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Abstract: This article presents a novel methodology to predict the optimal adaptive cruise control set
speed profile (ACCSSP) by optimizing the engine operating conditions (EOC) considering vehicle
level vectors (VLV) (body parameter, environment, driver behaviour) as the affecting parameters.
This paper investigates engine operating conditions (EOC) criteria to develop a predictive model
of ACCSSP in real-time. We developed a deep learning (DL) model using the NARX method to
predict engine operating point (EOP) mapping the VLV. We used real-world field data obtained from
Cadillac test vehicles driven by activating the ACC feature for developing the DL model. We used a
realistic set of assumptions to estimate the VLV for the future time steps for the range of allowable
speed values and applied them at the input of the developed DL model to generate multiple sets
of EOP’s. We imposed the defined EOC criteria on these EOPs, and the top three modes of speeds
satisfying all the requirements are derived at each second. Thus, three eligible speed values are
estimated for each second, and an additional criterion is defined to generate a unique ACCSSP for
future time steps. A performance comparison between predicted and constant ACCSSP’s indicates
that the predictive model outperforms constant ACCSSP.
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1. Introduction

The introduction of automobiles into the world inculcated innovation in many aspects
of engineering, including design and manufacturing (Townsend and Calantone, 2014) [1].
Engineers worldwide continuously strive to develop cutting-edge technologies to augment
the riders’ comfort, traffic behaviour, enhance safety and fuel economy (Katzenbach,
2015) [2]. In the current scenario, advanced features which include forward collision,
traction control, and lane change, augment the safety, whereas the fuel economy drive
mode reduces the fuel consumption. Among the features integrated into the vehicle,
the ACC system developed by Labuhn and Chundrlik, 1995 played a vital dual role, in
affecting safety and EOC [3]. The intricate concept of the ACC system is to produce
controlled acceleration without disengaging the cruise in the user-defined proximity and
strictly follow the user command of set speed (Marsden et al., 2001) [4]. Additionally, we
could conclude from the existing literature (Mahdinia et al., 2020) that the activation of
ACC results in lower IFCR [5]. Therefore, activating the ACC feature for traversing long
trips would augment EOC.

However, identifying the optimal ACCSSP by considering the dynamic state of the
vehicle for a definite coordinate on the terrain is an unsolved, challenging task for engineers.
Researchers have performed the parametric optimisation of ACC output in the existing
literature by analysing the real-time data of behaviour, traffic congestion, terrain data, and
environmental factors. Stanton et al., 2005, Hoedemaeker et al., 1998, Kesting et al., 2007,
Rudin-Brown et al., 2004, Moon et al., 2008, and Rosenfeld et al., 2015 considered driver
behaviour as the key input to develop the control algorithm using analytical techniques and
to tune the outputs of the ACC system [6–11]. The enhancements of vehicle connectivity
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opened doors to obtain real-time traffic congestion information. Milanés et al., 2013:2014,
Kesting et al., 2008:2007, and Ploeg et al., 2011, adopted the DL models to estimate the
ACCSSP and desired acceleration based on the traffic congestion data retrieved in real-
time [12–15]. Li et al., 2017, Lu et al., 2019, Vedam, 2015, Kolmanovsky and Filev, 2010,
Gáspár and Németh, 2014:2011:2013, and Ma et al., 2019, adopted the terrain data to
estimate the ACC control parameters to reduce IFCR using the known mathematical
models [16–23].

Existing techniques rely on either one or two affecting factors as inputs to predict
ACCSSP considered, but none of the researchers included all the factors in conjunction
to the best of our knowledge. Recently, we developed a DL model mapping all the VLV
and EOP (Kolachalama et al., 2021) [24]. This DL model produced the best results for the
ACC activated test case and included all the factors mentioned above, excluding traffic
congestion information. This paper applied predefined EOC criteria to the predicted EOP,
and the optimal ACCSSP is estimated corresponding to augmented EOC. We validated the
proposed model using the real-time test vehicle data-driven road segments that included
arterial, state ways, and freeways. The below sections show the detailed procedure adopted.

The rest of the article is organised as follows: Sections 2 and 4 propose predicting
EOP and ACCSSP, whereas Section 3 defines the EOC criteria applied to the EOP to
estimate ACCSSP. In Section 5, the detailed results of the predictive model and experimental
techniques are presented.

2. Predictive Model for EOP

We adopted the commonly available DL methods, NARX and LSTM, to develop
predictive models involving time-sensitive data (Diaconescu, 2008) [25]. Kolachalama et al.,
2021, compared NARX and LSTM methods using the real-time test case (2019 Cadillac
XT6) and proved that the NARX method outperforms the LSTM model [24]. Hence, in this
research, a similar NARX DL model is used with default training options to predict EOP,
as shown in Table 1.

Table 1. Prediction of EOP—NARX DL model.

