, online parameter
identification techniques offer more superiority over offline techniques, which could only
be implemented in a laboratory environment and may gradually lose fidelity during service.
By far, online parameter identification techniques can be divided into two main groups:
recursive and non-recursive methods [46].

Because of strong adaptability and low computational effort, recursive methods, such
as the recursive least-square (RLS) algorithm and Kalman filter (KF) family, are favoured as
the preferred candidate for model parameterisation in SOP estimation. On the other hand,
this type of methods requires model mathematical expression to be converted into a linear
regression form, with respect to model parameters and measurable signals, which may
not be suitable for some ECMs with high nonlinearity. In [47], the authors proposed a RLS
algorithm with an adaptive ratio vector for online model parameterization in pack-level
SOP estimation. The RLS algorithm is employed to provide mean parameters estimation
at a pack level, while cell inconsistencies are evaluated through the adaptive ratio vector,
based on the analysis of cell current–voltage characteristic. In [13,19], a weighted RLS
(WRLS) algorithm is employed in online parameters identification for SOP estimation,
where a larger weight factor of an error gives rise to more impact on parameters adjustment.
It should be noted that weight factors in a recent past window could exert an influence on
the regression of the algorithm, and the optimisation of these weight factors is strongly
related to the sampling rate and load profile. In [48–50], an optimal forgetting factor RLS
(FFRLS) algorithm is implemented to determine model parameters by minimizing the
accumulated squared error and updating progressively with data collections. A proper
forgetting factor could effectively provide more impact of recent data than past data
on the fine-tuning of model parameters, thereby acquiring better tracking ability and
numerical stability. In [29], an adaptive forgetting factor least-square (AFFLS) algorithm is
proposed to capture parameters variation in estimation of SOC and SOP, where the adaptive
forgetting factor is designed to be current-dependent to compensate for the nonlinear
correlation between charge transfer resistance and current. In [51], an improved AFFLS
algorithm is developed to achieve preferable performance in processing fluctuated data,
while simplifying preliminary experimental analysis and data fitting, thereby enhancing its
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operability in online SOP estimation. In [52], the authors emphasize that the unexpected
sensing noises in current and voltage signals may cause biased parameters identification
and further affect SOC and SOP estimation accuracy. Therefore, an adaptive forgetting
factor recursive total least square (AFFRTLS) algorithm is proposed to suppress the current
and voltage corruptions by finding out the optimal solution with the minimum perturbation
on a battery system. According to the experimental results, the proposed algorithm presents
a SOC error of less than 2.7% against sensing noises, while the error is up to 5% using a
FFRLS algorithm.

The KF family is another important recursive method that shows an advantage in
either the joint or dual estimation of both model parameters and state variables of a battery
system [53]. In a joint estimation strategy, the state vector of a battery system is augmented
to include model parameters, one KF is used to estimate both battery parameters and states
to improve the computational efficiency. In [54], battery OCV is treated as a state variable
instead of SOC in this algorithm to provide the basis for SOP estimation, and an offline
calibrated curve, in relation to the rate of OCV change per ampere-hour, is employed to
achieve close-loop compensation. However, the initial values of the KF are required to be
well chosen to ensure convergence. In [55], to jointly estimate battery model parameters
and state variables, while considering current dependency on charge transfer resistance, the
fully-polarised internal resistance is calibrated at various current amplitudes and treated as
an observation in an unscented KF (UKF). By doing so, it enables a viable way to capture
the current effect for online SOP estimation while avoiding constructing a BVE-based
highly nonlinear model. In [41], a fractional KF algorithm is employed to realise the joint
estimation of battery states and model parameters of a simplified fractional order model,
where the state covariance prediction is associated with the previous state in a memory
horizon, instead of only the last one.

As for a dual estimation strategy, two KFs are placed in parallel to act as state and
weight filters, to concurrently share the derived information of state variables and model
parameters with each other [53]. Although the dual strategy demonstrates a relatively
complex structure, it could avoid large matrix operation in a joint estimation strategy and,
thus, relieve the computational burden. In [14,37], both battery model parameterization
and online SOC estimation are implemented using a dual EKF (DEKF) algorithm. In [14],
the proposed DEKF algorithm employs battery polarisation current, flowing through the
charge transfer resistance of a 1-RC model as the state vector, and incorporates battery
OCV into parameter vector. As a benefit, the partial derivative in DEKF algorithm can be
simplified. According to the experimental validations on a new and aged cell, the estimated
voltage error can be restricted within 0.03 V against noise. In [37], a pseudo-random
binary sequence (PRBS) is applied to recalibrate parameters by exciting batteries during
a relaxation, which delivers a reliable prior knowledge to an EKF for subsequent online
adaptation. According to the validations, the proposed hybrid parameters identification
method exhibits higher accuracy and faster convergence speed than EKF algorithm without
prior knowledge, indicating the significance of prior knowledge for regression-based
algorithms. In [56], cell parameters and SOCs in a battery pack are concurrently estimated
through a dual adaptive EKF (DAEKF) algorithm, which has a stronger convergence
capability than EKF algorithm by regressing noise covariance iteratively. Then, the weakest
cell will be identified for pack-level SOP estimation.

