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Abstract: Road markings are beneficial to human drivers, advanced driver assistance systems
(ADAS), and automated driving systems (ADS); on the contrary, snow coverage on roads poses a
challenge to all three of these groups with respect to lane detection, as white road markings are
difficult to distinguish from snow. Indeed, yellow road markings provide a visual contrast to snow
that can increase a human drivers’ visibility. Yet, in spite of this fact, yellow road markings are
becoming increasingly rare in Europe due to the high costs of painting and maintaining two road
marking colors. More importantly, in conjunction with our increased reliance on automated driving,
the question of whether yellow road markings are of value to automatic lane detection functions
arises. To answer this question, images from snowy conditions are assessed to see how different
representations of colors in images (color spaces) affect the visibility levels of white and yellow road
markings. The results presented in this paper suggest that yellow markings provide a certain number
of benefits for automated driving, offering recommendations as to what the most appropriate color
spaces are for detecting lanes in snowy conditions. To obtain the safest and most cost-efficient roads
in the future, both human and automated drivers’ actions must be considered. Road authorities
and car manufacturers also have a shared interest in discovering how road infrastructure design,
including road marking, can be adapted to support automated driving.
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1. Introduction

Driving is becoming increasingly automated; in fact, advanced driver assistance
systems (ADAS) have become ubiquitous in new motor vehicles, providing driver support,
such as (1) lane departure warning (LDW) for lateral control and (2) adaptive cruise control
(ACC) for longitudinal control. These ADAS functions are evolving into automated driving
systems (ADSs) that perform increasingly advanced driving tasks. ADSs represent a
new type of road user [1], and, similar to ADAS systems, rely on sensors to sense their
surroundings, as well as software to interpret the data these create. The sensory system of
an automated driver is different than that of a human one; thus, it is essential that roads are
designed and maintained to facilitate the sensory apparatus of both human and automated
road users during the transition to higher levels of driving automation.

To investigate the requirements of road infrastructures for highly automated driving,
ref. [2] used a literature review and web questionnaire with participants from the following
groups: research and development, academia, the automotive industry and its industrial
suppliers, and public authorities. They conclude that the visibility and quality of lane
markings are of particular importance, especially in adverse weather conditions. In [3], it
is further suggested that road authorities need guidance if making necessary modifications
to road markings in response to automated drivers. Lane detection, i.e., identifying road
markings, is considered to be important for any autonomous driving system [4–6], and
ADAS functionality (such as LDW) has been found to increase traffic safety [7,8]. Although
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lane detection can be accomplished by using different sensors, e.g., cameras, lidar, or radar,
the most widely used method for this purpose is camera-based [9–12]. Adverse weather,
e.g., rain, fog, and snow, can be challenging for vision-based lane detection [9,13–17].
Ref. [11] has established that fog and snow are particularly problematic for camera-based
driving features.

Several studies consider how road marking design and quality influence the detec-
tion rates of camera-based LDW systems [18,19], which shed light on how road design
and maintenance can support automated driving. Several problematic issues have been
identified for camera-based lane detection, e.g., insufficiently removed markings, varying
road surfaces, cracking, rutting, heavy shadows, road mark degradation, and vehicle
occlusion [5,19–21]. It has also been shown that these issues can be mitigated by analyzing
consecutive frames of video capture to conduct robust lane tracking [20,21]. However,
snow may pose a unique set of problems. This is because, where a time series of frames
from a video capture can solve local issues, such as shadows or wear and tear, snowfall can
be a continuous feature where even a large number of cameras or frames cannot provide
the information needed for tracking lanes.

There is a lack of research on how the design and maintenance of road markings can
increase lane detection in snowy conditions. Yet, facilitating automated recognition of
road infrastructure elements can benefit traffic safety by both increasing the probability
of correctly identifying road features and helping attain low reaction times for automated
driving features. Algorithms for lane detection are constantly improving and, consequently,
adverse weather issues are being more frequently addressed. For instance, algorithms
that can detect lane markings in rain and snow have been developed [16,22]. Although
these make useful contributions to lane detection software development, they do not
provide the information needed for road authorities to know whether road markings
should be modified, or snow removal procedures changed. Furthermore, the amount of
snow considered in the aforementioned research is limited, suggesting further research is
needed on lane detection in situations with deeper snow levels. In order to guide future-
proofing road marking design and snow removal procedures, there is a need to know when
the LDW systems work or not, as well as why.

Although not involving snow, ref. [23] has conducted experiments to see how volcanic
ash covering reduced the visibility of white road markings. The results have shown that
“very small accumulations of ash are responsible for road marking coverage and suggest
that around 8% visible white paint or less would result in the road markings being hidden”.
Furthermore, they report that road markings are more easily covered by fine-grained ash,
and that the color of this ash influences detection. The study used image processing, as well
as visual inspection in their research, both concluding that white road markings covered
by light-colored deposits were especially detrimental to lane detection. White ash on
white markings can be compared to snow on white markings with regard to camera-based
lane detection. The fundamental task, finding lane markings on the road, is, therefore, a
question of contrast. Although white generally produces the greatest contrast to a road’s
surface, it is also similar in color to naturally occurring elements in nature that can hinder
detection, including ash and snow. Vehicles typically have a high number of sensors and
so do not rely on cameras alone. However, in the case of sensors that actively send out
light and read their reflection (e.g., lidar), snow coverage may make lane detection even
more challenging [24,25].

In the interest of creating the safest and most cost-efficient road infrastructure for
the future, the issue of lane detection in snowy conditions also intersects with another
road- marking design choice involving whether or not to use yellow road markings. Road
markings are a major expense for road agencies [26]. In Norway alone, applying road
markings costs approximately USD 1.35–2.7 per meter depending on the type of marking
used [27]. Norway has approximately 94,500 km of public roads [28], making the cost
of changing colors for the center line alone on all public roads between USD 100 and
200 million.
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Although still in use in the U.S., yellow road markings are disappearing in Europe; for
example, the European Union does not require their usage [29], and there are significant
cost savings to be had by using solely white road markings. In the Nordic countries,
Finland is in the process of phasing out yellow markings, leaving Norway as the only
country using yellow center road markings [30,31]. In Iceland, yellow road markings are
still in use, though not as center line markings but rather to inform drivers that parking or
stopping is illegal.

In both the U.S. and Norway, yellow longitudinal markings separate traffic traveling
in opposite directions and are used on the left-hand edge of the roadways in divided
highways and one-way streets or ramps [32,33]. Yellow markings in this way give drivers
additional information about the characteristics of adjacent lanes, which is thought to be
beneficial for humans’ ability to drive safely [34].