NARX—Deep Learning Model

Properties Dataset—Training and Testing

Property Value Vehicle Training Test Size ACCSSP (MPH)

Training function Levenberg–Marquardt
backpropagation 2020 Cadillac CT5 1–14,000 14,001–15,000 30

Input/Feedback delays 1:2 2020 Cadillac CT5 1–24,000 24,001–25,000 40
Training, Validation [30,70]% 2020 Cadillac CT5 1–34,000 34,001–35,000 50
Hidden layer size 10 2020 Cadillac CT5 1–44,000 44,001–45,000 60

Network Open 2019 Cadillac XT6 1–40,000 40,001–41,000 70
Performance MSE 2021 Cadillac CT4 1–25,000 25,001–26,000 80

As mentioned in the previous section, Figure 1 depicts the DL model to predict the EOP
mapping VLV. The outputs of the DL model consist of the elements IET, IES, and IFCR, and
the VLV, which embed with driver behaviour, body module parameters, environmental
factors, and terrain data. The DBV consists of three elements speeding (Speed, LOT),
steering (YAR, LAT) and CAT (Kolachalama et al., 2021) [24,26]. The parameters odometer,
tire pressure, curvature, and gradient affect the vehicle traction, whereas CAT and EAT
influence thermal stress on the engine (Kolachalama et al., 2008) [27]. Additionally, there
is no loss of generality in replacing the gradient with the vehicle posture’s Euler angles,
which affect the traction under no-slip (Eathakota et al., 2010) [28,29].
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Figure 1. Predictive model—inputs and outputs [5]. 
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tive OEM’s represents the engine’s performance. In general, the ideal EOP for any vehicle 
represents the coordinate (centroid) on the map with the lowest IFCR. An example of the 
engine map for the vehicle 2014 Chevrolet 4.3L EcoTec3 LV3 Engine is shown in Figure 
2A. The ideal EOP for this vehicle was estimated to be the coordinate [285 Nm, 2250 RPM, 
225 g/kwh]. Similarly, the ideal EOPs for the three test vehicles are empirically estimated, 
as shown in section A: Table 2. 

Table 2. EOC criteria—EOP. 

Section A Section B 

Ideal EOP Generic Engine Specific Smoothness Measure—
Spline Fit 

Vehicle IET 
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IES 
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Figure 1. Predictive model—inputs and outputs [5].

3. Metric for Optimal EOC

In this section, we defined the metrics for EOC criteria, which reflect optimal EOP.

3.1. Generic Criteria

The predicted EOP for the vehicles traversing the speeds ranging [25 45] MPH (arterial
roads) have a closer proximity to the ideal EOP. In this scenario, the IET has a higher
magnitude; on the contrary, for the speeds ranging [65 85], MPH (freeways) have higher
IES recorded.

Additionally, the allowable speeds for the state ways range between [45 65] MPH are
considered the green zone with maximum fuel economy (low IFCR). Hence, the generic
criteria for augmented EOC would include higher IET, higher IES, and lower IFCR, along
with the maximum distance traversed for the trip.

3.2. Euclidean Distance—Ideal EOP

An engine map calibrated at the manufacturing plant for every model by all automo-
tive OEM’s represents the engine’s performance. In general, the ideal EOP for any vehicle
represents the coordinate (centroid) on the map with the lowest IFCR. An example of the
engine map for the vehicle 2014 Chevrolet 4.3L EcoTec3 LV3 Engine is shown in Figure 2A.
The ideal EOP for this vehicle was estimated to be the coordinate [285 Nm, 2250 RPM,
225 g/kwh]. Similarly, the ideal EOPs for the three test vehicles are empirically estimated,
as shown in section A: Table 2.

Hence, we defined the line segment conjoining the predicted and ideal EOP as the
EOC vector, represented by the IEM shown in Figure 2B. The magnitude of the EOC vector
represents the EDi shown in Equation (1). In the 2D plane, there is no loss of generality in
ignoring the parameter IES, as it is proportional to the vehicle speed. Therefore, lower ED
represents increased EOC.

EDi =

√
(IETi − IETk)

2 + (IFCRi − IFCRk)
2 (1)
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Figure 2. (A) Engine map: 2014 Chevrolet 4.3L; (B) IEM—EOC vector. Environmental Protection Agency, National Vehicle 
and Fuel Emissions Laboratory, National Center for Advanced Technology, Ann Arbor, Michigan, USA. Version 2018-08. 

Hence, we defined the line segment conjoining the predicted and ideal EOP as the 
EOC vector, represented by the IEM shown in Figure 2B. The magnitude of the EOC vec-
tor represents the 𝐸𝐷  shown in Equation (1). In the 2D plane, there is no loss of generality 
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However, all the elements of EOP should have smooth behaviour (Tanaka et al., 1987, Li 
et al., 2017) [30,31]. Hence, as an additional optimal EOC metric, we defined the smooth-
ness measure for all the six parameters—IET, IES, IFCR, ED, ETC, ESC. We used the spline 
to fit the data points of EOC parameters by normalising the data. The optimal fit criteria 
were measured by traditional statistical techniques 𝑅 /Adjusted 𝑅 , RMSE, and SSE, us-
ing the built-in toolboxes of MATLAB as shown in section B: Table 2. 

  

Figure 2. (A) Engine map: 2014 Chevrolet 4.3L; (B) IEM—EOC vector. Environmental Protection Agency, National Vehicle
and Fuel Emissions Laboratory, National Center for Advanced Technology, Ann Arbor, Michigan, USA. Version 2018-08.