Additionally, the extremum seeking algorithm, as another typical recursive method,
is employed in [22] to characterize model parameters for instantaneous SOP estimation,
where a sinusoidal current signal is imposed on a battery system to generate a cost function.
The estimated model parameters will converge to true values, as long as the cost function
is approaching zero.

Non-recursive methods, such as optimisation algorithms, possess good accuracy
and stability over recursive methods, especially for ECMs with complex structures and
more parameters. However, these methods are generally computationally expensive and
require processing batches of data simultaneously. In [27], the parameters of a 1-RC
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model, incorporating the be, are updated online at the interval of 10 s, through an optimal
searching strategy. The basic idea is to select a reference parameter set, among a number of
the randomly generated parameter sets, at each iteration, according to the accumulated
squared voltage error [57]. In [58], a particle swarm optimisation (PSO) algorithm is
employed in online parameters identification for SOP estimation. Due to slow-varying
characteristic of model parameters, it is not necessary to implement PSO algorithm at
each sampling time, thereby alleviating its computational effort. From the experiments
on nine different cells, PSO algorithm outperforms RLS algorithm in battery voltage and
SOC estimation.

3.3. Improvements on SOP Estimation Methods
3.3.1. Long-Term SOP Estimation

Model parameter variation needs to be considered in a lengthy prediction window
to maintain model accuracy in SOP estimation against varying SOC. This will lead to
the increased computational complexity in solving peak currents online at CC, CV, and
CCCV modes.

In [59], the ohmic resistance of a 1-RC model is predicted forward in a prediction
window using the first-order Taylor series expansion. As a result, the mathematical expres-
sion of the peak discharge current becomes a second-order polynomial, and an optimal
searching algorithm is designed to seek peak discharge current, while peak charge current
estimation is not involved. To further engage all model parameters in forward prediction,
the same authors employed a genetic algorithm (GA) to work out the peak discharge and
charge currents from a highly nonlinear function; additionally, the effects of erroneous
SOC and battery aging on SOP estimation were systematically analysed [60]. In [61], the
authors stated that the first-order Taylor series expansion may yield unrealistic estimations
of model parameters (e.g., negative values) at the end of a prediction window. To tackle this
issue, a voltage, limited by an extrapolation of resistances and OCV (VLERO) method, is
proposed by extrapolating the model parameters on a slope connected between the present
and minimum values over a whole SOC range. Moreover, a multistep model predictive
iterative (MMPI) algorithm was derived to achieve SOP estimation in high accuracy, which
can be separated into an inner and outer stages. In the inner stage, a prediction window is
segmented into several subintervals to capture the variation trend of polarisation voltage
in great detail, based on the model parameters estimated at each end of the subinterval. A
root-searching algorithm is performed in the outer stage to find out the exact peak current
from a complex function. The proposed MMPI algorithm is validated under dynamic
profiles at low temperature, which shows a much preferable performance to a conventional
long-term SOP estimation at the CC mode.

3.3.2. Optimisation Control-Based SOP Estimation

SOP estimation can also be converted into an optimisation problem using control
theory. In [62], a dynamic matrix control (DMC) algorithm, developed from the model
predictive control (MPC) theory, is applied in SOP estimation. Battery terminal voltage
is formulated as a linear combination of the weighted sum of current changes in a recent
past window. Thus, the proposed algorithm optimises the power flow through a tuning
load current to make a battery reach its cut-off voltage at the end of a prediction window.
In [34], an economic nonlinear MPC algorithm is employed in SOP estimation, under
the constraints of voltage, current, SOC, and temperature. Compared with conventional
MPC and DMC algorithms, mainly designed for tracking purpose, the proposed algorithm
could avoid laborious weight-tuning work and achieve improved close-loop performance,
especially targeting the nonlinear system. Besides, the effects of temperature, the length of
a prediction window and model accuracy on SOP estimation are quantitatively explored.
The experimental results show the error of peak power estimation is less than 0.2%.

Fuzzy logic control theory can be also applied in SOP estimation. In [63,64], a fuzzy
logic controller is designed to prevent batteries from breaching the pre-set constraints and
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guarantee the safe operation of lithium-ion batteries. SOP estimation outcomes, provided
by a MPC algorithm at CC or CCCV modes, will be delivered to a fuzzy logic controller,
which divides the safe operating area into an inner and outer region. Once battery terminal
voltage or current enters into the outer region at a sudden load change, the fuzzy logic
controller will commence the adaption process before a battery approaches its pre-set
constraints, where the correction coefficient depends on battery voltage and current, along
with their variation rates.

