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Abstract: The autonomous vehicle (AVs) market is expanding at a rapid pace due to the advancement
of information, communication, and sensor technology applications, offering a broad range of
opportunities in terms of energy efficiency and addressing climate change concerns and safety. With
regard to this last point, the rate of reduction in accidents is considerable when switching safety
control tasks to machines from humans, which can be noted as having significantly slower response
rates. This paper explores this thematic by focusing on the safety of AVs by thorough analysis
of previously collected AV crash statistics and further discusses possible solutions for achieving
increased autonomous vehicle safety. To achieve this, this technical paper develops a dynamic
run-time safe assessment system, using the standard autonomous drive system (ADS), which is
developed and simulated in case studies further in the paper. OpenCV methods for lane detection
are developed and applied as robust control frameworks, which introduces the factor of vehicle
crash predictability for the ego vehicle. The developed system is made to predict possible crashes by
using a combination of machine learning and neural network methods, providing useful information
for response mechanisms in risk scenarios. In addition, this paper explores the operational design
domain (ODD) of the AV’s system and provides possible solutions to extend the domain in order
to render vehicle operationality, even in safe mode. Additionally, three case studies are explored
to supplement a discussion on the implementation of algorithms aimed at increasing curved lane
detection ability and introducing trajectory predictability of neighbouring vehicles for an ego vehicle,
resulting in lower collisions and increasing the safety of the AV overall. This paper thus explores
the technical development of autonomous vehicles and is aimed at researchers and practitioners
engaging in the conceptualisation, design, and implementation of safer AV systems focusing on lane
detection and expanding AV safe state domains and vehicle trajectory predictability.

Keywords: autonomous vehicle; electric vehicles; lane detection; V2X communication; operational
design domains; safety and risk assessment; trajectory prediction; neural networks; computer vision

1. Introduction

An Autonomous Vehicle (AV) is able to perform partial or complete functions, includ-
ing, i.a., driving, parking, and lane maintaining, with indirect supervision from the driver
or no supervision at all. With upcoming trends, it is noted that vehicle automation, vehicle
electrification, and ride sharing will aid in unleashing the potential of AVs [1]. Experts
predict that these trends will revolutionize the transport industry by 2050, with vehicle
safety being the primary concern of AV developers [2] At the time of writing, it is noted that
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there are numerous AV safety related technologies that can assist drivers, such as features
including drift prevention to adjacent lanes, unsafe sudden lane changes, sudden or grad-
ual braking (when there is an obstacle), consequent change of lane (whenever braking is not
sufficient), etc. [3,4]. For the above mentioned features, AVs rely primarily on two systems,
namely the autonomous drive systems (ADS) and advanced driver-assistance systems
(ADAS), to manage all incoming inputs in order to respond with corresponding output
functions. These systems are used to make important decisions such as course correction,
lane detection, lane keeping, proactive braking, pedestrian detection etc. with the use of
methods such as Hough Line transforms, Neural Networks (NNs), Co-operative Collision
Avoidance (CCA) algorithms, Markov Decision Processes (MDPs), Robust Control Plan-
ning etc. [5–8]. The main sources of input to AV driving and decision making are noted
to be from light detection and ranging (LIDAR), radio detection and ranging (RADAR),
camera, and other related sensors [9]. Though there are many sensors and communication
technologies built into AVs, there are factors of risk involved which need to be properly
addressed. These risks can occur in scenarios which are highly spontaneous and dynamic
where AV systems are not able to distinguish a curved from a straight road, to navigate
foggy conditions, to predict movements of surrounding vehicles, to judge high speed lane
changes, etc. [10]. These risks can, however, be solved by updating and operating AVs in a
safe state of the operational design domain (ODD) using OpenCV, improving the detection
of curved lanes and predicting a neighbouring vehicle’s trajectory using model-based
reinforcement learning algorithms [11].

For example, Alphabet’s Waymo has been reported to have developed similar tech-
nologies and the abovementioned methods, where it is claimed that their AV model has
completed up to 20 million miles (equivalent to 32 million KM) on a complete autonomous
drive [12], which is a significant milestone to reach market use. This leads to a substantial
pool of data collected by the system’s LIDAR and subsequent cameras, where the data are
stored both on the car’s in-built computer and synchronized through centralized systems
for processing. On this front, the stored data are divided into training and validation
datasets and then learned by the ADS system which updates the ODD, thus increasing the
safe state domain [13]. This also improves the accuracy and confidence of the autonomous
vehicle, particularly on curved lane detection, which is a complex domain requiring re-
search attention. They have also claimed that the AV is operable in foggy conditions where
it has been reported that it covered the entire Phoenix valley of 517 square miles (equivalent
to 832 sq. Kilometers) [14].

There has been much research and development in lane prediction, where vehicles may
calculate possible trajectories of their neighbouring vehicles by using robust planning with
continuous ambiguity [15]. The robust planning continuously predicts and correspondingly
adjusts the AV’s trajectory and speed in accordance with the neighbouring vehicles. The
AVs also use the spatial convolutional neural network (SCNN) method for better detection
of spatial features of neighbouring objects and their dynamics. One of the major risks
involved is AV and pedestrian collision, which can be addressed through the use of
vehicle-to-everything (V2X) communication technology, which warns other vehicles and
pedestrians in the path of an oncoming vehicle [16]. These risks and their consequences
must be taken into account when designing autonomous drive systems.

Different studies are conducted in this paper to develop the safety of AVs, with their
foundation being the vehicle’s ability to predict lanes, including both straight and curved
lanes, and the AV’s ability to predict the behaviour of neighbouring vehicles, decreasing the
probability of crashes and increasing the overall safety of the vehicle and its occupants. For
the first case, detection of lanes, the paper presents an algorithm using Hough transforms,
enabling the AV to detect straight lanes. In the second case, we address the shortcomings of
the first study, where the algorithm used is modified so that the AV can detect and measure
the curvature of curved lanes. The final study explores the predictability feature of the
AV by simulating an ego vehicle in three environments: (1) the highway environment
(highway-env), which involves an AV trying to manoeuvre through traffic in a four-lane
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road; (2) the merging of lanes environment (merge-of-lanes-env), in which the highway is
merged with an adjacent lane, and the AV is tested for incoming traffic from the adjacent
lane; and (3) the roundabout environment (roundabout-env), which consists of a standard
roundabout with incoming vehicles. A shortcoming of the model is noted, and an improved
algorithm is proposed and tested. These are further discussed in the paper.