Table 2. EOC criteria—EOP.

Section A Section B

Ideal EOP Generic Engine Specific Smoothness
Measure—Spline Fit

Vehicle IET
(Nm)

IES
(rad/s)

IFCR(
1 × 10−8 m3s−1) Parameter Condition Parameter Condition Parameter Condition

Cadillac CT5 250 140 180 IET Higher ED Lower R2/Adj R2 Higher
Cadillac XT6 280 145 220 IES Higher ESC Higher RMSE Lower
Cadillac CT4 240 140 200 IFCR Lower ETC Higher SSE Lower

3.3. Engine Caliber—Speed and Torque

The engine’s capability is measured by two standard parameters [ESC, ETC]. These
parameters are the ratios that define the torque produced per unit of fuel consumption and
the speed produced per unit of torque. Higher ETC and ESC are the desired criteria for
every vehicle’s trip.

ETC =
IET

IFCR
(2)

ESC =
IES
IET

(3)

3.4. Smoothness Measure—EOC Parameters

The combustion of fuel in the engine produces torque with fluctuating magnitudes.
However, all the elements of EOP should have smooth behaviour (Tanaka et al., 1987,
Li et al., 2017) [30,31]. Hence, as an additional optimal EOC metric, we defined the smooth-
ness measure for all the six parameters—IET, IES, IFCR, ED, ETC, ESC. We used the spline
to fit the data points of EOC parameters by normalising the data. The optimal fit criteria
were measured by traditional statistical techniques R2/Adjusted R2, RMSE, and SSE, using
the built-in toolboxes of MATLAB as shown in section B: Table 2.

4. Prediction of ACCSSP

The prediction of ACCSSP was categorised into four steps, as described in the follow-
ing sections.
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4.1. Estimation of Future Input States—DL Model

Step 1: Relative to the current state of the vehicle (VLVk), the future input values
(VLVk+1) of the DL model (Figure 3) are estimated using the relations shown in Table 3.
The parameter odometer (Ok+1) was calculated using the speed (Sk) with the constant time
step by basic linear interpolation. The LOT (Lo(k+1)) is estimated based on the vehicle
resistance shown in the equation set in Table 3, and the parameters YAR (Ya(k+1)) and LAT
(La(k+1)) are calculated assuming ISB (Kolachalama et al., 2018) [25]. The environmental
parameters EATk+1, terrain data, [RRCk+1, θg(k)], are retrieved using the GPS location
and the infotainment maps. The magnitudes of the tire pressure (TPk+1) and CATk+1 are
assumed to be equal to the previous time step (Table 4).
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Table 3. Equation set—prediction of future input states.

RRCk+1, θg(k+1) 2RRCk+1 =
S2

k+1
La(k+1)

+ Sk+1
Ya(k+1)

, min
[

abs
(

Ya(k+1).Sk+1 − La(k+1)

)]
ρ = 1.225 kg·m−3

Tk+1 = Tk + dT Lo(k+1) =gµr+gsin(θg(k+1))+
ρCd .Ac

2.(Mc+ML)
.S2

k+1 Sk+1 = [SL − 10, SL]

Ok+1 = Ok + Sk.dT 2020 Cadillac CT5 : Mc= 1769.69 kg, ML= 76.8 kg, Cd= 0.31,
A = 1.71 m2 CATk+1 = CATk

EATk+1 = EATk
2019 Cadillac XT6 : Mc= 2050.278 kg, ML= 76.8 kg, Cd= 0.35,

A = 1.88 m2 g = 9.81 m·s−2

TPk+1 = TPk
2021 Cadillac CT4 : Mc= 1626.94 kg, ML= 76.8 kg,

Cd= 0.30, A = 1.70 m2 µr= 0.013

4.2. Prediction of Outputs—DL Model

Step 2: We estimated the input sets for future time steps (1 s—[T0 T1]) for the AVS
range (e.g., [SL-10, SL]). Thus, we generated eleven sets of inputs, and fed them into the
DL model, and predicted a corresponding eleven sets of outputs (EOP’s) (Table 5).
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Table 4. Predicted inputs—DL model, 2019 Cadillac XT6 (100 time steps = 1 s).

Time Step Odometer
(Miles)

Speed
(MPH)

RRC
(m)

YAR
(deg/s)

LAT
(m·s−2)

LOT
(m·s−2)

T0 15,000 70 8304.140 0.216 0.117 0.437
dT10 15,000.001 70 8304.140 0.216 0.117 0.375
dT20 15,000.003 70 8304.140 0.216 0.117 0.312
dT30 15,000.005 70 9342.157 0.192 0.104 −0.125
dT40 15,000.007 70 24,912.42 0.072 0.039 −0.187
dT50 15,000.009 70 74,737.261 0.024 0.013 −0.062
dT60 15,000.011 70 74,737.261 0.024 0.013 0.25
dT70 15,000.013 70 37,368.630 0.048 0.026 0.25
dT80 15,000.015 70 24,912.420 0.072 0.039 0.187
dT90 15,000.017 70 24,912.420 0.072 0.039 0.187
T1 15,000.019 70 9342.157 0.192 0.104 0.312

4.3. Estimation of ACC Speed Values—EOC Criteria

Step 3: We applied the EOC criteria defined in section III for the eleven predicted
EOP’s (Table 5). The top six performing speed values are selected for each EOC parameter,
and hence, the top three modes of speeds (EVS) are calculated for each time step (Table 6).
We incorporated a similar procedure for the next ten seconds, and the ACC Matrix (3X10)
was developed (Table 7).