In addition to white and yellow road markings, blue, red, and purple markings are
also used internationally for different purposes. For instance, in the U.S., (1) blue lines
indicate parking spaces for persons with disabilities, (2) red lines indicate raised pavement
markers or delineators that identify truck escape ramps or one-way roadways, ramps, or
travel lanes, and (3) purple lanes are used for toll plaza approach lanes that are restricted
for use to vehicles with registered electronic toll collection accounts [33]. On the other hand,
in Korea, blue and red lines are used to indicate different uses for bus lanes [35]. There is
limited available research on the visibility of red, blue, and purple markings for machines’
vision-based functionality. It has been shown that blue markings provide little contrast to
the road surface and, thus, are suboptimal for automated camera-based lane detection [20].
This research focuses on white and yellow road markings due to their wide use as center
lines, which are crucial for both human and automated driving. Furthermore, the use of
white versus yellow center lines is of special interest to parts of the world that are prone to
snowfalls, including the U.S. and Nordic countries, as LDW functionality has been shown
to increase traffic safety.

In order for both road authorities and vehicle manufacturers to be able to make
informed decisions, there is a need to know whether yellow road markings can be beneficial
for camera-based lane detection in snowy conditions. It has been shown that yellow
markings are less visible in grayscale images than white markings [22,36]. However, in
challenging conditions, such as snowfall, yellow road marking may offer higher visibility
in color images. The purpose of this paper is to compare the levels of visibility and contrast
of white and yellow road markings compared to adjacent surfaces in snowy conditions.
Color images can be represented by several different mathematical representations known
as color spaces. To compare white and yellow road markings, images of lane marking in a
set of snowy conditions are converted to different color spaces, and the levels of visibility
and contrast of the lane markings are assessed by visual assessment and histogram plots
of the pixel intensities. Furthermore, the snow depth at which automated lane detection
becomes unfeasible is discussed.

2. Background
2.1. Image-Based Lane Detectionl

The process of lane detection in images typically includes camera calibration, correc-
tion of image distortions, conversions of color space (if needed), application of a mask
to set the region of interest, noise-filtering, and edge detection. In this research, camera
calibration and correction of distortions will not be applied as the focus is on how color
space representations affect markings’ visibility.

Detecting lanes in images is mainly based on how colors and patterns change between
road surfaces and road markings [37]. The representation of a road marking that is adjacent
to the road surface in images (under most conditions) provides a significant change in
pixels’ intensity and contrast, i.e., an edge. Edge detection is thus based on identifying the
greatest changes in image intensity and contrast in an image [38,39].
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The simplest form of edge detection is completed by simply using thresholds. In many
cases, a threshold at a certain pixel intensity can be enough to separate an object from its
background [40]. However, a more robust approach is found in traditional edge detector
algorithms, e.g., Sobel, Prewitt, Laplacian of Gaussian (LoG), and Roberts, all of which use
kernels, i.e., small matrices, to calculate gradients of the pixel intensities along rows and
columns of images.

The difference in the way humans see and extract information from images and how an
automated driver (a machine) does it, is shown in Figure 1. For example, humans directly
view an image and identify the lane markings, but a machine does not interpret this image
in the same way. An automated driving system looks at the information contained in the
pixels that make up an image. In a black and white image, the intensity value of the pixels
typically varies from black (0) to white (255). To identify features, the automated system
scans the pixels’ rows and columns to look for trends that can help it pick out features.
In Figure 1, the left-hand side shows the lane markings as humans see them, while the
right-hand side shows one way for an automated system to see the road markings. The
histogram is plotted by adding the pixel values for each column, then plotting the result
using the sum of the pixel intensities on the y-axis and the column number on the x-axis.
The histogram plot shows very distinct peaks with high gradients that identify and position
the lane marking shown in the image. The dashed lane marking produces a lower sum of
pixel values than the continuous line, resulting in a slightly lower peak height.

Vehicles 2021, 3, FOR PEER REVIEW 4 
 

 

The simplest form of edge detection is completed by simply using thresholds. In 
many cases, a threshold at a certain pixel intensity can be enough to separate an object 
from its background [40]. However, a more robust approach is found in traditional edge 
detector algorithms, e.g., Sobel, Prewitt, Laplacian of Gaussian (LoG), and Roberts, all of 
which use kernels, i.e., small matrices, to calculate gradients of the pixel intensities along 
rows and columns of images. 

The difference in the way humans see and extract information from images and how 
an automated driver (a machine) does it, is shown in Figure 1. For example, humans di-
rectly view an image and identify the lane markings, but a machine does not interpret this 
image in the same way. An automated driving system looks at the information contained 
in the pixels that make up an image. In a black and white image, the intensity value of the 
pixels typically varies from black (0) to white (255). To identify features, the automated 
system scans the pixels’ rows and columns to look for trends that can help it pick out 
features. In Figure 1, the left-hand side shows the lane markings as humans see them, 
while the right-hand side shows one way for an automated system to see the road mark-
ings. The histogram is plotted by adding the pixel values for each column, then plotting 
the result using the sum of the pixel intensities on the y-axis and the column number on 
the x-axis. The histogram plot shows very distinct peaks with high gradients that identify 
and position the lane marking shown in the image. The dashed lane marking produces a 
lower sum of pixel values than the continuous line, resulting in a slightly lower peak 
height. 

 
Figure 1. Representation of lane marking for human drivers and automated drivers. 

2.2. Color Spaces 
Different color spaces represent ways of mathematically expressing color whose ad-

vantages and limitations depend on their application. Grayscale images consist of a single 
channel indicating brightness (compared to three channels for color images) and are the 
most commonly used image representations in lane detection [4,13,15,41,42]. Grayscale 
images provide an effective approach as some cameras used in automotive applications 
are grayscale cameras; in addition, lane detection algorithms typically use a single channel 
as input. How colors appear in an image depends on the ambient light, i.e., the same color 
produces different pixel values in different lighting conditions. This makes grayscale im-
ages attractive to use as white road markings appear as some of the brightest pixels in 
grayscale images in a variety of conditions. The software that performs lane detection 
searches for contrast, i.e., bright pixels identifying lane lines that are adjacent to darker 
pavement pixels. This also implies that the road surface’s color and texture affects 

Figure 1. Representation of lane marking for human drivers and automated drivers.

2.2. Color Spaces

Different color spaces represent ways of mathematically expressing color whose
advantages and limitations depend on their application. Grayscale images consist of a
single channel indicating brightness (compared to three channels for color images) and are
the most commonly used image representations in lane detection [4,13,15,41,42]. Grayscale
images provide an effective approach as some cameras used in automotive applications
are grayscale cameras; in addition, lane detection algorithms typically use a single channel
as input. How colors appear in an image depends on the ambient light, i.e., the same
color produces different pixel values in different lighting conditions. This makes grayscale
images attractive to use as white road markings appear as some of the brightest pixels
in grayscale images in a variety of conditions. The software that performs lane detection
searches for contrast, i.e., bright pixels identifying lane lines that are adjacent to darker
pavement pixels. This also implies that the road surface’s color and texture affects cameras’
lane detection, where a darker road surface creates a greater contrast to lane markings.
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The most common way of depicting color images is by using red (R), green (G), and
blue (B) chromaticities, known as the RGB color space [43]. In RGB, a color is represented
as the additive combination of the three separate color channels; for instance, white is given
as R = 255, G = 255 and B = 255, i.e., the maximum value for the red, green, and blue color
channels, respectively.