3.3.3. SOP-Related Multi-State Co-Estimation

Generally, SOC, reflecting the ratio of battery remaining capacity to its rated capacity,
is regarded as the indispensable precondition for SOP estimation. Many joint SOC and
SOP estimation methods have been reported in the literature. With in-depth studies on
lithium-ion batteries, it was found that the multi-physics coupling effect among various
battery states could impose a significant impact on the estimation performance of every
single state. Therefore, SOP-related, multi-state estimation becomes a promising way to
facilitate SOP estimation in practice and has been a research hotspot in recent years. The
relevant methods will be reviewed, with a special emphasis on the contributions of SOE
and SOH to SOP estimation.

As one of the most fundamental battery states of lithium-ion batteries, SOE describes
the ratio of battery remaining energy to its rated energy, which is closely related to EV
remaining driving range estimation. From an energy management standpoint, it could
also offer batteries a constraint in SOP estimation to prevent them from falling into energy
poverty quickly. In [65], SOE completely supersedes SOC to act as a constraint in SOP
estimation. According to the authors, SOE limit could have a higher impact on SOP
estimation than SOC limits, since battery internal energy dissipation in a prediction window
cannot be reflected by SOC, from a charge accumulation perspective. In [21], multi-state
estimation algorithms, including SOC, SOE, and SOP, are presented, based on a 1-RC model
with hysteresis. Although SOE is a state variable in battery state space model, it does not
participate in the model observation equation, which is estimated in an open-loop fashion.
However, the above two methods ideally assume battery terminal voltage to be constant in
a prediction window, which is practically untrue and, thereby, provides over-optimistic
estimation results. Moreover, it is a necessity to experimentally investigate the battery
operating ranges that SOC and SOE limits would, respectively, come into effect in SOP
estimation, before completely replacing SOC limit with SOE limit.

SOH is a measure of the fade of battery capacity or increase of battery internal re-
sistance, compared with a fresh battery. It can be calculated as a ratio of the maximum
battery capacity at its current state to its rated capacity or the ratio of the internal resistance
at its current state to the internal resistance at a fresh battery. Unlike the contribution of
SOE, SOH estimation mainly dedicates to model parameters recalibration against battery
degradation, thereby improving the SOC and SOP estimation accuracy over battery life-
time. In [36], a multi-state estimation framework of SOC, SOH, and instantaneous SOP was
developed for lithium-ion batteries in EVs. A DP model, with offline characterized SOC-
and temperature-dependent model parameters, was employed in SOC estimation, while
the estimations of SOH and instantaneous SOP shared a Rint model. The SOH estimation
in this research only helps recalibrate the available battery capacity, battery aging effect
on the other model parameters is not taken into consideration, which would affect SOC
estimation in the long run. Further, the employment of two ECMs with different structure
and parameters reduces the applicability in practice. Another multi-state estimation frame-
work of SOC, SOH, and SOP is proposed in [66], where SOH will be updated quarterly or
semi-annually, based on the charge accumulation between two separate SOCs. Thus, the
degradation trend of available battery capacity can be captured, yielding the improved
performance of SOP estimation at the CCCV mode. A similar SOH update mechanism
is also applied in [39]. Besides, the authors discovered that the OCV–SOC curve barely
drifts above 62.5% SOC over a whole battery lifetime in EVs (i.e., 80–100% SOH), with a
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voltage deviation of less than 0.005 V. In this regard, two separate SOCs will be selected, in
a range above 62.5% SOC. To further illustrate the correlation among SOC, SOH, and SOP,
an enhanced multi-state estimation hierarchy is proposed in [8], where SOC estimation
provides the basis for SOH and SOP estimation. SOH estimation is at the mid-layer, which
can help to improve model robustness for SOP estimation and recalibrate SOC estimation
against battery aging. The top layer of the hierarchy is a SOP estimation that could at-
tain high reliability, benefiting from the precise knowledge of both SOC and SOH. Three
length-varying rolling windows are designed for model parameters identification, SOH
estimation, and SOP prediction, respectively. First, a modified moving horizon estimation
(MHE) algorithm, with enhanced numerical stability and fault tolerance, is employed in
SOC estimation. Second, periodical updates of model parameters and SOH will further
lead to improved accuracy in SOC estimations. By doing so, a newly defined current limit,
focusing on an increased heat generation on ohmic resistance in an aged battery, can be
introduced into SOP estimation for safety consideration. The experimental results validate
the effectiveness of the proposed multi-state estimation for SOC, SOH, and SOP of cells at
different aging statuses. In [67], the multi-state estimation algorithm, with respect to SOC,
SOH, and SOP, was proposed, primarily based on the mixed SOH estimation strategy. In
this proposed algorithm, a 3-RC model was constructed, with parameters calibrated on a
battery at different aging states, while an interacting multiple model strategy is applied to
evaluate the respective mode probabilities, based on the corresponding likelihood functions.
According to the aging states of the pre-defined models and their mode probabilities, the
first SOH candidate can be generated. In addition, the online identified ohmic resistance is
treated as the second candidate of SOH. The overall SOH estimation can be determined
by taking a weighted average between two candidates, thereby achieving a smooth mode
transition and benefiting from more stable SOP estimation.