4.4. Algorithm to Predict ACCSSP

Step 4: Every second has three EVS, resulting in a maximum of 310 possible ACCSSP’s
for 10 s. The following conditions are defined to identify a unique ACCSSP inspired by the
Dubin path traverse problem (La Valle, 2011) [32].

1. Assuming the ACCSSP at Tk is Sk, if the EVS is either Sk+1, Sk, or Sk−1, the highest
magnitude among the three is selected as Sk+1;

2. S1 is chosen closer to S0 (IAS). If this results in two values, then the higher value is
considered as S1;

3. If the eligible speeds at Tk+1 are neither Sk + 1, Sk, nor Sk − 1, then Sk+1 = Sk;
4. If Sk+1 = Sk for more than 10 s, Sk+1= Sk + 1 if Sk + 1 ≤ SL or Sk − 1 if Sk = SL.
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Table 5. EOC criteria—iteration of ACC Speeds (100 time steps).

EOP Speed 65 66 67 68 69 70 71 72 73 74 75

IET

Area 1.6 × 104 3.1 × 104 4.7 × 104 6.2 × 104 7.8 × 104 9.4 × 104 1.1 × 105 1.2 × 105 1.4 × 105 1.6 × 105 1.7 × 105

R2 0.76 0.83 0.77 0.74 0.77 0.77 0.75 0.77 0.75 0.78 0.76
Adj R2 0.4 0.57 0.43 0.36 0.44 0.43 0.39 0.44 0.37 0.44 0.4

SSE 6.26 4.47 5.94 6.69 5.82 5.94 6.34 5.76 6.49 5.72 6.16
RMS 0.4 0.33 0.39 0.41 0.38 0.38 0.4 0.38 0.4 0.38 0.39

IES

Area 1.8 × 104 3.5 × 104 5.3 × 104 7.1 × 104 8.9 × 104 1.1 × 105 1.2 × 105 1.4 × 105 1.6 × 105 1.8 × 105 2.0 × 105

R2 1 1 1 1 1 1 1 1 1 1 1
Adj R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 0.99 0.99

SSE 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.001 0.001
RMS 0.009 0.007 0.008 0.008 0.009 0.008 0.007 0.006 0.005 0.006 0.006

IFCR

Area 2.8 × 104 5.6 × 104 8.4 × 104 1.1 × 105 1.4 × 105 1.7 × 105 1.9 × 105 2.2 × 105 2.5 × 105 2.7 × 105 3.0 × 105

R2 0.78 0.78 0.72 0.74 0.8 0.75 0.81 0.74 0.76 0.68 0.67
Adj R2 0.46 0.45 0.31 0.35 0.5 0.37 0.53 0.36 0.4 0.22 0.17

SSE 4913.31 4737.99 5613.29 4967.08 3726.95 4633.05 3429.65 4679.59 4418.54 5766.31 6140.52
RMS 11.19 10.99 11.97 11.26 9.75 10.85 9.35 10.92 10.62 12.13 12.52

ETC

Area 5.4 × 101 1.1 × 102 1.6 × 102 2.2 × 102 2.8 × 102 3.3 × 102 3.9 × 102 4.5 × 102 5.0 × 102 5.6 × 102 6.2 × 102

R2 0.788 0.781 0.724 0.739 0.802 0.751 0.814 0.745 0.759 0.689 0.671
Adj R2 0.469 0.452 0.309 0.348 0.504 0.377 0.535 0.362 0.398 0.222 0.176

SSE 0.02 0.02 0.025 0.023 0.017 0.022 0.016 0.023 0.022 0.03 0.033
RMS 0.022 0.023 0.025 0.024 0.021 0.023 0.02 0.024 0.024 0.028 0.029

ESC

Area 1.1 × 102 2.2 × 102 3.3 × 102 4.5 × 102 5.6 × 102 6.7 × 102 7.8 × 102 9.0 × 102 1.0 × 103 1.1 × 103 1.2 × 103

R2 0.822 0.869 0.824 0.801 0.826 0.817 0.799 0.812 0.783 0.807 0.792
Adj R2 0.554 0.672 0.56 0.503 0.565 0.542 0.497 0.529 0.457 0.517 0.479

SSE 0 0 0 0 0 0 0 0 0 0 0
RMS 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

ED

Area 1.9 × 104 3.7 × 104 5.5 × 104 7.2 × 104 9.0 × 104 1.1 × 105 1.2 × 105 1.4 × 105 1.6 × 105 1.7 × 105 1.9 × 105

R2 0.787 0.783 0.725 0.743 0.802 0.751 0.815 0.747 0.761 0.689 0.671
Adj R2 0.467 0.457 0.311 0.358 0.504 0.378 0.538 0.368 0.402 0.222 0.176

SSE 4896.87 4721.42 5595.32 4950.75 3716.68 4620.39 3421.22 4665.06 4404.92 5749.95 6123.26
RMS 11.18 10.978 11.951 11.241 9.74 10.86 9.345 10.912 10.604 12.115 12.502
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Table 6. Eligible ACC speeds—EOC criteria (100 time steps = 1 s).