Colors are a vital part of image and video processing. They are, for instance, used
to identify objects, and from these, segment an image into meaningful elements, such as
roadways, vehicles, and signs. Depending on the goal of the image processing, different
approaches are used; clusters of similar pixels can represent an object, while at other times
edge detection can be more relevant, for instance when it is used for lane detection.

Given the application of lane marking detection, yellow markings are less visible in
grayscale images than white markings, prompting some researchers to use color images
to achieve better lane detection rates (for roads with both white and yellow markings) in
challenging weather and light conditions [22,36]. This usage is also seen in research by
Yinka et al. (2014) who have suggested an approach for finding the drivable path for a
vehicle in snow and rain using computer vision. They introduced a filter to remove the
snow or rain in the imagery based on the different intensity of pixels representing snow or
rain particles with respect to the background. This approach supports the use of colored
road markings, as yellow road markings would have a color and intensity profile that
would be different to rain and snow particles.

There are many ways to depict color in images. The RGB color space uses three
channels (red, green, and blue) to make color images and was used by [16] in their work
when filtering out rain and snow. However, research suggests that the color space YUV is
better suited for both computer and human vision [22,44]. To explain, in the YUV color
space, the first channel, Y, refers to luminance independent of color. The next two channels
are color channels that can be defined in various ways; however, “U” is often the blue-
luminance and “V” the red-luminance (this combination of YUV is referred to as YCbCr).
This separation of black and white information, or luminance, from color is thought to
be similar to how the human eye works, as humans are unable to differentiate colors in
low lighting settings [44]. YUV color space was selected by [22,36] in their respective
works. Another color space, hue, saturation, and lightness (HSL), has also been shown to
be well-suited for lane detection, particularly in images with lighter road surface colors [45].
Hue is a representation of color described in a 360◦ spectrum as shown in Figure 2.
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The point where the radial value indicates Saturation, i.e., the difference between
the color and a grayscale value of equal intensity of the color in question [43], may be
considered a disk. Finally, Lightness forms the height of the column, indicating how white
a color is. Another color space similar to HSL is the hue, saturation, and value (HSV) color
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space. Although it consists of the same first two channels, the third, Value, indicates a
color’s brightness. An illustration of the HSL and HSV color spaces is shown in Figure 2.

3. Materials and Methods

To investigate if using color images will enhance the visibility of yellow and white
markings in snowy conditions, a range of images from three scenarios: a laboratory, a test
track, and public roads, were collected. Next, these images were analyzed in grayscale,
RGB, HSL, HSV, and YUV color spaces. The images of white and yellow road markings
from seven different cases are shown in Figure 3 and described in Table 1. The materials
and methods used in the different cases will first be presented, followed by a description
of the lane detection procedure.
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3.1. Image Capture Procedure

In each case, video was captured using a GoPro Hero 7 camera. In addition, a Canon
EOS 5D camera was used for taking bird’s-eye view images for case c laboratory road
with 0.5 cm snow (bird’s-eye view). The GoPro Hero 7 captured video at a resolution of
3840 × 2160 at 60 frames per second [46]. The Canon EOS 5D was equipped with a 50 mm
lens, and images were shot in RAW format at 6720 × 4480 resolution.

The first scenario was a laboratory setting where a scaled-down road model with both
yellow and white road markings was used. The GoPro and Canon cameras were used to
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provide different view perspectives of the test setup. The second scenario was a closed
airfield with a wide yellow centerline. The airfield strip was filmed using a GoPro attached
to a bicycle. Finally, field footage from a public road with white and yellow road markings
was collected via a GoPro attached to the windshield.

Table 1. Description of the seven cases of video and image capture.

Case Markings Camera

White Yellow

a Laboratory, 1:10 road model, bare road Yes Yes GoPro Hero7

b Laboratory, 1:10 road model, 0.5 cm
snow, rear-view mirror perspective Yes Yes GoPro Hero7

c Laboratory, 1:10 road model, 0.5 cm
snow, bird’s-eye perspective Yes Yes Canon EOS 5D

d Airfield strip, 2.5 cm snow No Yes GoPro Hero7
e Airfield strip, plowed No Yes GoPro Hero7
f Airfield strip, brushed No Yes GoPro Hero7

g Public road in the afternoon (low
ambient light) Yes Yes GoPro Hero7

3.1.1. Laboratory Image Capture

The experiment was performed in a snow laboratory consisting of a narrow lane
(50 cm × 2 m) with a moving equipment rig that can move back and forth above it. A
model road was constructed in the lane consisting of six consecutive asphalt tiles (each
approximately 30 cm × 30 cm). Cameras were passed over the scaled-down road under
two different road conditions: bare and snow-covered (0.5 cm of snow coverage).

The model road was made by scaling down the asphalt and road markings to make
their dimensions consistent with a real-world road. The model road’s size was made based
on the template shown in Figure 4 [47].
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used with permission from the Norwegian Public Roads Administration.

The design standard in Figure 4 corresponds to the minimum requirements on up-
grading existing roads in Norway (values given in meters). The miniature road model was
made for one lane (right-hand side), with a dashed center line and a continuous edge/fog
line. The dimensions of the road markings align with the Norwegian standard for road
marking, N302 [32]. Roads with speed limits at or below 60 km/h and a total width below
7.5 m must use a width of 0.1 m for both the center line and edge/fog line. The available
space in the track of the snow lab allowed for the creation of a 1:10 model of the road.
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White thermoplastic road marking was used on the first three tiles, followed by
three tiles where yellow thermoplastic road marking was applied. The road marking
pattern consisted of nine-meter long dashes with three-meter long spacing (Figure 5). The
thermoplastic marking was applied to the road by using a heat gun and following the same
procedures used by road crews. The finished result is shown in Figure 5. The thermoplastic
marking product used was white and yellow Geveko Premark. The GoPro was mounted
in the rig above the scaled-down road. The height was chosen to be 11 cm above the
road, which is 1/10 the eye height definition used in road design in the U.S. [48] and
similar to the height of a rear-view mirror where the camera for a lane detection system is
generally mounted.
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Figure 5. Applied thermoplastic road marking to 1:10 scale.

The material used for the road model is an asphalt-concrete type comprised of rocks
up to 2 mm in size (Ab2); it is especially manufactured for lab use. Asphalt-concrete
is commonly used in the top layer of road construction for average annual daily traffic
volumes between 3000 and 15,000. The rock sizes used in asphalt-concrete are 4, 8, 11, 16,
and 22 mm [49]. The 2 mm rock size used at 1:10 scale is, therefore, within the range of
sizes found in actual asphalt-concrete applications, i.e., between 0.4 and 2.2 mm.