3.3.4. Machine Learning-Based SOP Estimation

Machine learning algorithms exhibit outstanding performance in nonlinear system
modelling, some of them with simple structure, and few parameters have been attempted
in SOP estimation for the improved accuracy, while keeping a relatively low computational
expense. In [68], a self-learning estimation algorithm was proposed for SOP estimation,
based on an adaptive neuro-fuzzy inference system (ANFIS). The proposed ANFIS treats
the current amplitude, charge accumulation, SOC, temperature, and time-averaged voltage
during a pulse as the system inputs, while the system output is the battery terminal voltage
at the end of a prediction window. A two-step hybrid learning method is employed in
ANFIS training. In the first step, a forward pass is performed with fixed premise parameters
to generate the corresponding output error. Then, a gradient descent-based back pass is
carried out in the second step to fine-tune the premise parameters. Finally, the peak
discharge and charge current/power is determined by iteratively running the system, and
the estimation will gradually approach the peak value through a bisection method. In [69],
a model-based extreme learning machine (ELM) algorithm was derived to predict battery
future power capability, voltage, and temperature against varying SOC and temperature.
The proposed ELM algorithm replaces original active functions in conventional ELMs
with a set of sub-models. Each of these sub-models contains a 1-RC model and thermal
model, with randomly selected initial SOC and model parameters in a reasonable range
to reproduce battery electrical and electrothermal dynamics. As an advantage, little priori
knowledge of a battery is required, thereby facilitating the robustness of the algorithm.
According to the experimental results at 5 ◦C, 25 ◦C, and 45 ◦C, the proposed algorithm
performs satisfyingly over the generic RLS algorithm.

3.3.5. Pack-Level SOP Estimation

EV battery packs are made up of numerous cells connected in series or parallel (or
combination of both) to meet specific power and energy requirements. Thus, pack-level
SOP estimation appears to be subjected to all cell-level constraints. The fundamental idea



Vehicles 2022, 4 17

of the conventional pack-level SOP estimation is to predict the SOP of a single cell and then
scale it up to the whole battery pack. Nevertheless, cell inconsistencies are inevitable in the
process of manufacturing and usage. Neglecting cell inconsistencies in a battery pack may
yield unreliable SOP estimation outcomes. As a result, it could aggravate battery aging
behaviour and even risk batteries in potential safety issues. Generally, serial or parallel
connections are two common configurations to make a battery pack [70].

For a battery pack comprising of only serial-connected cells, pack-level SOP depends
on the representative cell that first reaches any of the pre-set constraints [71]. A straightfor-
ward strategy to determine the representative cell in a battery pack is proposed in [20,72] by
comparing the peak cell currents in a prediction window. However, this strategy requires a
large memory from BMSs to construct ECMs for each single cell and store the corresponding
parameters. Also, working out all the peak cell currents would produce a heavy compu-
tational burden on a microprocessor with limited computation capability. To facilitate
the applicability and efficiency of pack-level SOP estimation, an improved cell-selection
strategy was devised in [56], based on the extraction of cell inherent features (e.g., OCV
and ohmic resistance), which enables to pick the representative cell before implementing
the peak current estimation. Although laborious computational effort on calculating peak
cell currents can be avoided, it still requires cell-level modelling and the corresponding
estimators for cell parameter identification. In light of this, a comprehensive model is
constructed to describe dynamic behaviours of a battery pack, while cell-to-cell differences
are reflected by a set of proportional factors that replace cell inherent features (e.g., cell
capacity and ohmic resistance) in representative cell selection [27,47]. Afterwards, the peak
discharge and charge currents of the representative cell cooperate with the average cell
voltage to generate pack-level SOP. As an advantage, it only needs one estimator to suffice
for the parameter identification at a pack level that further saves computational resources.