Throughout the above, the primary aims and contributions of the paper are as follows:

• The interaction between the ADS and the operational design domain (ODD) is studied
for various states, and it is analysed with regard to how a safe state ODD can be
maintained.

• Various concepts and factors involved in the design of safety and risk assessment
systems are explained, such as required human–machine interactions (HMIs), vehicle-
to-everything V2X communication, and other factors required for AVs’ ground reality.

• Technical machine learning approaches are discussed, such as the partially observable
Markov decision process (POMPD) model, the model predictive control (MPC) model,
and other neural network methods such as spatial convolutional neural networks
(SCNN) and convolutional neural networks (CNNs).

• A detailed study about cooperative collision avoidance (CCA) for connected vehicles
is introduced.

• Case studies on the lane detection of straight lanes and modifying the straight lane
detection algorithm for the detection of curved lanes are conducted.

• The neighbouring vehicle’s trajectory is predicted using robust control frameworks,
thereby achieving higher predictability in an ego vehicle.

2. Concepts and Factors Involved in the Design of Safety and Risk Assessment in AVs

This section discusses concepts and factors required for designing and assessing the
safety and risks in AVs.

2.1. Operational Design Domains and OREMs

An operational design domain (ODD) is a set of scenarios and situations which
indirectly represents the requirements of given automation features. SAE J3016 defines
an ODD as a set of operating conditions under which a given driving automation system
is specifically designed to function, including environmental, geographical, and time-
of-day restrictions, with or without the requisite absence or presence of certain traffic
characteristics [7,17,18]. ADS and ADAS depend on these learned and pre-analysed
scenarios to make important decisions related to the mode of operation of vehicles. The
ODD also includes various driving scenarios including low speed assist, cruising assist,
urban lane driving, mountainous and off road driving, etc. The ADS has one or more
such features, and, correspondingly, each of those features has a predefined ODD. One
such model includes the operational road environmental model (OREM) [9]. This model
focuses on capturing various factors and features of the environment which are related and
relevant to the ADS and neglects unnecessary details: for example, two-lane rural roads,
four-lane highway roads, urban roads, or actual roads in a given geographic area. OREMs
exist in multiple forms including both executable models and specification tables. These
are accessible as documents or software models, which are required for providing context
for specific driving tasks of the ADS and can also be used as a verification model for the
autonomous drive system (ADS).

The ADS includes a complex intricate functionality between various systems, such as
dynamically visually capturing images and analysing them [4]. It also controls a variety
of other functions such as steering, braking, and manoeuvring. The ADS can be classified
into five levels as per the SAE, from no driving automation for the driver to full vehicle
automation. In cases of a vehicle being partially automated, which includes lane keeping,
active braking assist, lane changing assist, etc., the driver is solely responsible for the
passengers’ lives and her own. With further advancements in ADS and ADAS systems, the
driver can be relieved from certain driving tasks, thereby reducing driver fatigue, which



Vehicles 2021, 3 598

is a common issue leading to around 700 deaths per year, as per the National Highway
Traffic Safety Administration (NHTSA). As one moves to higher levels of automation of
vehicles, the driver can be removed completely from the equation. Therefore, all functional
blocks and elements present in the ADS are responsible for overall vehicle safety, thereby
probably eliminating all possible human error altogether.

Currently there is no “State of the Art” or “Production Level capable” autonomous
driving systems, mainly because of the ever-increasing complexity and difficulty of con-
stantly updating databases and potentially simulating thousands of possible scenarios,
requiring extensive computing power. Moreover the actuators and the processing system,
required for full vehicle autonomy, are currently extremely space intensive, making it
difficult to fit them into existing vehicles or into current vehicle forms that most customers
are accustomed to.

To dynamically analyse the various inputs being received by vehicles, a dynamic run-
time safety assurance system is required. The core idea of the dynamic run-time system is
that it generates situational and conditional contract sets for the ADS/ADAS system to
fulfil [2]. If the given condition is not fulfilled, then the system reverts to the warning mode
from the safe mode. It transfers the control back to the driver if it is not able to provide a
safe, minimal risk manoeuvre.

Figure 1 briefly represents how the ADS/ADAS function works in cooperation with
the dynamic run-time assessment system, which involves three states mentioned, the safe
state, the warning state, and the unknown state [2]:

1. Safe state: The dynamic run-time assessment system produces executable contracts,
and the ADS is able to successfully address an assigned problem and produces a
minimum risk manoeuvre. In this state, the ODD is completely known, and the
system has full capability to make decisions.

2. Warning state: In this state, the dynamic run-time system assesses the situation and
produces a partially executable contract or a command which may or may not be
fulfilled by the ADS, hence transferring control back to the driver. Here, the ODD is
partially known and tries to produce a low-risk outcome manoeuvre.

3. Hazardous or Catastrophic state: In this state, the run-time system produces virtually
unjustifiable commands, where the ADS produces an error output and control is
completely transferred to the driver.

Partially Unsatisfiable Command

Recovery

Safe State

 

Fully known 

ODD 

Full 

Autonomous

capability

Waiting State

Partially known

ODD 

Limited Capability

Unknown ODD
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No capability
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to driver

Completely New

   Environment

Figure 1. Operational states of ODDs.

Currently, the above-discussed ADS/ADAS places the vehicle at the second level of
autonomous driving, wherein the vehicle is in control of the driver most of the time and is
responsible for accidents. However, in recent times, sales of vehicles have aimed toward
achieving Level 3. For example, Honda’s Legend model, Tesla’s Model Y, Amazon’s ZOOX,
Alphabet’s Waymo, and Alibaba’s Auto X underline high investments and a strong industry
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direction towards the development of Level 3 and higher levels of autonomous vehicle
functionality [14]. Furthermore, there is much development required in both updating
ODDs and improving the decision-making ability of run-time systems and the action
sequences of ADS and ADAS models. The next section discusses the implementation of
the ADAS and ADS systems and their interaction with drivers.