Area R2 Adj R2 SSE RMS Area R2 Adj R2 SSE RMS Area R2 Adj R2 SSE RMS

IE IES IFCR

75 69 69 70 70 75 68 68 75 75 65 66 66 75 75
74 70 70 69 69 74 71 71 71 71 66 69 69 66 66
73 65 65 71 71 73 70 70 68 68 67 75 75 69 69
72 68 68 72 72 72 69 69 70 70 68 65 65 65 65
71 71 71 68 68 71 67 67 72 72 69 70 70 70 70
70 73 73 73 73 70 72 72 74 74 70 67 67 72 72

ETC ESC ED

75 66 66 66 66 75 69 69 70 70 65 66 66 75 75
74 69 69 65 65 74 70 70 69 69 66 69 69 66 66
73 75 75 69 69 73 68 68 71 71 67 75 75 69 69
72 65 65 75 75 72 65 65 72 72 68 65 65 70 70
71 70 70 70 70 71 71 71 73 73 69 70 70 65 65
70 67 67 67 67 70 66 66 68 68 70 67 67 72 72

Table 7. ACC speeds—10 s, SL = 75 MPH.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

69 68 66 75 74 67 67 75 67 75
71 70 65 68 72 71 72 66 75 71
68 71 67 65 65 74 73 68 73 65

5. Experimental Results

A series of experiments are designed, analysed and evaluated on a real-time dataset
to evaluate the performance of the proposed framework.

5.1. Dataset Retrieval

We conducted this research using three test vehicles, a 2019 Cadillac XT6, a 2020
Cadillac CT5, and a 2021 Cadillac CT4, obtained from GMC. A two-step procedure was
employed to retrieve the data from the vehicle CAN bus (Li et al., 2008) [33]. We connected
the hardware neoVI to the vehicle and retrieved the data retrieval using the software
Vehicle Spy. This tool records data in real-time (Gallardo, 2018) and allows the user to
selectively retrieve the signal data required for analysis [34]. We performed the real-time
test procedure by activating the ACC feature, and time-step snippets of data were collected
for each vehicle at a frequency of 10 Hz, i.e., 100 data points are recorded for 1s assuming a
no-slip (Eathakota et al., 2008) [28,29].

The test cases are developed by driving the vehicles on selected road segments cover-
ing all the arterial, state ways, and freeways scenarios. Shown in Figure 4 are the paths
traversed by the Cadillac test vehicles. The properties of the six datasets used for this anal-
ysis, including the input and output parameters of the DL model, are shown in Tables 8–10.
Please find the details of the predictive model in the following sections.

5.2. Prediction of EOP

The properties of the NARX model and the test cases used for training are shown in
Table 1. We developed individual training networks with default properties using the DL
toolbox of MATLAB for the three vehicles’ test data and the predicted EOP’s, as shown
in the Supplementary Materials, Figures S1–S6. Each figure consists of three parts: IET
(left), IES (middle), and IFCR (right). Furthermore, each plot compares the measured data
(blue) with the predicted values (orange). We validated the performance of the NARX DL
model prediction using traditional statistical techniques (RMSE, FOD, SNR) to compare the
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actual and predicted values of EOP, as reported in Table 11. We conclude that IES follows a
smooth curve, whereas IFCR and IET oscillate.
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Table 8. Data Set 1: 2020 Cadillac CT5—arterial roads.

Parameters ACC Speed [25 35] MPH ACC Speed [35 45] MPH

Inputs Mean StdDev Variance Mean StdDev Variance

Absolute time (s) 2468.020 1655.047 0.671 4584.239 2453.828 0.535
Odometer (km) 11,721.440 41.765 0.004 11,596.730 56.886 0.005
Speed (MPH) 30.831 2.859 0.093 40.634 2.768 0.068

Acceleration (m·s−2) 1.090 0.652 0.598 0.808 0.449 0.556
LOT (m·s−2) 0.933 0.633 0.678 0.670 0.411 0.614
LAT (m·s−2) 0.318 0.637 2.002 0.362 0.335 0.924
YAR (deg/s) 0.098 2.633 26.944 0.179 1.056 5.914

EAT (◦F) 12.964 0.688 0.053 14.727 1.742 0.118
CAT (◦F) 66.141 0.348 0.005 68.895 1.069 0.016

TPFL (kPa) 225.908 2.915 0.013 226.990 3.243 0.014
TPRL (kPa) 235.773 4.640 0.020 239.900 4.259 0.018
TPFR (kPa) 235.115 4.834 0.021 235.575 3.706 0.016
TPRR (kPa) 234.132 5.742 0.025 237.544 4.270 0.018

Outputs Mean StdDev Variance Mean StdDev Variance
IET (Nm) 173.081 45.424 0.262 186.309 30.686 0.165

IES (rad/s) 219.483 82.421 0.376 222.809 73.464 0.330
IFCR (1 × 10−8 m3s−1) 380.687 204.214 0.536 378.523 139.192 0.368