The aforementioned SOP estimation strategies are readily applicable to a serial-
connected battery pack, which do not consider the presence of parallel-connected cells.
Unlike serial-connected battery packs that share an identical current, dynamic current
distribution would be the most intractable problem for SOP estimation of a battery pack in
a parallel-connected structure. Concerning this, an application-oriented SOP estimation
strategy was proposed in [5] for a battery pack constituting parallel-connected strings
with a number of cells connected in series on each string. Firstly, a generalised state-space
representation of a n-RC model is constructed to describe battery internal dynamics, which
treats either cell voltage or string current as a system output, with the pack current as
a system input. This makes the complicated system much easier to monitor. Secondly,
the SOP estimation is formulated as an optimisation problem that not only searches the
cell index hitting the pre-set constraint but also determine the exact time instance, since
a possible non-monotonic variation of cell voltage may occur, in spite of operating at a
constant current. Further, cell SOPs at the beginning and end of a prediction window will
be tried before solving the optimisation problem to reduce the computational effort.

For the readers’ convenience, the reviewed SOP estimation methods are demonstrated
and compared in Table 3, where the corresponding evaluation methods are particularly focused.

Table 3. Improved SOP estimation methods at different operating modes.

Research Emphasis References Methods Operating
Mode Special Considerations

Long-term SOP
estimation

[59] Optimal searching algorithm CC mode Future prediction of R0
[60] GA CC mode Future prediction of R0, Rp and Cp

[61] Modified VLERO and
MMPI methods

CC mode Future prediction of R0, Rp and CpCC mode

Optimisation control-based
SOP estimation

[62] DMC CC mode −
[34] Economic MPC CC mode Temperature acts as a constraint
[63] MPC and fuzzy control CC mode −
[64] OLPM and fuzzy control CCCV mode −
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Table 3. Cont.

Research Emphasis References Methods Operating
Mode Special Considerations

SOP-related multi-state
co-estimation

[21,58,65] OLPM CC mode SOE acts as a constraint
[8,36,39,67] OLPM CC mode SOC, SOH and SOP estimation

[66] OLPM CCCV mode SOC, SOH and SOP estimation

Machine learning-based
SOP estimation

[68] ANFIS CC mode −
[69] ELM CC mode −

Pack-level SOP estimation

[5] OLPM CC mode Parallel-connected battery pack
[56] OLPM CC mode Serial-connected battery pack
[70] OLPM CC mode Serial-connected battery pack
[71] OLPM CC mode Serial-connected battery pack

4. SOP Testing Methods

A high-precision acquisition of SOP reference value is critical for the quantitative
evaluation of SOP estimation algorithms. However, there is not a standard and uniform
testing method to validate the effectiveness of SOP estimation, and the existing methods
are generally carried out at a CC, CV, or CCCV mode to simulate the extreme driving
conditions of EVs in a pre-defined prediction window for the measurement of reference
SOPs. To this end, the SOP testing methods are reviewed in this section, and their benefits
and drawbacks are summarised in Table 4. In the following, we take a battery to conduct
SOP test in a prediction window of 10 s as an example for illustration.

Table 4. Existing SOP testing methods and their benefits and drawbacks.

Validation
Objective SOP Testing Method References Benefits Drawbacks

SOP at
CC mode

HPPC test [11,20,36,66,67]
• Ease of implementation
• High efficiency

• Over-estimated outcomes
• Improper for long-term

SOP measurement
• Only consider voltage limit

Hybrid pulse test [73]
• Ease of implementation
• High accuracy

• Low efficiency
• Extrapolation of test data

may affect accuracy

Constant voltage constant
power test [45,74]

• Relatively good
efficiency

• Improper to represent real
SOP at a CC mode

Constant current test [43]
• Ease of implementation
• Relatively high accuracy

• Low efficiency
• Nonlinear fitting of test data

may affect accuracy

SOP at
CV/CCCV

mode
Constant voltage test [13,14,64,66] • High accuracy

• Require test equipment to
generate a rapid increasing
pulse with large amplitude

4.1. Hybrid Pulse Power Characterization Test

The HPPC test is widely employed in battery instantaneous and short-term SOP
validations [75]. A complete HPPC test profile, over a whole SOC range, is depicted in
Figure 18a. Each HPPC test, at a selected SOC point, comprises of discharge and charge
pulses, both of which will last for 10 s, followed by a 40 s relaxation. Figure 18b illustrates
the basic idea of HPPC test for validations of instantaneous and short-term SOP estimation.
Instantaneous peak discharge power can be calculated by Equation (1), based on the abrupt
voltage drop at the beginning of a pulse. The characteristics of instantaneous peak discharge
and charge power over a whole SOC range are described in Figure 18c.