2.2. Human–Machine Interaction

Human–machine interaction (HMI) consists of a command being sent to a car and the
car detecting whether the driving operation is by the system or from the driver. The HMI
is enhanced by methods such as tactile sensory input used in steering vibration, auditory
sense (sounding a warning), etc. HMI is highly important in autonomous vehicles mainly
because if the ADS/ADAS comes across an unjustifiable request, it should immediately
and effectively inform the driver [19]. There are mainly three levels of assessment of the
information transmitted from the ADAS to the driving force, that is, information provision,
warning (warning state), and an alarm [20]. There can be situations wherein the information
passed on by the system may not be correctly assessed by the driving system, which may
result in unwanted errors, causing the system to enter a hazardous state and becoming
highly vulnerable and dangerous.

2.3. Vehicle-to-Everything Communication (V2X)

Currently, the applications of Internet of vehicles technology and self-driving cars
are increasing rapidly [21–24]. It is thus noted that several companies are highly invested
in improving these technologies to produce the most safe autonomous vehicles. If V2X
communication is combined with AVs [25], it can allow for increased lateral control and
stability. These are known as connected autonomous vehicles (CAV). When an AV (ego
vehicle) tries to change lanes, the next lane’s vehicles would not know its intention, and they
only can estimate its movements. When the V2X method is applied to CAVs, whenever a
CAV attempts to change lanes, it continuously communicates with nearby AVs and informs
them about the CAV’s intention [26].

2.4. Factors for AV Ground Reality

To better understand AV integration with street systems, it is important to estab-
lish practical implications and understand the underlying hidden factors present at the
street/road level. Street/road level studies can be divided into four factors [7], explained
as follows:

• Materials: This includes both active and passive components of a street’s infrastructure
which are in constant interaction with each other and with vehicles. These primarily
include toll gates, road dividers, pavements, traffic separators, curbs, etc.

• Regulations: These are formal rules put into place by a governing authority, which
affects how the space is used and how people interact with the surroundings and
among themselves. More importantly, as this constitutes the ethics to be followed
while driving, this needs to be accounted for when designing an autonomous vehicle.

• People: Probably the most important factor, people are the living embodiment of these
established ethics. This is the most diverse and dynamic factor, as people engage in
various tasks, such as listening, talking on phones, texting while walking, conversing
with others, etc. The human–street–machine interaction is also greatly affected by the
age and cultural backgrounds of streets, which must be taken into perspective.

• Patterns of normative negotiations: This constitutes the common understandings and
guidelines for using a street in terms of information regarding interactions between
structures in place and the people involved. The way a rule or a law is understood
depends on the specific configuration of people, materials, and regulations that come
together in a specific situation.

To address the above factors and problems, there are three ways of designing an AV
system [7].
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• Perception: This can be achieved by an AV through the use of high-resolution cameras
and high-speed LIDARs which capture the AV’s surroundings with high resolution
and contrast.

• Prediction: The principle of a prediction mechanism of an AV consists of its level of
confidence in its decision-making algorithms and the way it uses the statistical models
of accidents. Solutions to these technical challenges are emerging rapidly with faster
sensors and more data to train neural networks to achieve the required and desired
accuracy.

• Driving policy: This is mainly formed by the data collected by the AV from the
perception stage and how this data is interpreted by the AV in the prediction stage.
These data mainly make up the rules and policies followed by the AV on the road.
This can also be called the “ethics” maintained and followed by the AV.

Technical solutions to the above mentioned factors are discussed in the following
section.

3. Technical Approaches for Safety and Risk Assessment of AVs
3.1. Machine-Learning-Based Approaches

The main aim of the safety assurance system is to provide a safe state output within a
variety of complex street situations [27,28]. To overcome such blind spots, various machine
learning techniques can be used, such as:

• Partially observable Markov decision process (POMPD): The POMDP model is a
decision-making method that performs a series of related tasks and problems to
maximise its optimum results in a given time frame [8]. The main advantage of using
the POMDP model is that it takes into account the factor of uncertainty in readings
by ’Partial Observability’ which means that the agent cannot directly observe the
state, but it relies on a probability distribution over a set of all possible states. This
distribution is then updated on the basis of the set of observations, their respective
transitions, and their probabilities. It can be defined by the tuple given below [29]

(S, A, T, Z, O, R, α) (1)

The agent’s acquired imperfect value is represented as a probability distribution over
the states which is know as the belief state [30]. This process is continuously repeated
until all the possible actions and observations have been explored [8].

• Model predictive control (MPC): This is a method of process control which satisfies
a predetermined set of constraints. An MPC model for an autonomous vehicle is
designed in order to maintain the vehicle along its planned path while also fulfilling
the physical and dimensional constraints of the vehicle [31]. MPCs are easily imple-
mentable at various levels of the process control structure, which includes multiple
input and output dynamics, while maintaining the stability of the AV. MPCs are more
efficient and pronounced in the steering control of the AV. In comparison to linear
controllers, these provide increased stability for the control system boundary. The
MPC also creates a benchmark to which other sub-optimal and linear controllers can
be compared. Due to these advantages, MPC models are used in many sub-systems
of automobiles such as in active steering, proactive suspensions, proactive braking
systems, and traction control systems, which coordinate together to improve the vehi-
cle’s handling and stability [32]. The MPC approach in AVs also enables the vehicle to
generate its own motion in a given time horizon using its optimization framework,
while considering various constraints such as speed limit, trajectories, and states of
neighbouring vehicles, as well as the mechanical constraints of AVs, such as maximum
acceleration, braking torque availability, etc. [6].