5.3. Estimation of Optimal ACCSSP

The developed DL model and the steps defined in Section 4 are used to estimate
the optimal ACCSSP for each test case. An example, for the test case of the vehicle 2019
Cadillac XT6, is selected with the AVS = [65 75] MPH, and the corresponding results are
shown in Tables 4–6. The IAS (S0) is varied in the range [65 75] MPH for the ACC Ma-
trix (Table 7), and Step 4 is applied to the EVS, which results in eight ACCSSP’s shown
in Figure 5. Thus for S0 = 70 MPH, the predicted ACCSSP is the row vector ((71, 71,
71, 71, 72, 72, 73, 73, 74, 74) MPH) as shown in Figure S8. We adopted a similar pro-
cedure for multiple data sets and plotted the predicted ACCSSP’s are presented in the
Supplementary Materials, Figures S7–S12. Please find the performance of EOC parameters
for the predicted ACCSSP’s in Section B: Table 12.
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Table 9. Data Set 2: 2020 Cadillac CT5—state ways roads.

Parameters ACC Speed [45 55] MPH ACC Speed [55 65] MPH

Inputs Mean StdDev Variance Mean StdDev Variance

Absolute time (s) 3701.490 1808.730 0.489 2933.845 1442.236 0.492
Odometer (km) 11,410.820 42.130 0.004 11,894.840 36.372 0.003
Speed (MPH) 51.354 2.605 0.051 60.707 2.821 0.046

Acceleration (m·s−2) 0.500 0.210 0.420 0.415 0.208 0.501
LOT (m·s−2) 0.336 0.208 0.619 0.257 0.214 0.835
LAT (m·s−2) 0.256 0.193 0.751 0.305 0.180 0.590
YAR (deg/s) −0.190 0.534 −2.805 −0.030 0.473 −15.914

EAT (◦F) 12.889 0.556 0.043 15.083 0.670 0.044
CAT (◦F) 69.726 0.688 0.010 66.000 0.000 0.000

TPFL (kPa) 235.424 3.508 0.015 239.108 2.371 0.010
TPRL (kPa) 233.685 3.947 0.017 237.436 2.193 0.009
TPFR (kPa) 226.567 3.062 0.014 228.252 0.972 0.004
TPRR (kPa) 233.767 3.764 0.016 238.294 2.279 0.010

Outputs Mean StdDev Variance Mean StdDev Variance
IET (Nm) 234.943 25.244 0.107 254.370 27.752 0.109

IES (rad/s) 167.982 28.195 0.168 180.272 36.291 0.201
IFCR (1 × 10−8 m3s−1) 374.715 82.660 0.221 441.351 109.691 0.249

Table 10. Data Set 3: 2019 Cadillac XT6, 2021 Cadillac CT4—freeways roads.

Parameters Cadillac XT6, ACC Speed [65 75] MPH Cadillac CT4, ACC Speed [75 85] MPH

Inputs Mean StdDev Variance Mean StdDev Variance

Absolute time (s) 387.430 223.687 0.577 31.709 12.962 0.409
Odometer (km) 12,723.040 7.015 0.001 30,298.330 17.042 0.001
Speed (MPH) 70.121 1.149 0.016 77.905 1.501 0.019

Acceleration (m·s−2) 0.004 0.242 67.073 0.081 0.177 2.175
LOT (m·s−2) −0.091 0.188 −2.079 0.108 0.189 1.748
LAT (m·s−2) 0.132 0.339 2.572 −0.149 0.307 −2.057
YAR (deg/s) 0.230 0.851 3.698 −0.256 0.694 −2.710

EAT (◦F) 39.225 0.296 0.008 85.039 0.998 0.012
CAT (◦F) 68.785 0.301 0.004 66.502 0.862 0.013

Pitch angle (deg) −0.262 0.742 −2.836 −0.003 0.002 −0.771
TPFL (kPa) 241.238 2.428 0.010 227.807 0.289 0.001
TPRL (kPa) 235.890 0.655 0.003 249.502 0.290 0.001
TPFR (kPa) 243.691 1.069 0.004 228.316 0.409 0.002
TPRR (kPa) 235.224 1.582 0.007 249.503 0.287 0.001

Outputs Mean StdDev Variation Mean StdDev Variance
IET (Nm) 146.803 63.428 0.432 142.117 33.698 0.237

IES (rad/s) 183.081 7.105 0.039 205.343 17.341 0.084
IFCR (1 × 10−8 m3s−1) 387.430 223.687 0.577 31.709 12.962 0.409

Table 11. NARX DL model performance—ACCSSP [30 80] MPH.

EOP IET IES IFCR

Metric RMSE FOD SNR RMSE FOD SNR RMSE FOD SNR
30 MPH 2.761 1.911 35.003 2.367 1.541 35.417 12.911 8.717 25.499
40 MPH 0.750 0.418 45.362 0.845 0.484 37.442 14.122 9.477 24.418
50 MPH 1.263 0.811 45.566 1.400 0.932 43.413 18.966 13.289 25.495
60 MPH 0.590 0.417 51.103 0.521 0.348 51.414 21.740 15.241 25.582
70 MPH 0.322 0.186 53.762 0.228 0.169 58.007 8.335 5.877 30.369
80 MPH 0.576 0.618 46.651 0.064 0.027 70.160 9.917 6.879 27.586
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Table 12. EOC criteria: engine parameters (predicted–constant) ACCSSP.