Rint,dis =
∣∣∣∆Vdis

∆Idis

∣∣∣ = ∣∣∣ (V1−V0)
Idis,pulse

∣∣∣
Pdis =

Ut,min(Uoc−Ut,min)
Rint,dis

(1)
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For SOP estimation in a short term (<10 s), battery internal resistance is calibrated
based on the voltage drop over a whole pulse. Therefore, the peak discharge power, in a
short term, can be calculated by:

Rint,dis =
∣∣∣∆Vdis

∆Idis

∣∣∣ = ∣∣∣ (V2−V0)
Idis,pulse

∣∣∣
Pdis =

Ut,min(Uoc−Ut,min)
Rint,dis

(2)

Figure 18. HPPC profile: (a) current profile; (b) typical current sequence and voltage response in a
HPPC test; (c) instantaneous peak power through the HPPC test.

Although the HPPC test is a simple method to carry out with a fairly high efficiency,
its defects for SOP reference calibration are summarised below:

1. The HPPC test is improper for examining SOP estimation in a relatively long predic-
tion window (>30 s), since battery OCV variation in a pulse is neglected.

2. The HPPC test cannot be performed for dynamic SOP validation, since it must start
from a static condition.

3. Equation (2) cannot accurately reproduce battery end-of-pulse internal resistance Rint
at the real peak currents. This is because battery polarisation voltage indicates a strong
nonlinear correlation with the current amplitude, while the real peak currents will be
much greater than the applied current in the HPPC test. As a result, the calibrated
Rint will lead to a significant deviation in SOP reference from the HPPC test.

4. The HPPC test can only validate SOP estimation under voltage limit.
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4.2. Hybrid Pulse Test

In [73], a hybrid pulse test is reported for SOP validation. The current and voltage
profiles of a typical hybrid pulse test at 80% SOC are depicted in Figure 19a, and the test
procedure is illustrated as follows:

Step one. Discharge a battery from a fully charged state to 80% SOC, followed by one-
hour relaxation.
Step two. Discharge a battery at a conservative guess of peak discharge current for 10 s,
and ensure the end-of-pulse voltage will not breach the voltage limit. Record the released
capacity and battery terminal voltage at the end of 10 s.
Step three. Charge back the released capacity to the battery and remain the battery at the
same initial SOC, namely 80% SOC, followed by another one-hour relaxation.
Step four. Gradually increase the current amplitude and repeat steps two and three five
more times. Plot the attempted currents versus the corresponding battery terminal voltages
at the end of 10 s. Fit them using a straight line, as shown in Figure 19b.
Step five. Extrapolate the peak discharge current by extending the fitted line to the lower
cut-off voltages.

Figure 19. Hybrid pulse test: (a) current and voltage profiles; (b) peak charge and discharge
current identification.

A hybrid pulse test could achieve highly accurate SOP with affordable time expense if
it satisfies the following conditions:

1. It requires battery end-of-pulse voltage to be close enough to the upper (of lower)
cut-off voltage for an accurate extrapolation, since an approximate linear relationship
between the attempted current and battery end-of-pulse voltage only appears in a
limited range.

2. It requires the discharged capacity in the last pulse test to be charged back to the bat-
tery for keeping the same initial SOC before applying the next pulse. However, there
will always exist a slight difference in initial OCVs and, thus, SOCs, due to battery
hysteresis effect, which may affect the accuracy of the calibrated SOP references.

4.3. Constant Voltage Constant Power Test

Constant voltage constant power (CVCP) test is designed in [45] for SOP validation,
which can be separated into CV and constant power (CP) tests. Figure 20 shows the
flowchart of the CVCP test. In [74], the authors made a further improvement, where a
conception of power sensitivity was proposed to rationally tune the peak discharge and
charge power after a CP test. According to the flowchart, SOP reference calibration at a
selected SOC can be fulfilled within two battery cycles, indicating a good efficiency for SOP
validation. However, SOP references from CP tests may not be a proper way to evaluate
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SOP estimation algorithms at the CC or CCCV modes, since the CC mode is essentially
different from the CP mode.

Figure 20. Test flow of the CVCP test at 80% SOC.

4.4. Constant Current Test

In [73], a CC test is proposed for SOP validation. The test procedure is briefed as below:

Step one. Fully charge a battery and then discharge the battery to 80% SOC, followed by
one-hour relaxation.
Step two. Discharge the battery at the estimated peak discharge current until the battery
terminal voltage reaches the lower cut-off voltage. Record the testing time t1.
Step three. Repeat steps one and two four more times at different current amplitudes. Make
sure the testing time is approaching the length of a prediction window, namely 10 s.
Step four. Fit the correlation between the attempted current and recorded testing times as a
nonlinear curve. Reference value of the peak discharge current corresponds to t = 10 s, as
shown in Figure 21.

Figure 21. Nonlinear fitting between current and test time in the CC test-based method.