• Use of neural networks (NNs): This is probably the most efficient method in predicting
the range of accidents and their intensity and impact. The efficiency of this system
is based on the amount of data which is fed. It also depends on the “cleanliness” of
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the data fed and the labelling of the data points accurately. This is usually done by
dividing the data into LIDAR datasets and camera datasets, which are independently
generated. Three-dimensional LIDAR data labelling is mainly done by providing
3D box labels which include vehicles, pedestrians, cyclists, and street signs. Each
scenario can include areas which are not labelled, known as the no label zone (NLZ),
represented as polygons in captured frames [33]. To differentiate between NLZs
and box labels, a Boolean data type is explicated to each LIDAR point to indicate
whether it is an NLZ or not. Two-dimensional camera labelling is done by providing
2D bounding box labels in the captured camera image [34]. These labels are highly
defined, have a specific fit, and have global unique tracking IDs. Usually vehicles,
pedestrians, and cyclists are the objects which have 2D labels. Then these labelled data
are divided into training and test datasets. The training set is used to train the model,
and the test set is used to measure the accuracy of the trained model [35]. It is noted
that the test set should be large enough to yield statistically meaningful results, it
should contain all the characteristics of the complete dataset, and the training dataset
should not exclude any characteristics from the test dataset; in other words, the test
dataset should be the subset of the training dataset. It should also be noted that the
model should not over fit the training data. This process is repeated till the level of
accuracy is achieved. In an autonomous vehicle’s system makes use of this highly
trained deep learning technique [36] using CNNs and SCNNs for detecting object and
spatial features. These features are then analysed by the on board ADS and ADAS
system to render a proper output. Here, SCNNs are better suited as they can also
detect the “spatial features” of surrounding objects, which CNNs cannot. In the case
of detecting lanes, for those which are occluded by obstacles such as vehicles, poles,
road dividers, pavements, etc., the SCNN “extrapolates” these lane markings, as
opposed to CNNs which are incapable of detecting spatial features and hence show
a discontinuity while detecting lanes occluded by obstacles [37]. SCNNs generalize
traditional deep layer-by-layer detected convolutions to slice-by-slice convolutions,
thereby establishing message passing between the pixels across the rows and columns
of the layer. SCNNs are effective in detecting continuously shaped structures and
large objects with strong “spatial” relations: for example, traffic poles, lanes, curved
lanes, pillars, walls (road dividers), etc. [37].

These machine-learning-based approaches, which are discussed, are designed and
used for specific cases, where in this paper, the CNN and the SCNN methods discussed are
mainly used in image processing, as in case study 1, where these networks analysed the
input video frame by frame to identify the lane markings on the road. The SCNN is used
especially in curved lane detection where the spatial features of the surroundings are also
considered. The MDP algorithm is used in modelling behaviour-based planning in the AV.
This model is trained, and the loss function is reduced. The MPC model is implemented
along with robust control, which is further discussed in this paper. These methods are
highly specific to each scenario and are modelled accordingly.

3.2. Cooperative Collision Avoidance Based Approach

The problem of safety when the vehicle operates out of its ODD can also be solved
by using a cooperative collision avoidance system (CCA) [5]. CCA systems are highly
promising for reducing the number of accidents and traffic congestion [38]. Using the
V2V communication method, there are a large number of reported efforts in collision
avoidance in scenarios such as frontal collisions due to sudden or immediate braking. The
CCA system is highly time sensitive and requires highly spontaneous decision-making
algorithms and their corresponding actuators, which help in implementing the required
manoeuvre [39]. To address and understand this issue better, this paper further discusses
and simulates high-risk scenarios and thereby studies the decision-making algorithms
aided by V2V communication. The above system can mainly be visualised by a CCA
manoeuvring scenario [5], considered for most of emergency scenarios (hazardous ODD)
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and emergency situations. During the collision avoidance manoeuvre, the vehicle incoming
from the adjacent lane is also considered by an ego vehicle. There are mainly three cases
to consider:

1. The neighbouring vehicles are moving at a steady and uniform pace.
2. An incoming rear vehicle with respect to an ego vehicle from an adjacent lane.
3. There is an incoming vehicle, from an opposite direction, with respect to an ego

vehicle from the adjacent lane.

The position, direction of travel, and velocity are key components in decision-making
algorithms of ego vehicles. Whether to increase or reduce the speed or to engage or
disengage the elastic band manoeuvre is a key decision taken by the vehicle. The cases
shown under these scenarios underline that the vehicle relies on V2V communication to
realise the location of the neighbouring vehicles in real time and navigate around them.
It is noted that without the use of V2V or V2X communication, a vehicle will stay on a
predetermined path [40].

Established Methodologies and Test Cases in V2X Communication

• Path following: Calculating the margin of error and generating a virtual map of the
path are the main functions of the path following system [5]. Using recorded GPS
waypoints and previously recorded human driving or data obtained from a web map,
the path or the virtual map is generated. Then, there is a division of the routes into
particular individual segments which are smaller segments of the road, and each
segment contains an equal number of data points. Here, this paper makes use of a
third degree polynomial equation:

Xi(λ) = axi + bxi λ
2 + cxi λ + dxi (2)

Yi(λ) = ayi λ
3 + byi λ

2 + cyi λ + dyi (3)

The path or the virtual maps which are mainly contained in the a,b,c, and d coefficients
in the equation are all generated offline. Next, for the error calculation, these generated
coefficients are used. The errors in lateral deviation and the yaw angle can be analysed
and measured by referring to the vehicle path’s curvature, vehicle position, and
selected preview distance.

• Collision avoidance with elastic band system [5]: This method is the successor of the
path following system. In the case when an object or another vehicle appears on or
near the ego vehicle’s path, the collision avoidance mode is activated, and the path
points near the vehicle are altered by forces present in the direction of the obstacle.
While the vehicle continues along the path following a modified path, data points are
generated online [41]. To manoeuvre around the vehicle, instead of a predefined path,
the ego vehicle makes use of the generated path consisting of these modified points.
The elastic band method is more often applied to a path following task in which
there already exists a predefined path which lies between the lanes, with the collision
avoidance system mostly being limited to emergency or sudden lane changes [5]. This
predefined path is modelled by dividing the path into nodes consecutively joined by
these “elastic strings” which hold the curved path together using an internal force Fint.
An external force, Fei, acts when the ego vehicle crosses the intended path. These forces
“bend” the path of the ego vehicle similar to an elastic band, where the curvature of
the path taken by the ego vehicle is dependent upon the magnitude of these forces.
Here, Fint, the internal force acting, can be mathematically be given as

F∗iint − Fi
int = ks(ui+1 − ui) (4)

Similarly, the external forces acting on the vehicle, Fei, can be mathematically be given as

Fei = −[ks(ui+1 − ui) + ks(ui−1 − ui)] (5)
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Therefore, by using these equations, the required displacement for each node due to
Fint and Fei can be calculated, and by repeating the iteration for each node, the overall
path of the ego vehicle can be generated.

• Decision making and lane changing [5]: While the AV is preventing a collision with
other vehicles in the same lane or its current path, it should also consider the incoming
vehicles and objects in the neighbouring lane to prevent a collision. The incoming
vehicle in the neighbouring lane could be approaching the ego vehicle in the same or
in the opposite direction to its travel [42]. The system makes use of the algorithm

X2 = X1 + (Vajd −Vego)tmaneuver + xsa f ety (6)

However, in accordance with the equation, the adjacent lane vehicles are still at risk
of collision. After this calculation is iterated step wise, and, if in the longitudinal
direction, the ego vehicle is in the danger zone, the direction of travel need not be
altered. Instead of changing the lane, it slows down optimally until the danger zone
passes [43] (this is further discussed in case study 3). Once the neighbouring vehicle
exits the danger zone, the collusion avoidance mode navigates the preceding vehicle;
this, in a way, is akin to the double lane changing manoeuvre.

