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Abstract: In multi-drive electrified powertrains, the control strategy strongly influences the compo-
nent load collectives. Due to this interdependency, the component sizing becomes a difficult task.
This paper comprehensively analyses different electric drive system sizing methods for multi-drive
systems in the literature. Based on this analysis, a new data-enhanced sizing approach is proposed.
While the characteristic is depicted with a physics-based polynomial model, a data-enhanced limiting
function ensures the parameter variation stays within a physically feasible range. Its beneficial
value is demonstrated by applying the new model to a powertrain system optimization. The new
approach enables a detailed investigation of the correlations between the characteristic of electric
drive systems and the overall vehicle energy consumption for varying topologies. The application
results demonstrate the accuracy and benefit of the proposed model.

Keywords: electric drive system; system-level design; component sizing; powertrain optimization;
hybrid electric vehicles

1. Introduction

A growing environmental awareness and increasingly stringent CO2 limitations in
worldwide markets have resulted in an accelerated electrification of modern passenger
vehicles. In recent years, most car manufacturers have developed or announced new
all-electric platforms. In addition to battery electric vehicles (BEV), the hybridization of
conventional powertrains is also an important factor in order to meet the consumption re-
duction targets. Hybridized powertrains are about to supersede conventional powertrains
within the next years [1,2].

Hybrid electric vehicles (HEV) range from 48 V-Systems with 15–30 kW of electric
system power to plug-in HEVs with 60–100 kW of electric system power able to traverse
up to a 100 km range in all-electric mode.

In contrast to conventional powertrains, all HEV- and several BEV-powertrains consist
of more than one drive unit. As a result, the torque and speed requirements of each
drive unit are no longer solely dependent on the driving task but are influenced by the
operating strategy. This fact makes the sizing procedure of the electric traction motors
more complicated [3,4], and it should be carried out on the system-level [5]. The resulting
combined plant and controller optimization problem necessitates computationally efficient
yet accurate models for the electric drive system (EDS) [6]. Such models should also allow
a continuous variation of all important parameters.

In the recent literature, many authors have focused on the system-level EDS design.
However, in most cases, the EDS models are too simple, especially for efficiency. In contrast
to industry machines, the EDS design is no longer an optimization of the rated point. For
traction machines, the system efficiency highly depends on the shape and location of the
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EDS efficiency characteristic [7]. Many papers only focus on a variation of the main EDS
parameters, such as power or torque. Only a few publications consider a variation of the
efficiency characteristic shape [8–10].

The utilized methods can be classified into two categories depending on the level
the parameter variation is conducted on: (1) a variation on the component level and (2) a
variation on the system level. An illustration is given in Figure 1. If the parameters on
the component level are varied (e.g., geometry, winding, material), the parameters on the
system level (e.g., torque, power, efficiency) are the output of the EDS model. A high
number of variation parameters is necessary to cover the entire valid design space. Since
such a large number of variation parameters is computationally inefficient, parts of the
valid design space will be ignored. If, in contrast, the parameters are directly varied on the
system level, only a few variation parameters are necessary to cover the valid design space.
A variation on the system level, however, imposes a risk of permitting an investigation
outside of the valid design space. In some cases, parts of the valid design space may be
ignored due to simplifications in the utilized models. For a better distinction, parameters
on the component level are denoted as design variables, whereas parameters on the system
level are simply identified as parameters.
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Figure 1. Schematic representation of the component sizing procedure.
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Figure 1. Schematic representation of the component sizing procedure.

This paper proposes a new data-enhanced EDS model. The model is able to con-
tinuously vary all relevant parameters directly on the system level (e.g., torque, power,
maximum speed, efficiency characteristic) while limiting the variation parameters to the
valid design space. The electro-mechanical performance of the permanent magnet syn-
chronous machine and the inverter is modelled using a physics-based polynomial model.
Based on a database of FE-calculated designs, a limiting function to restrict the variation
range is conceived. The great advantage of the new approach is that once this limiting
function is constructed, no further detailed knowledge on electric machines is necessary
to investigate the influences of the EDS design on global optimization targets, such as the
energy consumption of multi-drive systems.
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Section 2 reviews different methods used to model electric drive systems during pow-
ertrain system design. The methods are classified depending on the variation parameters,
and the advantages and disadvantages are discussed. In Section 3, the new data-enhanced
model is presented before it is applied to a powertrain system optimization in Section 4.
The results in Section 5 demonstrate the accuracy and robustness of the EDS model and
illustrate its beneficial value at the system-level design phase.