From the test procedures, it can be found that CC test is much more time-consuming
than the other aforementioned SOP testing methods. It basically demands five attempts to
obtain reference SOP at a selected SOC. Furthermore, a few following factors could cause
accuracy deterioration:
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1. Different current attempts may not be evenly distributed, which may affect curve fitting.
2. Nonlinear fitting of the recorded data is likely to run into overfitting or underfitting

with only five pairs of measurements.
3. Referring to Peukert’s law, battery testing time is not proportional to current in a CC

discharge profile.

4.5. Constant Voltage Discharge Test

In [14], a CV discharge test is particularly devised for validations of SOP estimation
algorithms at the CV mode and CCCV mode, which is illustrated as follows:

Step one. Fully charge a battery and then discharge the battery to 80% SOC, followed by
one-hour relaxation.
Step two. Discharge the battery using a rapid increasing pulse, of which the current
amplitude will jump to a large value within a very short period (e.g., 0.1 s). Therefore, three
cases would happen in a prediction window, as shown in Figure 22.
Step three. Battery peak power at the end of a pulse can be directly calculated as the
product of the current limit and voltage at the end of pulse or the product of the voltage
limit and current at the end of pulse.

Figure 22. Three cases in a constant voltage discharge test: (a) CC mode; (b) CV mode;
(c) CCCV mode.

5. Challenges and Outlooks

Although ECM-based online SOP estimation methods have been rapidly developed
in the past decade, with great effort made by manufacturers and researchers in this field,
technical challenges are still faced in many aspects. Some recommendations and outlooks
of this research are presented in this section for future development.

5.1. Equivalent-Circuit Model

Despite the 1-RC model, with its variants, as a good choice for online SOP estimation,
the lack of model accuracy in a broad-frequency band leads to a compromised performance
in a lengthy prediction window. In recent years, fractional order models have gained
popularity in battery state estimation, owing to their better interpretation of battery electro-
chemical processes from fast dynamic on the solid electrolyte interface at high frequency
regions to charge transfer process and diffusion phenomenon at mid-low frequency re-
gions [76–78]. However, they have not been extensively employed in SOP estimation,
and the relevant research is still few. The reason can be ascribed to the highly nonlinear
current–voltage characteristics, governed by the short-memory principle that makes the
peak discharge and charge currents difficult to be extracted. Besides, fractional order
models generally possess more parameters than integral order models and require a large



Vehicles 2022, 4 23

computational effort to achieve online adaptability, which is another limitation in the
application of online SOP estimation. With in-depth research and technical innovation, it
can be expected that fractional order models will participate more in online SOP estimation,
with increasing computational power of microprocessors in EVs.

Additionally, model fusion methods, such as multi-structure [79] and multi-stage
model fusion [80], is another viable way to facilitate the model interpretation of battery
internal dynamics, while remaining an acceptable model complexity. It is believed that the
model fusion method is a promising alternative to achieve the improved performance in
SOP estimation.

5.2. Parameter Identification Techniques

Online and offline parameter identification techniques have their own advantages
and disadvantages for SOP estimation. On the one hand, online techniques achieve the
optimal parameters estimation at the present moment by minimizing the errors between
the estimated model outputs and measurements, which leads to preferable adaptability
and robustness over offline techniques under complex operating conditions over battery
lifetime [81,82]. On the other hand, online estimated model parameters attempt to track
battery current–voltage characteristics, under changeable operating conditions, resulting
in a small time constant of RC network. Nonetheless, a battery operating at the peak
discharge or charge currents in a prediction window ranging from 10 s up to 120 s requires
a relatively large time constant of RC networks to reflect its dynamics during this period.
Therefore, online estimated model parameters, under a dynamic load profile, may not
accurately capture the battery behaviour in SOP estimation. The longer the prediction
window, the worse the model accuracy. Moreover, online techniques treat battery dynamics
under excitation and during relaxation in a mutual time constant, while the research in [83]
discovered that a battery will show a noticeably distinction in time constants between these
two operations. The experimental results demonstrate a compromised performance in
battery voltage prediction, using a mutual time constant.

By contrast, offline techniques are free of the aforementioned limitations in online
techniques, which could separately capture model parameters, considering various factors,
such as current direction and load conditions. In addition, they are able to capture the
variation trend of model parameters over a battery operating range (e.g., SOC and temper-
ature) [84,85]. Hence, an approach with the combined strengths of both online and offline
parameter identification techniques is expected to be developed for SOP estimation in the
future. For instance, the model parameters of ECM in [86] are partially adapted online
through a data-driven method and partially extracted offline, which achieves the improved
robustness over battery service life.