4. Case Studies on Lane Detection and Simulating Environments

This section presents three cases studies on different methodologies in lane detection
and vehicle simulation for autonomous vehicle safety. The first case study is the detection
of straight lanes using Hough transforms. The second case study addresses curved lane
detection using SCNNs and OpenCV. The third case study discusses the behaviour planning
and safe lane change prediction system in highway and roundabout environments. Each
of these case studies is discussed in the subsequent subsections. These methods and the
solutions presented are geared towards small-scale businesses planning to test solutions
for AVs who might lack the computing power (hardware and software) for test beds and
the required sensors. Here, for example, in case study 1 and 2, the input sensor is the
camera rather than the LIDAR, which has a higher setup and investment cost. In addition,
the simulations are performed on Pygame, which is easily accessible, and the models can
be run and tested efficiently with almost no cost. This product could then act as a good
stepping stone for new entrants on the market to provide pre-results, which can aid in
generating informed decisions for investments in new tech to further validate the model.
In the case studies presented below, the first two involve an input video file captured from
the AV’s camera, and in the final study, where the factor of “predictability” is tested, a
simulation is performed which involves testing the behavioural planning of the AV, and
the results are rendered.

4.1. Case Study 1: Detection of Straight Lanes

Case study 1 detects a straight lane using a Hough line transform, which involves the
following steps:

1. Capturing and decoding video file: This captures the video object and decodes the
video frame by frame (i.e., converts video into a sequence of images). The following
python code is used to capture the video and convert it into frames:

cap = cv . VideoCapture ( ‘ ‘ video Input . mp4 ’ ’ )

2. Greyscale conversion of image: This function mainly converts the RGB format frame
to the greyscale format. This is done mainly because the greyscale format has fewer
intensity peaks, which can be easily processed when compared to the RGB format.
The following Python code converts the RGB frame to the greyscale frame:

gray = cv . cvtColor ( frame , cv .COLOR_RGB2GRAY)

3. Canny edge detector: This is a multi-stage algorithm which is employed in fast
dynamic edge detection. This algorithm detects high changes in luminosity in the
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captured image, detects shifting of the white to black channel, and labels them as an
edge in the given set of limits [44]. This process is done in a sequence of steps which
include noise reduction, checking intensity gradients, non maximum suppression,
and hysteresis thresholding, which are explained below.

(a) Noise reduction: Noise is an integral part of the majority of edge detection
algorithms. Noise is one of the main hurdles in the detection process. In
order to reduce noise disturbance during the detection process, a 5 × 5 Gauss
filter is used to convolve the image and reduce the noise sensitivity of the
detector. This is achieved by using a 5 × 5 matrix of the normal distribution
numbering to include the complete image and assigning a pixel value as a
weighted average of the neighbouring vehicle’s pixel value. This process is
repeated till all the pixels are assigned a weighted value. In the matrix, A and
B denote neighbouring vehicles pixel value:

B = 1/159


2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

 ∗ A

(b) Evaluating gradient intensity: The intensity and direction of the edge are
calculated by using edge detecting operators, which is done by applying Sobel
filters that show the intensity present in both the X and Y directions. This
generates a gradient intensity matrix [45].

(c) Non-maximum suppression: Ideally, the image obtained should have thin
and highly defined edges.This is applied to effectively define the edges and
increase the contrast of the image such that the image is fit for the hysteresis
threshold. This is done by analysing all the points in the gradient intensity
matrix obtained and evaluating the maximum value of the pixels present at
the edges of the image [46].

(d) Hysteresis thresholding: After non-maximum suppression, the highly weighted
pixels are confirmed to be in the final map of the edges. However, weak pixels
are further analysed in terms of whether they contribute to noise or the image.
Applying two pre-defined threshold values, any pixels with an intensity gradi-
ent which is higher than the maximum value are edges, and those with lower
than minimum values are not edges, not well defined, and hence discarded.
Python code for canny edge detector:

def do_canny ( frame ) :
gray = cv . cvtColor ( frame ,
cv .COLOR_RGB2GRAY)
blur = cv . GaussianBlur ( gray ,
( 5 , 5 ) , 0 )
canny = cv . Canny ( blur , 50 , 150)
return canny

The output of the canny edge detection function is shown in Figure 2.
4. Region of interest (segmentation): This step takes into account only the region covered

by the road lane and the image is divided into segments for processing[47]. A mask is
created in this ROI. Furthermore, a bit-wise AND operation is performed between
each pixel of the canny image and this mask [48]. This function masks the canny edge
and shows only the required polygon ROI.
Python code for defining ROI:

def do_segment ( frame ) :
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height = frame . shape [ 0 ]
polygons = np . array ( [ [ ( 0 , height ) ,
( 8 0 0 , height ) , ( 3 8 0 , 2 9 0 ) ] ] )
mask = np . z e r o s _ l i k e ( frame )
cv . f i l l P o l y ( mask , polygons , 255)
segment = cv . bitwise_and ( frame , mask )
return segment

The output of the ROI function is shown in Figure 2.
5. Hough line transform: The Hough line transform [49] is a transform used to detect

straight lines. The probabilistic Hough line transform is used here; this gives the
extremes of the highlighted pixels of the image. This is the final step in the lane
detection process and is done to find the “Lane markings” on the road. This is given
mathematically by

r = Xcos(θ) + Ysin(θ) (7)

The Hough space lines intersect at θ = 0.925 and r = 9.6. The curve in the polar
coordinate system is given as r = xcosθ + ysinθ, and a single line crossing through all
these points can be given as

9.6 = Xcos0.925 + Ysin0.925. (8)

Python code for Hough transform:

hough = cv . HoughLinesP ( segment , 2 ,
np . pi / 180 , 100 ,
np . array ( [ ] ) , minLineLength = 100 ,
maxLineGap = 50)
l i n e s = c a l c u l a t e _ l i n e s ( frame , hough )

The output of the Hough line transform is shown in Figure 3 and the final output is
as shown in Figure 4.

Figure 2. Canny edge detection and establishing the ROI.