2. Methods for Modelling Electric Drive Systems

Nicoletti et al. [11] performed a literature review on the design parameters necessary
for the high-level powertrain definition for an electric vehicle. In the case of the electric
machine sizing, the authors found six parameters as particularly relevant: rotational speed,
machine torque and power, gear ratio, geometric dimensions, and weight. Li et al. [7]
emphasize the importance of EDS efficiency as an additional parameter which is often
neglected, especially in multi-machine systems.

Given the design parameters, several methods are possible for determining the op-
timal values. This process is often referred to as component sizing. Huang et al. [12]
distinguish between traditional sizing methods and optimization-based component sizing.
The traditional sizing methods are often based on experience or databases and usually are
not able to find the optimal solution. In the recent literature, the optimization-based meth-
ods usually couple the component sizing problem with the operating strategy optimization,
thus becoming a combined optimization problem. The operating strategy manages the
power-flow between the different traction components (i.e., engine and electric machine)
with the aim to minimize the overall energy consumption. In [12], the optimization-based
component sizing is further divided into sequential, iterative, nested, and simultaneous
optimization procedures.

The sequential approach is the state-of-the-art method for detailed investigations on
the component level. Thereby, an optimization incorporating FE analysis of the electric
machine is often performed [13]. For example, [14–17] undertake a detailed optimization
of the electric machine, where the electric machine’s cycle efficiency is one objective.
However, if more than one drive unit is installed, the operating points of each drive
component depend highly on the specific optimal operating strategy and are no more
directly dependent on the driving cycle. The EDS operating points are a priori unknown.
Hence, for powertrains with more than one drive unit (e.g., HEV), the sequential approach
is inappropriate for component sizing on the system level.

A simultaneous optimization leads to a more complex mathematical problem formu-
lation with a very large number of variables in the problem (easily tens of thousands [18])
and is only possible if the model is heavily simplified. Pourabdollah et al. [18] introduced
a novel method to simultaneously optimize the size of powertrain components and the
operating strategy in a plug-in HEV. The authors apply a convex programming-based
operating strategy, and the components are modelled with quadratic loss functions. A
similar approach is used by Hu et al. [3] to simultaneously optimize the components and
the operating strategy layer for a BEV with simultaneous front and rear axle drives.

In a nested approach, all layers are optimized top down. During each iteration in
one layer, all sub-layers are optimized. In the case of nested sizing and control schemes,
the component sizing is optimized in an outer loop, whereas the control optimization is
conducted in an inner loop. The nested optimization method leads to a higher number of
total function evaluations but is able to find the global optimum [12,19]. A comparison of
different nested optimization procedure frameworks is given in [5,20]. In contrast to the
simultaneous approach, ordinary component models can be used for a nested optimization
method. Due to the higher number of total function evaluations, however, simplifications
are helpful to reduce the computational effort.

To perform the optimization, the parameters have to be varied. A parameter variation
can be conducted either discretely, e.g., by varying loss maps stored in a database [21], or
continuously, e.g., by scaling a base machine using scaling laws [22]. Whereas a discrete
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parameter variation imposes additional requirements on the optimization algorithm, a
continuous parameter variation simplifies the optimization process and ensures that the
global optimum will be determined.

Several methods for generating EDS models with varying parameters exist. Table 1
gives a summary of different methods found in the literature. The methods can be divided
into two categories depending on the level on which the parameters are varied. Those two
categories along with the related methods will be described in the following.

Table 1. Classification of EDS modelling methods for component sizing found in literature.