The set-up of the camera rig provides a model dimension similar to a car that has a
camera in its rear-view mirror sensor cluster. The cameras passed over the scaled-down
road at speeds of 1/10 of 30 km/h. There was no interaction between the cameras and
the snow/road; therefore, there were no forces to scale down. These cameras detect light
particles that are scattered from the road surface, road markings, snow, and surrounding
area. In addition to the moving GoPro camera, a Canon EOS 5D camera was used to take
still photos from a birds-eye view.

If scaled upwards, the snow depth used would correspond to a real-life depth of 5 cm.
However, the greater the snow’s depth, the more visible light is reflected from the snow
itself [50]. More light reflected from the snow means less light hitting the road model,
which causes overall brighter images with minimal chances of seeing the underlying road
and markings. The physical interaction of light, snow, and road markings is the same
for the road model as for a full-scale road; therefore, by using 0.5 cm deep snow, it was
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assumed that this would produce a situation closest to an actual road covered by 0.5 cm
of snow.

According to [51], the amount of light reflected from new snow is between 80 and
90 percent of the incident light, although depth is not specified for these values. Further-
more, the amount of light reflected from the snow and road model to the camera depends
on several factors, including the angle of incident light, the angle of the viewer, and the
properties of the snow (age, density, particle size) [50,52]. In outside conditions, both the
zenith angle, i.e., how high the sun is in the sky, and the azimuth angle, i.e., the sun’s
position relative to the north affects the reflection of light from a snowy surface, known as
the albedo. In a lab setting, the artificial light is mounted in the roof, turning the zenith
angle and amount of ambient light into constants. The two viewing angles, represented
by the moving GoPro and Canon cameras taking still shots, receive different amounts of
reflected light from the snow and road model. The greater viewing zenith angle for the
GoPro camera, θv1, theoretically suggests a lower reflection of light than for the Canon
camera’s narrower viewing angle, θv2, [53], as shown in Figure 6.
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Laboratory Snow Production and Application

The snow itself was produced in the lab using a snow machine [54]. The snow
produced was a loose dendritic snow having a density of 302 kgm−3. This density is found
in settled snow [55]. In the snowy conditions, the road was covered by a 0.5 cm layer of
snow. In an experiment to apply this same snow layer, a sifter was crafted to distribute
an even layer of snow that fit into custom wooden frames (0.5 cm height) as shown in
Figure 7.

3.1.2. Airfield Test Track Image Capture

An airfield with a wide yellow center line was the second scenario used for image
capture. The videos were taken using a bicycle with a camera mounted on the handlebars
as shown in Figure 8.

The camera’s height was 1 m above the ground. Videos were recorded under three
different conditions: The first was with 2.5 cm coverage of natural snow (Figure 8b). The
second video was taken after a ribbed snowplow with a rib height of 2 cm had been applied
to the test track (Figure 8c). Finally, the third video was shot after the same part of the
test track had been brushed (Figure 8d). The yellow road marking was a 43.5 cm wide
stripe of ViaTerm C35E applied in liquid form by a road marking truck. According to the
contractor, this product is equivalent to the melted spot Geveko Premark used in the lab
experiment. The snow had a temperature of −2.5 degrees Celsius, and the air temperature
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was −5.5 degrees Celsius. The snow had a density of 99.7 kgm−3 (this is typical for wet new
snow). During the first snow removal procedure, the ribbed snowplow left 2 cm furrows
of snow; however, the tractor’s wheels subsequently passed over the road marking and
adjacent road surface, creating unequal snow coverage ranging from 0 to 2 cm (Figure 8c).
After the second snow removal procedure (brushing process) was completed, the road
marking appeared to be close to bare, while the adjacent road surface had such a small
amount of snow on it that the asphalt could be clearly seen underneath (Figure 8d).
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3.1.3. Public Road Image Capture

Videos were also captured from regular traffic. To do this, the GoPro camera was
mounted on the inside of the front windshield and slightly to the left of the rear-view mirror.
The video was recorded on European Route 6 (latitude 9.366) at 15:30 on 2 December 2019.
It was a challenging scenario because of the low ambient light caused by the sun being
low in the horizon and the weather overcast, as well as a snow coverage of between 0 and
2 cm (a combination of snow and drifting snow). The road markings on this road were the
same type of thermoplastic material (Viatherm C35E) as in the airfield test, comprised of a
yellow dashed centerline and white solid edge line. The air temperature was −5.2 ◦C, and
the road surface temperature was −7.3 ◦C.

3.2. Lane Detection Procedure

From the videos captured in each of the cases, every 10th frame was extracted to create
images for comparing color spaces. One frame was selected manually for each case and
converted to different color spaces using OpenCV, Matplotlib, and Python. The images were
imported as RGB images using the Matplotlib function imread and subsequently converted
to other color spaces using the functions cv2.COLOR_RGB2GRAY, cv2.COLOR_RGB2HLS,
cv2.COLOR_RGB2HSV, and cv2.COLOR_RGB2YUV (note: the OpenCV function uses HLS
as the color space most often referred to as HSL). The images from the different color spaces
were then split into their separate color channels for comparison.

The images were first inspected visually by an engineer with experience in measuring
and assessing the quality of road markings. Visual inspections are subjective analyses and,
as such, may differ from person to person; however, these inspections provide a human
viewpoint, which is interesting when researching road design and maintenance, as each of
these on its own is expected to support both human and automated drivers. The images
and different color space representations are included so that the reader can make their
own assessment of visibility. The human point of view forms the basis for current road
design and serves as a useful reference when exploring how to adapt road infrastructure to
facilitate automated driving functionality.

The reason for choosing the histogram representations was that they provide an
unfiltered way of showing either the contrast or change in pixel values from a road’s
surface to its markings. This, in turn, provides an objective and direct way of analyzing
the contrast and visibility of road markings, as it is abrupt changes in pixel values are
that are used in lane detection algorithms. One alternative would have been to use a lane
detection algorithm; however, this would have created a bias related to how that specific
lane detection functionality would be programmed. In contrast, the histograms’ distinct
peaks or troughs, which correspond to the white or yellow markings, signify lane markings
that are detectable by either thresholding or identifying gradients of the pixel values used
in different forms of edge detection.

4. Results

The seven images, one for each of the cases (Figure 3), were imported as RGB and
converted to grayscale, HSL, HSV, and YUV color spaces. Grayscale images have 1 channel
while the color spaces consist of 3 channels. This combination produces 17 different
representations of each image, one for the grayscale image and four for each color space (the
three separate channels plus all channels combined). To assess how the color representation
affects the visibility of the white and yellow markings, respectively, the images will first be
analyzed visually and then using histograms for each of the color channels.