Figure 3. Corresponding Hough line transform.
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Figure 4. Final output of the Lane Detection Algorithm

4.2. Case Study 2: Detection of Curved Lane Roads Using OpenCV

Case study 2 detects the curved lane using OpenCV [3]. This study mainly addresses
how curved road lanes can be detected. As opposed to case study 1 which uses Hough
line transforms, the same algorithm cannot be used to detect curved lanes as they usually
only apply to straight lines and lanes. This section includes a number of steps. Firstly,
the camera’s distortion is corrected to obtain a distinct sky view of the same image, and
then this perspective is changed to obtain an image as viewed from a vehicle. Then, the
colour filters are applied to the image to reduce errors and to differentiate between the
usual yellow and red markings on lanes, which usually differentiate curved and straight
roads. Then, a curve is fitted to the weighted pixel data, and the curved lane is obtained.
These steps are explained in more detail below.

1. Correcting the camera’s distortion: This involves undistorting the camera view to
obtain a distinct sky view and vehicle views of the road ahead. The main cause of
the change in size and shape of an object is mainly because of image distortion while
being captured. This leads to a major problem: the object may appear to be closer or
farther away than it actually is. All the distortion image data points can be extracted
by theoretically comparing them to the actual data points which can be calculated.
This is done by calling the pickle function, which is shown by the Python code below:

def u n d i s t o r t ( img , c a l _ d i r =r ’ c a l _ p i c k l e . p ’ ) :
with open ( c a l _ d i r , mode= ’ rb ’ ) as f :
f i l e = p i c k l e . load ( f )
mtx = f i l e [ ’ mtx ’ ]
d i s t = f i l e [ ’ d i s t ’ ]
dst = cv2 . u n d i s t o r t ( img , mtx , d i s t ,
None , mtx )
return dst

2. Changing the perspective: The sky view perspective (bird’s eye view) is transformed
into the vehicle view. For extracting all the image information, location coordinates
are used to wrap the image from the calculated sky view to the required vehicle view.
This is necessary because the further functions, such as applying colour filters and
Sobel operators, are required to process the vehicle’s perspective view [50].

3. Applying colour filters: The defined pixel values present in the ROI polygon are
enough to calculate the curvature of the road. As an added precaution, there might be
an error in distinguishing certain yellow and white markings on the lanes which may
not actually be lanes, but markings to denote something else. In order to distinguish
this, the filter mainly uses the Sobel operator [50]. The Sobel operator works by
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calculating the gradient of image intensity in the pixels present in the image. It is
observed that this operator is very useful during the assessment of the maximum
change of intensity from a lighter pixel to a darker pixel. It also helps to calculate the
rate of change in the direction. It also emphatically shows how abruptly or smoothly
the image changes at each pixel and how correctly the pixel represents an edge [51].
The hue, saturation, and value (HSV) is a colour model that is often used in place
of the RGB colour model for image processing. While using this, a specified colour
value is added with a white or black contrast biasing. This can also be called hue,
saturation, and brightness (HSB) [52].
RGB conversion:

R′ = R/255G′ = G/255B′ = B/255 (9)

Cmax = max(R′, G′, B′) (10)

Cmax = max(R′, G′, B′), Cmin = min(R′, B′, G′) (11)

δ = Cmax − Cmin (12)

Hue calculation:

H =


60◦ ×

(
G′−B′

∆ mod6
)

, Cmax = R′

60◦ ×
(

B′−R′
∆ + 2

)
, Cmax = G′

60◦ ×
(

R−G′
∆ + 4

)
, Cmax = B′

(13)

Saturation calculation:

S =

{
0 , Cmax = 0

∆
Cmax

, Cmax 6= 0 (14)

Value calculation is given by V = Cmax

def c o l o r F i l t e r ( img ) :
hsv = cv2 . cvtColor ( img ,
cv2 .COLOR_BGR2HSV)
lowerYellow = np . array ( [ 1 8 , 9 4 , 1 4 0 ] )
upperYellow = np . array ( [ 4 8 , 2 5 5 , 2 5 5 ] )
lowerWhite = np . array ( [ 0 , 0 , 2 0 0 ] )
upperWhite = np . array ( [ 2 5 5 , 255 , 2 5 5 ] )
maskedWhite= cv2 . inRange ( hsv ,
lowerWhite , upperWhite )
maskedYellow = cv2 . inRange \\(hsv ,
lowerYellow , upperYellow )
combinedImage = $cv2 . b i twise_or$\\
( maskedWhite , maskedYellow )
return combinedImage

A curve is fit for each line by using a second degree polynomial equation which is of
the form x = Ay2 + By + C, where A, B, and C are coefficients and are estimated by
repeated trials of fitting the curve [53]. Then, the points which fit the curve the best
are fed, and the curve is realized. Then, this curve is projected to the corresponding
vehicle view, which is explained in the perspective transformation section. The
program also gives the radius of curvature of the curved road. The output is shown
in Figure 5.
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Figure 5. Lane detection for curved roads.

4.3. Case Study 3: Behaviour Planning and Safe Lane Change Prediction Systems

Case study 3 provides the behaviour planning and safe lane change prediction systems
using optimistic planning for deterministic systems (OPD) algorithms and reinforcement
learning [15]. An optimal problem of a Markov decision process (MDP) with a known
reward function (R -Function) is considered [15,54] and is subject to unknown deterministic
dynamics, as shown in the following optimisation problem:

st+1 = f (st, at) (15)

max
(a0,a1,...)

∞

∑
t=0

γtR(st, at) (16)

This MDP has several properties, which justifies using model-based reinforcement
learning (MRLs) methods. The policy value is highly dependent on the goal, which adds
a significant level of complexity to a model-free learning process, whereas the dynamics
are completely independent of the goal and hence can be simpler to learn [11]. In the
context of an industrial application, one can reasonably expect for safety concerns that
the planned trajectory is required to be known in advance, before execution. To solve the
abovementioned problem, MRL consists of two phases which are described in subsequent
subsections.

4.3.1. Phase 1: Model Learning Phase

In the model learning phase, important input parameters are collected and used for
training the model. This trained model is then tested on a validation dataset to further
fine-tune the hyper parameters and measure the model’s accuracy. If the trained model is
not at the required accuracy level, more data points are included in the validation set to
further tune the parameters. A model is constructed and trained on the dynamics through
repeated regressions on the interaction data. This is mainly done in five consecutive steps,
which is explained in detail below.