Parameter Variation Method Literature

Component level

Analytical calculation [7,23–26]
Equivalent circuit models [27,28]
Scaling laws [6,22,29–32]
Neuronal networks [13,33]

System level
Deforming loss maps [19,20,34–39]
Classified database [9,10]
Mathematical models [3,4,8,40,41]

2.1. Component Level

A parameter variation on the component level varies the component design variables.
Such design variables can be geometry parameters such as machine diameter and length,
winding parameters such as number of turns or slots per pole per phase, electric parameters
such as current and voltage, or material parameters such as magnet force and grade. This
approach leads to a higher modelling depth of the investigated component. A deep
knowledge of each specific component is necessary, leading to a multidisciplinary character
of the problem. These methods include a large number of possible design parameters to
be varied. The effect of a variation on the characteristic output of the component, and
therefore the input to the inner optimization loop, is unknown. Such methods inherently
allow conclusions identifying the influence of a parameter variation on the resulting
installation space, weight, inertia, and cost.

By using analytical calculation methods, the entire EDS design process including
stator and rotor design, winding design, and material selection is conducted at each
function evaluation. The used models highly depend on the considered machine type
and topology. Analytical calculations are considered as computationally efficient. To
take into account the nonlinear properties of the materials, however, several iterations
are necessary to obtain a valid saturation state. In addition, the calculation of loss maps
during post-processing requires an additional optimization procedure. Furthermore, the
achievable accuracy is limited, especially for the core losses of highly utilized synchronous
machines with embedded magnets. Kalt et al. [42] published an electric machine design
tool for the automated design and calculation of efficiency maps based on an analytical
calculation using few input parameters. This model was applied in [24] to investigate the
influence of the design parameters on the cycle efficiency. A similar tool is used in [25].
In order to simplify and accelerate the process, LeBerr et al. [25] neglect the saturation
effects. Li et al. [7] proposed a method to directly derive loss maps of an induction machine
based on design parameters, avoiding the aforementioned additional optimization during
post-processing.

Another method can be the usage of equivalent circuit modelling. The electric ma-
chine’s characteristic is then described by a few parameters of a linear network such as
resistances and inductance. Such models are able to predict the performance and loss
characteristics at any specific operating point. They are, however, dependent on the con-
sidered machine type. After having estimated the parameters of the linear network by FE
simulation, they can be varied in order to investigate different machines. Grunditz [27]
adapted the parameters for a change in the machine’s active length. A difficulty, however,
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consists in the dependence of those parameters on the phase current and current advance
angle due to magnetic saturation in the steel material. Eroglu et al. [28] neglect the effect of
saturation by considering the inductance to be constant.

The most commonly used method to vary parameters on the component level are
so-called scaling laws of electric machines. They take advantage of the separation of the
FE-based calculation process into the parts FE analysis and post-processing. After solving
Maxwell’s equations, the nonlinear relation between current (magnetomotive force) and
magnetic flux is known. Without further increasing the maximum magnetomotive force, the
machine’s length and the number of turns in the winding can be varied before calculating
the characteristic loss map in the post-processing. Even a variation of the machine’s outer
diameter is possible if all dimensions in the cross-sectional area are scaled by the same
factor. A very high accuracy of the results over a broad variation range is achieved. This
method was described by Stipetic et al. [29] for permanent magnet synchronous machines
and was extended to induction machines by Nell et al. [31].

The former restriction, to be able to only vary the three parameters of length, diameter,
and number of turns, can be improved by using artificial neuronal networks (ANN). This
method includes the training of an ANN to a previously calculated database. The input
of the model can be any machine parameter, whereas the output is a loss map. This
approach was demonstrated by Gletter et al. [33], where the model was trained for the
input parameters length, diameter, and number of turns. Zăvoianu et al. [13] trained their
model to predict several scalar optimization objectives such as efficiency and cogging
torque in a specific operating point instead of the prediction of entire loss maps.