Section: A Section: B

Data IAS = 70 MPH, SL = 75 MPH Speed (MPH) Test Cases

Metric
ACCSSP
(70 MPH)

ACCSSP
(Predicted) Conformance

SL IAS Distance ED IFCR ETC ESC

35 30 0.22 −17.33 −21.19 0.25 −0.26

Distance 69,930.00 72,028.00 934.77 45 40 133.44 −64.11 −52.113 −0.27 0.50

ED 17,4570.83 17,4196.86 −373.96 55 50 712.22 −366.13 −323.27 0.51 1.20

ETC 572.12 573.34 1.22 65 60 −312.11 −510.75 −540.58 0.87 0.22

ESC 1154.63 1164.83 10.20 75 70 934.77 −373.96 −379.09 1.22 10.20

IFCR 27,4182.80 27,3803.70 −379.09 85 80 801.108 −1035.28 −1029.6 2.813 −2.022

6. Discussion

The plots of predicted EOP’s for the three test vehicles Cadillac CT5, XT6, and CT4, are
depicted in Figures S1–S6 The predictive model is validated by estimating the conformance
between actual and predicted data’s RMSE, FOD, and SNR (Table 11). The IET RMSE
values were <2.76, whereas IES FOD was <1.54 for all the datasets. We recorded the IFCR
on a scale of 1 × 10−8 m3s−1, and the IFCR SNR has an acceptable range of [24.41–30.36].
Additionally, we can visualise that the predicted curves have a smoother fit to the actual
data, and thus efficacy of the DL model to predict EOP is validated.

In this work, we proposed the criteria for augmented EOC and an iterative methodol-
ogy to predict ACCSSP’s, resulting in optimal EOP. Hence, for each future second, the AVS
is varied in a definite range [65 75] MPH for the 2019 Cadillac XT6, and the corresponding
inputs for the future states are fed into the DL model to generate multiple EOPs. We
applied EOC criteria to the EOPs, and the top three EVS are estimated as [69,71,68] MPH.

We adopted a similar procedure for ten seconds and predicted ACCSSP for IAS = 70 MPH,
SL = 75 MPH, with a minimum of 71 MPH and a maximum of 73 MPH (Figure S8). The
predicted and constant ACCSSP profile (70 MPH) with corresponding inputs (Section 4.1)
were fed into the DL model to obtain two different EOP’s vectors (Section 4.2) for future
time steps (10 s). We applied the EOC criteria for the two EOPs whose values are in Section
A: Table 12 and thus predicted ACCSSP resulted in 934.77 m of the additional distance
traversed and a reduced ED of 373.968. Additionally, the constant ACCSSP = 70 MPH
consumed 379.095 1 × 10−8 m3 more fuel in 10 s compared with the predicted ACCSSP.

The plots of engine performance parameters are shown in Figure 6, and the area under
the curve has higher magnitudes by 1.2 (ETC) and 10.2 (ESC) for the predicted ACCSSP.
Please find the smoothness measure for the conformance of the two EOP’s in Table 13, and
R2/Adjusted R2 have similar values (conformance~ 0), whereas RMSE/SSE have lower
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values for predicted ACCSSP for most cases. Section B: Table 12 depicts the performance of
EOC parameters for all the test cases, and it is easy to see that in most cases, the predicted
ACCSSP has reduced ED and IFCR. Hence the proposed approach in this article is novel
and better suits enhancing EOC and lowering the trip time.
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Table 13. EOC criteria: smoothness performance—(predicted–constant) ACCSSP.

EOP IET IES IFCR

SL IAS R2 Adj R2 SSE RMS R2 Adj R2 SSE RMS R2 Adj
R2 SSE RMS

35 30 0.0 0.0 −9.415 −0.007 0.0 0.000 0.564 0.000 0.000 0.0 −103.786 −0.023
45 40 0.0 0.0 0.326 0.001 0.0 0.000 2.582 0.013 0.000 0.0 −23.251 −0.005
55 50 0.0 0.0 3.069 0.007 0.0 0.001 −38.090 −0.033 0.000 0.0 −570.595 −0.083
65 60 0.0 0.0 1.307 0.005 0.0 0.000 0.431 0.002 0.000 0.0 33.212 0.004
75 70 0.0 0.0 0.368 0.004 0.064 0.160 −2.607 −0.024 0.000 0.0 136.612 0.044
85 80 0.0 0.0 −0.312 −0.001 −0.002 −0.005 0.142 0.007 0.001 0.002 −243.889 −0.068

7. Conclusions and Future Work

In this manuscript, we developed a novel method to predict the ACCSSP, which opti-
mises engine performance. We considered the vector EOP and used NARX DL modelling
techniques to predict the EOP by mapping the VLV. We defined EOC criteria using the
elements of EOP, which reflect enhanced engine operating conditions. In this methodology,
a new approach of inputting the range of allowable ACC speeds is proposed and, therefore,
a unique ACCSSP for the future time-steps was generated in the defined range by utilising
iterative methods and satisfying the EOC criteria. The predicted and constant ACCSSP are
fed into the DL model, and the engine performance parameters are estimated based on the
predicted EOP. The results depict that for predicted ACCSSP, the parameters (ETC, ESC, IET,
IES), and (IFCR, ED) have higher and lower values. Additionally, the predicted ACCSSP
generated smoother profiles for the engine parameters when plotted in the time domain.