1. Experience collection:
This randomly interacts with the environment to produce a batch of experience, which
is quantified as shown in the equation below:

D = {st, at, st+1}t∈[1,N] (17)

2. Building a dynamics model:
This dynamic model uses a structured model which is derived from linear time-
invariant (LTI) systems. This model can be represented by the equation below:

ẋ = fθ(x, u) = Aθ(x, u)x + Bθ(x, u)u (18)
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where (x, u) denotes the state and action. Intuitively, each point is obtained (Xt , Ut),
as well as the linearization of the true dynamics f with respect to (x, u). The next
step involves parameterizing A and B as two fully connected networks with one
hidden layer.

3. Fit the model on the validation and training dataset:
The built dynamic model (f) is trained in a supervised fashion to minimise the loss
over the experience batch (D) by using stochastic gradient descent, i.e., one example
at a time for 2000 epochs, as shown in Figure 6. As there is only one training set,
as the number of epochs increased, the validation error also increased (above 2000),
which indicated over fitting of the data. Thus, to avoid this, the number of epochs is
set to be 2000, since, higher than this, an increased deviation in the validation dataset
compared to the training dataset was observed.

Figure 6. Decrease in loss function over 2000 epochs.

4. Visualising trained dynamics and trajectories:
In order to qualitatively evaluate the above-trained dynamic model (f), the values
of the steering angle (such as right, centre, left) and acceleration (slow, fast) must be
defined in order to predict and visualize the corresponding trajectories from an initial
state, as shown in Figure 7.

Figure 7. Left, right, and centre trajectories of ego vehicle visualised after training in the X,Y plane.

5. Reward model: Here, it is assumed that the reward R(s, a) is known (chosen by the
system designer) and takes the form of a weighted L1-norm between the state and the
goal. The simulation considers the reward of a sample transition: tensor([−0.4329]).

4.3.2. Phase 2: Planning Phase

The planning phase uses the finely tuned and trained dynamics model from the
model learning phase for simulating the heterogeneous environments. In order to solve
the optimal control problem, a sampling-based optimization algorithm, which is the cross
entropy method, is used. The algorithm is applicable to the model learning problems,
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which are both combinatorial and continuous, and it is applicable to the case of finding the
best performing sequence of actions. This method approximates the optimal importance
sampling estimator by repeating the following two phases:

1. Drawing the samples from a probability distribution which uses Gaussian distribu-
tions over the sequence of actions.

2. Minimizing the cross-entropy [55] between the given and the target distribution to
better the sample in the next distribution.

This distribution is compared with the given target distribution. The target distribution
is defined by selecting the top performing sampled sequences. After reducing the entropy
to the required level, the trained model is simulated in three different environments,
such as a highway, merging of lanes on a highway, and a roundabout. The rendering of
these environments is done using Pygame, and the required graphics are designed and
scaled as required, finally importing the required modules for the environments, agents,
and visualisation. The abovementioned environments are simulated with these defined
parameters, as in Tables 1 and 2 and are discussed as follows:

Table 1. Parameters and their quantitative meaning.

Parameter Definition

Acceleration Range Range of acceleration of ego vehicle
Steering Range Maximum and minimum steering angle of the ego vehicle

Actions All Labels for all the actions performed by the ego vehicle
Actions Longit Labels for the actions performed in the longitudinal plane

Actions Lat Labels for the actions performed in the lateral plane
Max Speed Maximum speed limit on the ego vehicle

Default Speeds Default initial speed
Distance Wanted Desired distance to the vehicle in front

Time Wanted Time gap desired to the vehicle in front
Stripe Spacing Distance between the road stripe and the edge of the road
Stripe Length Length of the stripe
Stripe Width Width of the stripe

Perception Distance Distance the ego vehicle can perceive
Collisions Enabled Ego vehicle is open for collisions which the system avoids

Table 2. Simulation parameters and labels for highway, merging of lanes, and roundabout environments.

Parameter Quantity

Acceleration Range (−5, 5.0) ms−2

Steering Range (−0.7853981633974483, 0.7853981633974483) rad
Actions All 0: ‘Lane Left’, 1: ‘Idle’, 2: ‘Lane Right’, 3: ‘Faster’, 4: ‘Slower’

Actions Longit 0: ‘Slower’, 1: ‘Idle’, 2: ‘Faster’
Actions Lat 0: ‘Lane Left’, 1: ‘Idle’, 2: ‘Lane Right’
Max Speed 40 ms−1

Default Speeds [23, 25] ms−1

Distance Wanted 10.0 m
Time Wanted 1.5 s
Stripe Spacing 5 m
Stripe Length 3 m
Stripe Width 0.3 m

Perception Distance 180 m
Collisions Enabled True

• Highway
In the highway environment, the ego vehicle (indicated in green as shown in Figure 8)
is being driven on a four-lane, one-way highway with all incoming vehicles in the
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same direction. The main objective of the optimisation algorithm here is to find the
most optimal speed and also avoid possible collisions with the neighbouring incoming
vehicles. Driving in the right lane of the road is rewarded by the reward function (as
discussed in MRL phase).

Figure 8. Lane changing in the highway environment (ego vehicle in green).

• Merging of lanes
In this environment, the ego vehicle initially starts on the main highway, and an access
or a service road is joined with the main highway, along with its incoming vehicles. In
this environment, the main objective of the optimisation algorithm is to maintain the
most optimal speed, making space and avoiding collisions with the incoming vehicles
from the service lane, as shown in Figure 9.

Figure 9. Behaviour when lanes merge. The ego vehicle makes way for the incoming vehicle from
the adjacent lane.

• Roundabout
In this environment, the ego vehicle is approaching and negotiating a roundabout
circle with four incoming roads. In this case, the function of the optimisation algorithm
is to maintain the most optimal speed, to avoid all possible collisions within the
roundabout, and to make space for the incoming vehicles from the connecting road.
To optimise it further, optimum planning with the oracle model is applied, as shown
in Figure 10. The oracle model utilizes the system constraints and related behaviours
which may result in dangerous behaviours.

Figure 10. Roundabout simulation on oracle model.