4.1. Grayscale Representation

Converting images to grayscale representation is a common way of turning a 3-channel
image into a single channel image. In Figure 9, the images representing each case are shown
in grayscale representation.
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The laboratory bare road case (Figure 9a) represents an ideal situation for lane de-
tection: new road markings, new asphalt, and good lighting. The markings are clearly
visible in grayscale as they were in the RGB version of the image, with the yellow markings
appearing slightly grayer in the grayscale image, as expected. In the laboratory road with
a 0.5 cm layer of snow (perspective) (Figure 9b), and the laboratory road with a 0.5 cm
layer of snow (bird’s-eye view) (Figure 9c), the differences lie in the camera used and the
viewing angle. The road markings are difficult to visually detect in the perspective view,
where the camera was placed at an angle representative to that of a camera close by the
rear-view mirror. When the image is taken from directly overhead in the bird’s-eye view,
the white lane lines are visible in the lower part of the image. In the upper half of the
photo, the yellow markings again appear grayer than the white markings, making these
road markings difficult to see.

In the airfield having a 2.5 cm layer of snow (Figure 9d), the road markings are
not visible. In the images taken after the snow was removed by plowing (Figure 9e)
and brushing (Figure 9f), the yellow road markings are clearly visible in the RGB image
(Figure 3). The same markings are less visible in the grayscale images, especially in
Figure 9e (after plowing).

The public road in the afternoon (Figure 9f) shows a snowy public road in low ambient
light. Both the yellow lane marking on the left-hand side and the white road marking on
the right-hand side are as visible in the grayscale representation as they were in RGB color
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space. However, the markings and snow are of similar intensity in the images, which might
make the edge between the road surface and road markings challenging to identify.

In summary, the road markings appear distinct and much lighter in color than the
adjacent asphalt does when the road is bare, but a visual inspection of the images indicates
that lane detection may be more problematic under snow cover for the conventionally used
RGB and grayscale images. Both white and yellow road markings have pixel intensities in
grayscale images that are similar to parts of the snow coverage. This is especially evident
in the grayscale image showing the airfield after plowing (Figure 9e).

In the following section, the images are assessed in the color spaces RGB, HSL, HSV,
and YUV by visual inspection and the use of histograms. Based on the visual inspection of
the cases in RBG and grayscale presentations, the laboratory road having a layer of 0.5 cm
snow (perspective) and the airfield having a layer of 2.5 cm of snow will be omitted. In
the first instance, the bird’s-eye image makes for a better comparison between the white
and yellow markings, as these appear at the same distance and in equal quantities in
the image. Regarding the airfield with a 2.5 cm layer of snow, the road markings are
not visible and, therefore, do not provide additional information in other color spaces or
corresponding histograms.

4.2. Color Space Representation

The images analyzed are the laboratory having a 0.5 cm layer of snow (bird’s-eye
view), the airfield after plowing, the airfield after brushing and the public road in the
afternoon. The images are shown in these four color spaces: RGB, HSL, HSV, and YUV.
They are also shown in their respective channels.

The laboratory bare road image (Figure 10) shows an ideal situation for lane detection.
For instance, in the upper part of these images, there are yellow markings. In the lower
part, there are white markings, and the transition between the marking colors is indicated
by the red dashed line. Figure 10 shows the four color representations: RGB, HSL, HSV,
and YUV in the top row along with the three separate channels they are made up of in the
color spaces’ respective columns. A mask has been added manually to focus on the road
and lane markings rather than on the adjacent metal edges in the lab setting. In the case of
RGB, the white marking is visible in all channels, while the yellow seems most prominent
in the R channel, slightly less so in the G and not very prominent in the B channel. In the
case of the HSV color space, neither white or yellow marking is visible in the H-channel,
the yellow marking is clear while the white marking is more muted in the S-channel, and,
in contrast, most prominent in the V-channel. In the case of the HSL representation, the H-
and S-channels show similar results to the HSV color space. On the other hand, the HSV-V
channel shows the yellow marking more clearly than the HSL-S channel. In the rightmost
column (the YUV representation of the image), the Y-channel shows both markings clearly,
while the U- and V-channels highlight the yellow marking. The difference between the
YUV-U and YUV-V channels is that the former represents the yellow marking as the darkest
part of the image, while, conversely, the latter represents it as the lightest part of the image.
This difference makes the YUV-U histogram form a trough representing the marking, while
the YUV-V channel shows the road marking as a peak.

Next, the images featuring different snow coverages will be presented in the respective
color spaces. First, the laboratory road with 0.5 cm snow coverage from a bird’s-eye view is
shown (Figure 11). There is a white marking in the lower corner of the image and a yellow
marking above the red dashed line. The effect of the different color space representation is
the same for the laboratory road having a 0.5 cm layer of snow (bird’s-eye view) as it was
for the previous case, the bare road model. However, the snow cover makes the markings
that appeared clearly on the bare road model challenging to see in the case where there
is 0.5 cm of snow coverage (bird’s-eye view). In the bare road image, the four channels
enhanced only the yellow marking: HSL-S, HSV-S, YUV-U, and YUV-V. Interestingly, these
channels seem to work even better for the 0.5 cm snow coverage, but only when the yellow
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marking is present. The white elements, represented by the white road marking and snow,
are no longer clearly visible.
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The next 2 figures show the airfield images in different color spaces. The plowed
airfield (Figure 12) is presented, followed by the brushed airfield (Figure 13). In both of
these two images, there is only a yellow marking.

Regarding the plowed airfield image, the yellow road marking is clearly visible to the
human eye in the RGB image. However, when considering this image’s separate channels,
the marking is more difficult to detect. In the RGB-R channel, the tire tracks made by the
tractor is clearer than the road marking. In the RGB-G channel it is difficult to distinguish
the road markings, tire tracks, and other elements of snow, while in the RGB-B channel, the
markings are visible and similar in pixel value to the right edge of the snow removal area.
As in the previous two images, the channels that look most promising in terms of visibility
and contrast to the yellow marking are HSL/HSV-S, YUV-U and YUV-V. Conversely, HSL-L
and HSV-V channels are not suited to enhance the road markings, while the HSL/HSV-S
channel in this image does show the markings, it does so with low contrast to the road
surface on the right-hand side.

The image of the brushed airfield is shown in Figure 13.
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In the brushed airfield image, the brushing has removed most of the snow on the
right-hand side of the yellow road marking, while the snow coverage on the left-hand side
of the marking has remained mostly intact. Having snow on one side of the yellow marking
and a dark road surface on the other creates an interesting situation in terms of establishing
contrast between the road and road marking in images. Although the yellow color may be
clearly seen in the RGB image, when considering the separate channels usually used in
analyses, the contrast is low between the snow and the markings in the RGB-R channel, and,
conversely, between the markings and road surface in the RBG-B channel. In the RGB-G
channel, the road markings provide a contrast to the snow and road surface, but the pixel
values are also similar to the snow, which makes it challenging to separate these markings
from longitudinal snow elements. In the HSL image, the markings are difficult to separate
from the snow; however, the HSL-H and HSL-S channels highlight the yellow marking
in light versus dark pixel representation. The same channels in the HSV image, HSV-H
and HSV-S, show similar results, while the HSV image provides a better separation of road
markings to snow and road surface than does the HSL image. The HSV-V channel and
HSL-L channel are not optimal for enhancing the yellow marking, as in the laboratory road
with a 0.5 cm layer of snow (birds-eye image) and the airfield after plowing image. The
YUV image representation provides an identifiable color for the yellow marking, similar
to the RGB and HSV images. Considering the separate channels, the YUV-Y channel is
poorly suited to detecting lane markings, while the YUV-U and YUV-V channels separate
the yellow marking from both the snow and dark road surface in opposite ways.