2.2. System Level

Using a parameter variation on system level, the output of the component model
is varied. The varied parameters become, for example, maximum torque, rated speed,
maximum speed, or efficiency. Such a variation on the system level reduces the necessary
modelling depth in the components. The computational effort is reduced, and a more
flexible and easy-to-understand component model is possible. These models allow the
system developer to investigate component variations without having deeper knowledge of
the component itself. This is why such modelling methods are widespread in the literature
(cf. Table 1). However, models in this second category usually incorporate assumptions and
simplifications, leading to a reduced accuracy. In addition, it is difficult to find an inference
back to the component design variables. This makes it hard to restrict the parameter range
to a valid area. As a result, such methods can very well describe the influence of a variation
in the component’s characteristics on the system output, but it may be that the investigated
component is physically not feasible (cf. Figure 1).

If the variation of the parameters is conducted on system level, the most common
method is the deformation of a predefined loss map, as used in [19,20,35,37–39]. This
base characteristic can be the result of a preliminary calculation or a measurement. By
varying the machine’s maximum torque and nominal speed, the loss map is stretched and
compressed. Such a variation is similar to the variation of the machine’s length and number
of turns when using the scaling laws previously described, even though much faster.
Several simplifications are met to scale the EDS by deforming the loss map [19]. These
simplifications lead to a restricted applicable variation range, and the influence of such
a variation on the power electronics losses cannot be considered. Another disadvantage
of this method is the lack of varying the efficiency characteristic in terms of shifting the
efficiency optimum to other regions.

If a variation method based on databases is used, a variation of the efficiency charac-
teristic is also possible. The database in these methods consists of several tens or hundreds
of FE-calculated or measured loss maps which are classified by characteristic parameters.
Domingues et al. [9] classifies 20 designs in categories according to their outer diameter
and constant power speed range. The 20 designs can further be scaled in machine length
to achieve the torque and power requirements. The presented approach allows for the
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investigation of different efficiency characteristics. A variation between different character-
istics occurs in discrete steps. Vaillant [10] avoids this problem by interpolating between
the stored characteristic loss maps to generate a new characteristic. However, there is no
guarantee that the outcome is feasible in a physical sense, which is a major drawback of
such an interpolation.

In contrast to the physics-based models described before, some studies use mathemat-
ical models to depict and vary loss maps of electric drive systems. Hellberg et al. [8] use
elliptic paraboloids to model the efficiency map of electric machines. In the first step, the
model is fitted to a measured efficiency using a least-min-square optimization. To generate
new characteristic maps, additional parameters for shifting and rotating the paraboloid are
introduced. A radial green function was used by Boehme et al. [41] to find a smooth power
loss representation, which is later scaled linearly only in the torque direction. The scaling
approach used ignores a variation of the efficiency characteristic. In convex programming
optimization frames, typically the electric machine’s losses are modelled with a second
order polynomial and are scaled linearly with torque [3,4]. Again, the variation of the
efficiency characteristic is ignored for the sake of obtaining strongly simplified component
models. In conclusion, those mathematical models are easy to implement, fast to evaluate,
and allow a continuous exploration of the entire design space—including a variation of the
efficiency characteristic—if applied correctly. However, they show limited accuracy and
have no or little physical context.

To avoid the latter problem, a polynomial model for the losses in electric machines
based on physical considerations is proposed in [43]. As the model is mainly intended for
machines in industry applications, it is only valid in the base-speed region in motoring
mode. Decker et al. [40] recently proposed a similar physics-based polynomial model
which is extended to the field-weakening region and the generating mode and is capable
of modelling all major EDS losses (i.e., electric machine and inverter). This model is also
able to predict the DC-bus voltage dependency of the losses and therefore is applicable to
automobile applications.

None of the above discussed methods allows a computationally efficient systematic
variation of the entire EDS characteristics while ensuring an application-specific feasible
design. Only the loss model in [40] allows a systematic variation of the loss map, but further
extensions are necessary to model the limiting curves and to ensure that the modelled EDS
is feasible.