5.3. Battery Multi-State Co-Estimation

Most of the relevant research in the literature focuses on two-state joint estimation of
lithium-ion batteries [87,88]. However, the multi-state estimation of at least three battery
states has not been sufficiently investigated. As pointed out in [8], different battery states
reflect a hierarchical correlation, where accurate SOP estimation relies on the basis of SOC,
SOH, and SOT, all of which can directly influence the model parameters of a battery sys-
tem from different spatial and temporal scales. Also, SOE is proved as a more effective
constraint over SOC for SOP estimation, from an energy management perspective [21,65].
Hence, joint estimation of two battery states or multi-state estimation in a parallel struc-
ture, while ignoring the multi-physics coupling effect in-between, which can only yield
relatively satisfactory results under limited operating conditions [89]. In light of this, it is
essential to advance the state-of-the-art joint estimation techniques one step forward and
comprehensively engage those battery states in a coupled multi-state estimation algorithm
to achieve a full-featured BMS.
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5.4. Machine Learning

ECM-based methods have become the mainstream technology for online SOP estima-
tion, due to their advantages of ease of implementation and computationally efficiency.
However, their performance in capturing battery nonlinearity is always limited by the
imperfect model structure and time-variant model parameters. On the other hand, machine
learning-based methods, such as support vector machine and artificial neural network,
have showed a prominent strength in mimicking battery nonlinearity and been widely
leveraged in SOC and SOH estimation [90–92]. Research in this area could be made by
directly collecting the testing data (e.g., voltage, current, SOC, and temperature) from
different user-designed charge/discharge profiles and then extracting the underlying fea-
tures [93]. Thus, designing an online SOP estimation method by fusing ECM-based method
and machine learning is a viable way to facilitate the estimation accuracy and achieve
preferable performance. Nevertheless, as introduced in the previous section, SOP reference
acquisition has been a very challenging task over a whole battery operating range in a
variable prediction window, when the effects of temperature and battery aging are taken
into account. As a result, it can be considerably time-consuming and laborious to collect
high-quality data to train machine learning-based methods. An effective way to overcome
the data scarcity of SOP references is data augmentation, where generative adversarial
networks [94] and variational autoencoders [95] are two useful tools that have been re-
cently employed in SOC estimation and the remaining useful life prediction for lithium-ion
batteries. With more applications of data augmentation techniques, it can be expected
that machine learning will have more applications in online SOP estimation and become a
future research direction.

5.5. Validation Approach

Until now, there is no a standard or uniform validation approach for SOP estima-
tion [74]. As a result, a question mark is hanging over the reliability of existing online SOP
estimation techniques. Besides, most of the existing SOP testing methods have not taken
dynamic driving conditions into account, and they only measure battery SOP from a fully
established state, while neglecting the initial battery polarisation voltage at the beginning
of a prediction window under dynamic load profiles. In this regard, a reliable and efficient
SOP calibration method is expected to be devised to allow for performance comparison
among different SOP estimation techniques.

6. Conclusions

In this paper, the improvements on ECM-based online SOP estimation methods in the
past decade are reviewed. Basic principles of online SOP estimation are firstly introduced
according to different operation modes. Afterwards, the research progress on ECM-based
online SOP estimation methods is systematically overviewed from three perspectives:
battery modelling, model parameters identification, and SOP estimation. Technical con-
tributions are highlighted, and critical analysis is provided. Additionally, SOP testing
methods are discussed for their accuracy and efficiency. Finally, challenges and outlooks of
online SOP estimation are summarized, with an intention to spur relevant researchers to
conceive of innovative ideas for further research developments.
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Nomenclature

AFFLS Adaptive forgetting factor least square
AFFRTLS Adaptive forgetting factor recursive total least square
ANFIS Adaptive neuro-fuzzy inference system
BMS Battery management system
BVE Butler–Volmer equation
CC Constant current
CCCV Constant current constant voltage
CM Characteristic mapping
CP Constant power
CV Constant voltage
CVCP Constant voltage constant power
DAEKF Dual adaptive extended Kalman filter
DEKF Dual extended Kalman filter
DMC Dynamic matrix control
DP Dual polarisation
ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
EKF Extended Kalman filter
ELM Extreme learning machine
EV Electrical vehicle
FFRLS Forgetting factor recursive least square
GA Genetic algorithm
HPPC Hybrid pulse power characterization
KF Kalman filter
MHE Moving horizon estimation
MMPI Multistep model predictive iterative
MPC Model predictive control
OCV Open-circuit voltage
OLPM Open-loop prediction method
PSO Particle swarm optimisation
RLS Recursive least square
SOC State of charge
SOE State of energy
SOH State of health
SOP State of power
SOT State of temperature
UKF Unscented Kalman filter
VLERO Voltage limited with extrapolation of resistances and open-circuit voltage
WRLS Weighted recursive least square
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