The final scenario, public road in the afternoon, considers an image taken in the
afternoon (15:30) on a public road (Figure 14). There is a yellow road marking on the
left-hand side and a white road marking on the right-hand side. Even though the white
road marking in Figure 14 is visible in all the RGB channels, the contrast to the snow next
to it is not strong. The H-channels from the HSL and HSV representations are inept at
showing the lane markings. Moreover, in the S-channels for these two color spaces, the
yellow marking is visible, but not the white. The HSL-L and HSV-V channels provide
similar results to the RGB channels, where the lines are visible yet have low contrast to
other elements in the scene. The YUV and YUV-Y representations of the image are not
favorable for locating the lane markings, while the YUV-U and YUV-V channels provide
what seems like the strongest contrast between the yellow road marking and the snow and
road surface.

In summary, a consistent set of color channels: HSL-S, HSV-S, YUV-U, and YUV-V,
seem to amplify the visibility of the yellow marking in the four images of different snow
conditions (the laboratory with a 0.5 cm layer of snow (bird’s-eye view), the plowed airfield,
the brushed airfield and the public road in the afternoon). The brushed airfield strip image
shows snow on the left-hand side of the road marking and an almost bare road on the
right-hand side of the marking. In this case, the color spaces HSL/HSV-H also set the
road marking apart from the rest of the image. Regarding the images with white markings
(the laboratory with a 0.5 cm layer of snow (bird’s-eye view) and the public road in the
afternoon), the highest visibility was observed in the three RGB-channels: YUV-Y, HSV-L,
and HSV-V.

The visual analyses of the visibility of white and yellow road markings in snowy
conditions are summarized in Table 2.

Table 2 shows that the color channels providing the highest visibility overall are HSL-S,
HSV-S, YUV-U, and YUV-V, as in these instances the visibility in snowy conditions is higher
for yellow markings than for white markings. Table 2 summarizes a subjective way of
visually analyzing images. The following section will, therefore, establish an objective
assessment of the road markings’ visibility using histogram plots.
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Table 2. Visual assessment of visibility road markings in different color channels. The red color means the marking is not
visible, orange means the marking is possible to detect with the human eye but is not clearly visible, and green means the
marking is distinctly visible to a human observer.
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the white and yellow markings, two histogram plots are made: one for the lower half 
(white markings) and one for the upper half (yellow markings). In Figure 15, the RGB-
channels and grayscale representation are shown. In these histograms, there is a peak on 
the right side of the image (where the continuous lane marking is) for both white and 
yellow markings. The dashed line does not produce a peak higher than those on the road 
surface. The peak is most distinct in RGB-R for both colors, while RGB-G and -B also pro-
vide peaks that are for white markings. The RGB-B channel has a trough for the yellow 
continuous marking, a factor which is difficult to discern from the rest of the minima in 
the plot. The grayscale histograms show peaks for both white and yellow markings; how-
ever, the white marking peak is significantly more prominent than the yellow marking 
peak. Again, only the continuous lines are detected in the histogram plots. 

4.3. Histograms of Pixel Values

Whether lane markings are detected by thresholding or using gradients, lane detection
algorithms generally rely on distinct changes in pixel values to establish edges. The four
images of snowy conditions described above have, therefore, been assessed according to
changes in pixel values through sets of histogram plots. A plot is produced by adding the
individual pixel intensities for each pixel column corresponding to a given color channel.
The pixel column is on the x-axis and the summed pixel values on the y-axis. The aim is to
achieve a clear indication of where the road markings are located in the image as shown
by a distinct rise or fall in the sum of pixel values. When the pixels representing road



Vehicles 2021, 3 679

markings are light in color, they have high intensity values; this creates, in turn, high sums
and, thus, peaks in the plot. In instances where a road marking appears as the darkest part
of an image, the road marking pixels have a low sum and should, therefore, create a visible
trough in the plot. The more distinct the peak or trough is in the plot, the more ideal the
image is for lane detection. Plots with no clear peaks or troughs mean that it is challenging
to identify the road marking in the image. The next sections will first present the traditional
representations, RGB and grayscale, and then the alternative representations, HSL, HSV,
and YUV, for the selected images containing snow and visible markings: the laboratory
with a 0.5 cm layer of snow (bird’s-eye), the plowed airfield, the brushed airfield, and the
public road in the afternoon.

4.3.1. The Laboratory Road with a 0.5 cm Layer of Snow (Birds-Eye View)

Regarding the laboratory road with a 0.5 cm layer of snow (bird’s-eye), the top half of
the image has yellow markings, and the bottom image has white markings. To compare
the white and yellow markings, two histogram plots are made: one for the lower half
(white markings) and one for the upper half (yellow markings). In Figure 15, the RGB-
channels and grayscale representation are shown. In these histograms, there is a peak
on the right side of the image (where the continuous lane marking is) for both white and
yellow markings. The dashed line does not produce a peak higher than those on the road
surface. The peak is most distinct in RGB-R for both colors, while RGB-G and -B also
provide peaks that are for white markings. The RGB-B channel has a trough for the yellow
continuous marking, a factor which is difficult to discern from the rest of the minima in the
plot. The grayscale histograms show peaks for both white and yellow markings; however,
the white marking peak is significantly more prominent than the yellow marking peak.
Again, only the continuous lines are detected in the histogram plots.
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Figure 16 shows the histograms for the channels of the HSL, HSV, and YUV color
spaces. The histograms on the left-hand side show all channels, and the histograms on
the right-hand side show the channels that appear to be most suited for detecting the lane
markings in terms of pixel value changes. In the HSL and HSV plots, the HSL-S channel
has been highlighted as it shows distinct peaks for both the dashed and continuous lines.
The HSL-L channel only has a peak for the continuous white line. In the top right-hand side
plot, the differences in visibility for the yellow markings are evident, the yellow markings
providing clear peaks for both dashed and continuous lines.
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Figure 16. The laboratory road with a 0.5 cm layer of snow (bird’s-eye) case in HSL, HSV, and
YUV histograms.

The same effect is seen in the HSV plots, where the HSV-S plots have very distinct
peaks for the road markings and low sums for the columns representing the rest of the
image. Regarding the YUV representations, the V- and U-channels show the most distinct
peaks, where the road markings have significantly higher values than the surrounding
surfaces. In these channels, both the dashed line (left) and the continuous line (right) can
be detected, a contrast with the RGB and grayscale histograms, which only detected the
continuous lines. The YUV-U channel shows the road markings appear as troughs; but in
this case, as opposed to the RGB-B plot, the troughs are identifiable as local/global minima.
The histogram plots are consistent with the previous section’s findings (Table 2), where the
HSL/HSV-S and YUV-U/V channels provided the highest visibility of the yellow marking
in snowy conditions.