The slight model errors in the oracle model can lead to catastrophic accidents and
crashes, as shown in Figure 11. This occurs because the optimisation is not calibrated
to the probability of the trajectory that the surrounding or adjacent vehicles can take.
It affects the ego vehicle, as it ignores the trajectory of surrounding vehicles even
when it is predictable.
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In order to account for this model’s uncertainty, a robust control framework is imple-
mented, as shown in Figure 12, to maximise the worst case performance with respect
to a set of possible behaviours, which is done by considering every possible direction
that the traffic participants can take at their next intersection.
It is important to take into consideration the driving styles and behaviour of the traffic
participants, and this can be implemented by the robust planning with continuous
ambiguity. It continuously “predicts” the trajectory of the adjacent vehicles while also
considering their driving styles, as shown in Figure 13.

Figure 11. Accident cases due to errors in the model and inability to predict vehicle trajectories (as
shown in red).

Figure 12. Model with robust control framework implemented.

Figure 13. Robust control with continuous ambiguity to predict trajectories of surrounding vehicles.

5. Further Studies and Scope

While the concept of autonomous vehicles has been presented for decades [12], it is
only in the last five years that AVs have come into the limelight, with model cars being in
physical testing phases. This is further growing due to increased demand for self-driving
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cars which increase traffic safety, but currently, full autonomous driving technology has
been restricted only to logistics and shuttle services with defined and familiar paths [6].
This is mainly due to safety issues arising from the potential threat of welcoming a nascent
technology onto roads with driver-driven vehicles, where safety concerns may arise, as
some ‘autonomous’ driving technologies can only respond to limited situations. However,
in the near future, with highly responsive and accurate neural networks and decision-
making algorithms and systems, it is believed that AVs will be an indispensable part of
transportation systems [56,57]. The integration of AVs into society would only be complete
if the driver/passenger could completely and comfortably trust the vehicle to drive itself
safely. This can be achieved by comprehensive public demonstrations, by placing AVs in
various hazardous scenarios and showcasing their responses to numerous ‘unpredictable’
situations–at least by human standards–which can be statistically predicted by vehicle on-
board computers [58]. This was effectively done by Tesla, which successfully demonstrated
this on the company’s ‘Autonomy Day’ event, where various drives and accident and
response scenarios where showcased. Tesla also showcased its easier to use user interface
(UI) for autonomous driving, which would enable drivers to easily visualise the vehicle’s
surroundings, thereby reducing the possibility of accidents [58]. Similar advancements
are being observed for numerous other automotive companies, which are focusing on AV
development. Additionally, the advancement of machine learning and neural networks
can bring far reaching contributions to increasing the precision of autonomous driving,
in particular with the introduction of the concept of neuroplasticity [59]. Finally, with the
coupling of technology in urban fabrics, leading to the advancement of the concept of
smart cities [60–62] and the need for more compact yet connected neighbourhoods [63],
it is expected that sensors will be able to further communicate with AVs, resulting in
even safer driving experiences. This is even expected to be facilitated by upcoming 6G
technologies [64]. These advancements warrant further research and development of safer
and more proactive AV systems that can surely match or surpass a human driver in safe
and secure driving.

In regards to the current study, specific methods for addressing problems related to
lane detection (both straight and curved lanes) were proposed by using Hough transforms
and HSV conversions and simulated by MDP algorithms for behavioural planning, en-
abling vehicles to manoeuvre accurately by estimating the states of surrounding vehicles. A
shortcoming of the MDP model was recognised and accordingly addressed, and it is to be
noted that this method is highly case specific, as it takes into account only the surrounding
vehicles and not other factors such as people, animals, etc. These would be highly complex
to model, as this state estimation cannot be applied to people. In future research, this
can be addressed by building prediction models for human behaviour on roads and also
modelling human and vehicle interactions. These simulations could then be combined to
render a more realistic scenario which includes people’s behaviours.

6. Conclusions

This paper thoroughly discusses the safety and risk measures and analysis of au-
tonomous vehicles through the developed dynamic run-time safe assessment system to
understand how a variation in the ODD could affect the operation of AVs, so that vehicles
could remain operational in safe mode, which is explored via different scenarios and
factors. In particular, a CCA approach to manoeuvre through incoming vehicles is adopted
and discussed, with test cases for V2X communication, via an ’elastic band’ method, and
decision-making algorithms, for lane changing and straight lines via Hough transforms. A
contribution of this paper is the modification of the Hough transform algorithm to allow
AVs to detect curved lanes, which is achieved by removing captured image distortions
by capturing a colour matrix of the image, hence deriving the radius of the curvature of
the road.

Case studies, via an ego vehicle through the use of MRLs, were performed as part of
the analysis, where the algorithm was tested in two phases over 2000 epochs to reduce the
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variance between the validation and training datasets. Furthermore, the planning phase
oversaw the ego vehicle’s manoeuvrability, where the MDP algorithm was tested in three
environments: velocity variance, lane changing, and lane merging.

With the application of a robust control framework, it was noted that the ego vehicle
was able to predict the states of its surrounding vehicles, hence gaining the ability to predict
the possible paths of surrounding vehicles. It is noted that there is no single pathway
towards achieving autonomous driving, where a multitude of methods may be utilised.
However, human safety should be optimised at all levels, where AV companies should
prioritise this aspect, which will then lead to increased adoption and subsequently the
further development of the concept.

Author Contributions: Conceptualization, Methodology, Software, Formal Analysis, Investigation,
and Visualization by A.D.; Validation by A.D.; Data Curation by R.K.C.; Writing—Original Draft
Preparation by A.D.; Writing—Review and Editing by A.D. and Z.A.; Supervision by Z.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbol Quantity
S Given set of states
A The action state
O The observation space
Z The uncertainty of the sensor reading
T The uncertainty of the system dynamics and the surrounding environment
R The optimum function produced for the state known as the reward function
α The discount factor which is in the range of [0,1)
X2 The end position of ego vehicle
X1 The initial position of the neighbouring vehicle
Vajd The velocity of the neighbouring vehicle
Vego The velocity of the ego vehicle
Tmanoeuvre The time it takes to finish the manoeuvre
Xsafety The additional safety distance for extra tolerance
r Radius of curvature of the road
θ Angle between the intersected Hough lines
F∗iint Final internal force between the ith and (i + 1)th elastic band node
Fi

int Initial internal force between the ith and (i + 1)th elastic band node
ui Displacement of the ith knot
ui+1 Displacement of the i + 1th knot
ui−1 Displacement of the i − 1th knot
ks Spring constant in the range (0, 1]
Fei External force acting at the ith node element
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