The researchers have not investigated the proposed technique of predicting ACCSSP,
and this new approach could also trigger a new capability in ACC controllers to deviate
from the user command of unique set speed and produce enhanced vehicle performance.
The computational results obtained were satisfactory, and thus, we observed augmented
EOC for the predicted ACCSSP.

We did not include many critical points, including traffic congestion, in the model.
Future work would involve developing the model by including all the affecting parameters
and performing extensive validation using multiple vehicle lines at various locations and
periods. Additionally, this research could be extended to electric vehicles by defining new
criteria of battery and motor operating conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vehicles3040044/s1, Figure S1: Prediction of EOP-ACCSSP = 30 MPH, 2020 Cadillac CT5;
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https://www.mdpi.com/article/10.3390/vehicles3040044/s1
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Figure S2: Prediction of EOP-ACCSSP = 40 MPH, 2020 Cadillac CT5; Figure S3: Prediction of EOP-
ACCSSP = 50 MPH, 2020 Cadillac CT5; Figure S4: Prediction of EOP-ACCSSP = 60 MPH, 2020
Cadillac CT5; Figure S5: Prediction of EOP-ACCSSP = 70 MPH, 2019 Cadillac XT6; Figure S6: Predic-
tion of EOP-ACCSSP = 80 MPH, 2021 Cadillac CT4; Figure S7: Prediction of ACCSSP-IAS = 80 MPH,
SL = 85 MPH; Figure S8: Prediction of ACCSSP-IAS = 70 MPH, SL = 75 MPH; Figure S9: Predic-
tion of ACCSSP-IAS = 60 MPH, SL = 65 MPH; Figure S10: Prediction of ACCSSP-IAS = 50 MPH,
SL = 55 MPH; Figure S11: Prediction of ACCSSP-IAS = 40 MPH, SL = 45 MPH; Figure S12: Prediction
of ACCSSP-IAS = 30 MPH, SL = 35 MPH.
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Abbreviations

ACC Adaptive cruise control
ACCSSP Adaptive cruise control set speed profile (MPH)
Area Area under the curve
AVS Allowable vehicle speeds
CAN Controller area network
CAT Cabin air temperature (◦F)
DL Deep Learning
DBV Driver behaviour vector
EAT External air temperature (◦F)
ED Euclidean distance—Ideal EOP and Predicted EOP
EOC Engine operating conditions
EOP Engine operating point
ESC Engine speed caliber
EVS Eligible vehicle speeds
ETC Engine torque caliber
FOD First order derivative
IAS Initial ACC speed (MPH)
IEM Instantaneous engine map
IES Instantaneous engine speed (rad/s)
IET Instantaneous engine torque (Nm)
IFCR Instantaneous fuel consumption rate (1 × 10−8 m3s−2)
ISB Ideal steering behaviour
LAT Lateral acceleration (m· s−2)
LOT Longitudinal acceleration (m·s−2)
LSTM Long short-term memory
GMC General motors corporation
MPH Miles per hour
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MY Model year
NARX Autoregressive network with exogenous inputs
OEM Original equipment manufacturer
RMSE Root mean square error
RRC Radius of road curvature (m)
SL Speed limit (MPH)
SNR Signal to noise ratio
SSEStdDev Sum of squared errorsStandard deviation
TP Tire pressure (kPa)
TPFL Tire pressure front left (kPa)
TPFR Tire pressure front right (kPa)
TPRL Tire pressure rear left (kPa)
TPRR Tire pressure rear right (kPa)
VLV Vehicle level vectors
YAR Yaw rate (rad/s)

Nomenclature

Ac Area of vehicle cross-section (m2)
Cd Aerodynamic drag coefficient
◦F Fahrenheit
g Gravity
Hz Hertz
kPa Kilopascals
Kg Kilogram
Km Kilometres
kWh Kilowatt-hour
La(k) Lateral acceleration at time step k (m·s−2)
Lo(k) Longitudinal acceleration at time step k (m·s−2)
Mc Mass of the vehicle. (Kg)
ML Mass of the additional load (Kg)
MPH Miles per hour
m Meters
m2 Meter square (measure of area)
m3s−1 Meter cube per second (volume rate flow)
m.s−2 Meters per second square
ms Milli seconds
Nm Newton meter
µr Rolling coefficient
rad Radians
rad/s Radians per second
RRCk Radius of road curvature at time step k (m)
RPM Rotations per minute
ρ Density of air (kg.m−3)
s Seconds
Tk Timestep
dT Incremental time step (~10 ms)
θg(k) Gradient of the terrain at time step k (rad)
Ya(k) Yaw rate at time step k (rad/s)
m3s−1 Meter cube per second (Volume rate flow)
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