4.3.2. The Plowed Airfield

In the cases of the airfield after plowing and after brushing, there is only a continuous
yellow marking. The histograms have been created based on the lower half of the images,
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focusing on the area of the image with the lane markings. Figure 17 shows the histograms
for the airfield after plowing image as represented by RGB and grayscale images. In this
case, it is not possible to separate a threshold or peak that represents the road marking
from the surroundings in either the RGB or grayscale histogram plots.
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Figure 17. The airfield after plowing in RGB and grayscale histograms.

In Figure 18, the histograms for the HSL, HSV, and YUV representation of the plowed
airfield image are shown. On the left-hand side the three channels of the color spaces are
plotted, while the right-hand side highlights the channels that provide the best detection of
lane markings. In the HSL representation, the S-channel provides the most prominent peak,
which is also true for the HSV histogram. In the airfield after plowing image, the YUV-U
and YUV-V channels also produce a distinct trough and peak, respectively; significantly,
this is consistent with the findings from the visual inspection.

4.3.3. The Brushed Airfield

The RGB and grayscale histograms for the brushed airfield image are shown in
Figure 19. As in the previous case, the plowed airfield, these representations are not well
suited for detecting the single continuous yellow road marking.

In the HSL, HSV, and YUV representations in Figure 20, the H- and S-channels of the
HSL and HSV color spaces, as well as the U- and V-channels of the YUV representations,
all show identifiable peaks for the yellow road marking. Regarding the HSL and HSV color
spaces, the H-channel is particularly successful at isolating the road marking as the only
peak that contrasts with both the snow and almost bare road. When the road marking
pixels form the clear local or global maxima, the image representation is well suited for
lane detection as there are no peaks that can be misidentified as road markings. This echoes
the result seen in the summary of the visual inspection in Table 2.
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Figure 20. The brushed airfield image in HSL, HSV, and YUV histograms.

4.3.4. The Public Road in the Afternoon

The public road in the afternoon image has a yellow dashed line on the left-hand side
and a white continuous line on the right-hand side. In this case, the part of the image used
for creating the histograms is the very lower end of the image, as indicated below the white
line in Figure 21. This image section provides a continuous section of both yellow and white
marking. The RGB and grayscale histograms are also shown in Figure 21. The histograms
for these conventionally used image representations are not suited for identifying either
the white or yellow marking.

The HSL, HSV, and YUV histograms for the public road in afternoon image are shown
in Figure 22. In this case, the only channels that provide visible peaks are the HSL-H
and HSV-H channels. A peak large enough to separate itself from the rest of the plot is
seen on the left-hand side, i.e., stemming from the yellow road marking, while the white
road marking’s pixel values are not distinguishable from their surrounding environment.
In the public road in afternoon image, the YUV channels are not able to pick out any
road marking.

The visibility of the white and yellow road markings based on the histogram analyses
has been summarized in Table 3. The results from the analyses of the histogram plots are in
line with the findings from the visual inspection (Table 2). In both cases, the color channels
HSL-S, HSV-S, YUV-U, and YUV-V perform the best in identifying lane markings in snowy
conditions. However, in the public road image the YUV-U and V channels do not provide
identifiable peaks for the white or yellow markings.
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Table 3. Summary of visibility of lane markings based on histogram plots where (1) the red color indicates that there are no
clear peaks in the histogram, (2) the orange color means peaks are present but not very distinct, and (3) the green color
means that there are clearly visible peaks in the lane markings’ position.
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5. Discussion 
The application of road markings is a major expense for road authorities. LDW func-

tionality is common in today’s vehicles and has been shown to mitigate crashes. Auto-
mated driving is expected to increase, a trend that will introduce a new road user whose 
needs must be considered in the design and maintenance of roads to ensure countries’ 
safest possible transportation infrastructure. 

Lane detection is regarded as an important part of driving, and common lane detec-
tion techniques have been shown to falter in the event of snow. The aim of this paper has 
been to investigate whether yellow road markings can be beneficial for automated lane 
detection in snowy conditions. Although it is known that yellow road markings have an 
inferior level of contrast with a road’s surface compared to white markings in commonly 
used image representations, including RGB and grayscale, there is a lack of research in-
vestigating the visibility of white and yellow road markings as represented by other color 
spaces in snowy conditions. 

From the seven initial images (one image depicting a bare road and six images de-
picting snowy roads), five images were chosen as most appropriate for analysis by visual 
inspection and four images by histogram plots. The visual analyses were performed for 
the five images: laboratory road bare, laboratory road with a 0.5 cm layer of snow (bird’s-
eye view), plowed airfield, brushed airfield, and public road in the afternoon. They are 
followed by histogram plots of the pixels’ intensity values in the different color channels 
for the same cases (except for the laboratory bare road image, as it does not have snow). 
There were four cases with snowy conditions. The histogram plots provided an objective 
and machine-friendly interpretation of the lane markings’ visibility. The results of these 
analyses have been summarized in Table 2 and Table 3, and, when compared, yield simi-
lar results. The most common image representations, RGB and grayscale, work well for 
lane detection on bare roads (laboratory road bare). However, in snowy conditions, the 
laboratory road with a 0.5 cm layer of snow (bird’s-eye view) image was the only case 
where the lane marking was visible in RGB and grayscale histogram plots—but only for 
the white continuous line (Table 3). 

5. Discussion

The application of road markings is a major expense for road authorities. LDW
functionality is common in today’s vehicles and has been shown to mitigate crashes.
Automated driving is expected to increase, a trend that will introduce a new road user
whose needs must be considered in the design and maintenance of roads to ensure countries’
safest possible transportation infrastructure.

Lane detection is regarded as an important part of driving, and common lane detection
techniques have been shown to falter in the event of snow. The aim of this paper has been
to investigate whether yellow road markings can be beneficial for automated lane detection
in snowy conditions. Although it is known that yellow road markings have an inferior level
of contrast with a road’s surface compared to white markings in commonly used image
representations, including RGB and grayscale, there is a lack of research investigating
the visibility of white and yellow road markings as represented by other color spaces in
snowy conditions.

From the seven initial images (one image depicting a bare road and six images de-
picting snowy roads), five images were chosen as most appropriate for analysis by visual
inspection and four images by histogram plots. The visual analyses were performed for
the five images: laboratory road bare, laboratory road with a 0.5 cm layer of snow (bird’s-
eye view), plowed airfield, brushed airfield, and public road in the afternoon. They are
followed by histogram plots of the pixels’ intensity values in the different color channels
for the same cases (except for the laboratory bare road image, as it does not have snow).
There were four cases with snowy conditions. The histogram plots provided an objective
and machine-friendly interpretation of the lane markings’ visibility. The results of these
analyses have been summarized in Tables 2 and 3, and, when compared, yield similar
results. The most common image representations, RGB and grayscale, work well for lane
detection on bare roads (laboratory road bare). However, in snowy conditions, the labora-
tory road with a 0.5 cm layer of snow (bird’s-eye view) image was the only case where the
lane marking was visible in RGB and grayscale histogram plots—but only for the white
continuous line (Table 3).

HSV-S and HSL-S channels provide high visibility in all four images. Of these two
channels, the HSV-S provides the most distinct peaks for the lane marking and lowest pixel
value for the surroundings. In the airfield after brushing image, the H-channels of the
HSV and HSL color spaces highlight the yellow marking well; however, this is not true
for the other cases. The U- and V-channels of the YUV image representation are successful
in identifying the lane marking in the three conditions with good ambient light, i.e., the
laboratory with a 0.5 cm layer of snow (bird’s-eye view), the plowed airfield and the
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brushed airfield images. In the public road in afternoon image, while the yellow markings
appear to be visible to the human eye in the U- and V-channels (Figure 14), the histogram
representation (Figure 22) shows that there is no identifiable peak for machine vision. The
low light conditions, video capture at about 80 km/h, snow, and snowdrift provide a low
level of contrast between the lane markings and road surface. The public road afternoon
image represents driving during the start of rush hour (15:30) on a European route, i.e., a
high-standard road, in Norway. It is thus a realistic case for winter driving and makes the
fact that the HSV-S channel has a clear peak for the yellow marking even more promising.

Two cases with both white and yellow road markings were analyzed: laboratory road
with a 0.5 cm layer of snow (bird’s-eye view) image and the public road in afternoon image.
The results show that the white marking is difficult to detect in all color spaces, supporting
the theory presented, that white markings are difficult to distinguish from the snow. As
the snow and white road markings have similar pixel values in the various color spaces,
this suggests that in snowy conditions, yellow markings can provide higher visibility of
lane markings for camera-based lane detection applications.

Regarding snow depth, the image analysis shows that a relatively uniform coverage
of 0.5 cm is problematic for a GoPro Hero 7 camera recording at an angle comparable to
a camera in vehicles’ rear-view mirror instrument cluster. The same snow depth is less
problematic when photographed from a bird’s-eye view and with the Canon EOS 5D. The
difference in visibility of the road markings from the GoPro taking images at eye level to
the Canon EOS 5D taking images from a bird’s-eye view could be related to the facts that
(1) the latter camera produced higher quality images, (2) the GoPro was moving, and (3)
the angle of the camera was different. The GoPro’s position in both the lab and airfield
images is close to the eye level of a human driver, as well as the height of many sensor
clusters used for ADAS applications. Placing the camera in a higher position and using a
smaller zenith angle might be beneficial for lane detection by cameras in snow.

In the airfield test track, the first image was from a snow depth of 2.5 cm, a depth at
which lane detection is not possible with the given equipment. Performing snow removal
by using a ribbed snowplow with a rib height of about 2 cm was sufficient to make the
road markings possible to detect. The lane marking’s color is clearly visible in the HSL-H,
HSV-H, YUV-U, and YUV-V channels after plowing with the ribbed plow, and it would
be interesting to investigate whether the pattern left by the combination of snowplow
and snowplow tires has a negative effect on establishing lines for lane keeping. When
considering other methods to use for winter maintenance, the effect of salting roads would
also be worth investigating in terms of how this might affect lane markings’ visibility.

6. Conclusions

This paper has investigated how the visibility of white and yellow road markings in
snowy conditions is affected by different color space representations using three different
scenarios: a laboratory model, a closed airfield, and public roads. The aim of the study
has been to investigate the effect of different color space representations on road marking
visibility in snowy conditions.

Images were analyzed by visual inspection and using histogram plots of the pixel
intensities. From a visual perspective, RGB color channels and grayscale images provided
poor visibility of road markings in snowy conditions. Among the HSL, HSV, and YUV
color spaces and their respective channels, the HSL-S, HSV-S, YUV-U, and YUV-V channels
provided the clearest depictions of the lane markings. The yellow markings also had
consistently better visibility than the white markings. The histogram plots produced
similar results, with the HSL/HSV-S and YUV-U/V channels providing the most distinct
peaks, indicating a higher likelihood of automated identification and positioning of lane
markings in the images. The HSV-S channel provided the highest overall visibility.

This research suggests that although yellow road markings have lower visibility than
white road markings in RGB and grayscale representation, they are clearly visible even
under snow coverage with respect to HSL/HSV-S and YUV-U/V color channels. This is
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of interest for both road authorities and developers of lane detection functionality, as lane
detection in snow has been shown to be particularly challenging for both camera-based as
well as lidar-based applications. The yellow road markings produced the clearest peaks in
the histogram analyses, which indicates that the yellow road markings would be easier
to identify algorithmically and, therefore, that yellow road markings are beneficial for
automated driving in snow.

The results suggest that snow depths of 0.5 cm can cause problems for camera-based
lane detection when there is relatively uniform snow coverage. Snow removal procedures
that leave parts of road markings exposed were shown to be effective not only in making
road markings visible in color images but also leaving patterns that could be confusing
for edge detection (for instance, with regard to lane tracking). Wherever markings were
partially covered by snow after snow removal procedures, the grayscale images were
not able to detect lanes. Further investigation into snow removal procedures for camera-
based lane detection is recommended to establish the snow depth that causes lane-keeping
systems to struggle.

More research on the visibility of yellow versus white road markings for both human
and automated drivers is encouraged, especially when considering the trend towards
removing yellow road markings in the Nordic countries.

Further investigations could include:

• A more comprehensive investigation of the effect of snow depth on camera-based
lane detection;

• The effectiveness of different winter maintenance approaches, including the effect of
salting on the visibility of road markings in snowy conditions;

• The effect of different camera characteristics and the position of the camera on the
accuracy of automated lane detection;

• How different types of road markings, e.g., color and thickness, affect camera-based
lane detection;

• How different types of road surfaces, e.g., color and texture, affect camera-based
lane detection.

Road markings are a universally used means of leading and regulating traffic. Adapt-
ing infrastructure design and maintenance to support automated driving features relies on
both the strategies of road authorities and the hardware and software solutions developed
by the motor vehicle industry. Cooperation between these parties will be beneficial for
implementing safe and efficient automated driving features.
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Abbreviations
The following abbreviations are used in this manuscript:
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
ADS Automated Driving Systems
LoG Laplacian of Gaussian
LDW Lateral Departure Warning
RGB Red, Green and Blue (color space)
HSL Hue, Saturation and Lightness (color space)
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HSL-H H channel of the HSL color space
HSL-S S channel of the HSL color space
HSL-L L channel of the HSL color space
HSV Hue, Saturation and Value (color space)
HSV-H H channel of the HSV color space
HSV-S S channel of the HSV color space
HSV-V V channel of the HSV color space
YUV Luminance independent of color, blue luminance, red luminance (color space)
YUV-Y Y channel of the YUV color space
YUV-U U channel of the YUV color space
YUV-V V channel of the YUV color space
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