3. Data-Enhanced Electric Drive System Model

In the previous section, different methods found in the literature to model and vary
the characteristics of EDS within a system optimization process were summarized and
discussed. Two levels for parameter variations have been introduced. This study proposes
a new data-enhanced EDS model to vary parameters on the system level by combining the
advantages of mathematical models and database-oriented approaches (cf. Table 1). This
work models the EDS loss maps using the physics-based polynomial model developed in [40]
and extends the model to predict the maximum torque curves. The proposed approach
allows a continuous variation of the EDS characteristics. To ensure that the variation only
takes place within a feasible range, a limiting function is employed. This limiting function
consists of a random forest algorithm which is trained to a database of prior FE-calculated
EDS. Prior to the training process, the database can be filtered for freely selectable design
variables such as installation space, inverter phase current, or usable materials. The limiting
function will then restrict the parameter range used for the EDS model. Once the limiting
function is implemented, the proposed method allows the inclusion of the EDS model into
a powertrain system optimization procedure. One possible objective would be to maximize
the consumption savings while minimizing the electric system power. The overall process
is presented in Figure 2.
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Figure 2. Schematic representation of the combined optimization process incorporating the
proposed data-enhanced EDS-model.
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Figure 2. Schematic representation of the combined optimization process incorporating the proposed
data-enhanced EDS model.

The contributions of this work are twofold. First, the existing methods in the literature
to describe and vary the EDS characteristics’ behaviour are summarized and compared.
The results have been given in the previous section. Second, this work proposes a new
data-enhanced model allowing a continuous variation of the EDS characteristics restricted
to freely selectable physical boundaries such as installation space, inverter phase current,
or usable materials. The new approach allows a detailed investigation of the correlation
between EDS characteristics and overall vehicle efficiency for different topologies and
driving environments. The polynomial model is limited to permanent magnet synchronous
machines (PMSM), though an adaption to other machine types may be possible.

3.1. Polynomial Model

The polynomial model consists of two individual sub-models completely characteriz-
ing the EDS under test. The two sub-models are a loss model describing the occurring losses
at a specific operating point and a maximum torque model describing the maximum torque
ability of the EDS for a given speed and DC-bus voltage.

3.1.1. Loss Model

The loss model used in this work was recently published in [40]. It allows the losses
of electric drive systems (electric machine plus inverter) to be predicted as a function
of speed n, torque T, and DC-bus voltage VDC. The model consists of nine loss terms,
characterized by nine coefficients c1 to c9 and a transition speed between the base-speed
and the field-weakening region nFW. For speeds higher than the transition speed, the loss
terms c7 to c9 are activated due to a Heaviside step function H(n− nFW). The applied loss
terms are motivated by physical considerations, and therefore each term can be assigned
to one or several loss mechanisms. Equation (1) presents the polynomial loss model. A
derivation of this formula can be found in [40].

Ploss(n, T, VDC) ≈ c1n + c2n2 + c3|T|+ c4T2 + c5T2n2 + c6Tn2

+
[
c7(n− nFW) + c8T2(n− nFW) + c9T2(n− nFW)2]H(n− nFW)

(1)

The transition speed nFW can be approximated with

nFW(T, VDC) ≈ nN(VDC)

(
ΨPM,pu +

(
1−ΨPM,pu

) T
Tmax

)−1
. (2)
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In Equation (2), nN denotes the nominal speed, Tmax the maximum torque, and ΨPM,pu
the normalized (per unit) magnet flux linkage, as was defined by Adnanes et al. [44]

ΨPM,pu =
ΨPM(OC)

Ψtot(nN, Tmax)
. (3)

In this work, the influence of the efficiency characteristic is investigated independent of
the machine’s torque and power capability. The idea is to vary the efficiency characteristic
described by the coefficients c1 to c9 separately. To be able to do so, the model in Equation (1)
is normalized as was proposed in [40]. As customary in electric machine theory, the torque
is referred to as the maximum torque Tmax and thus takes values in the range [−1; 1]. The
speed is related to the nominal speed nN, and the maximum speed becomes a multiple of
the nominal speed. In order to dissolve the relation between mechanical power and losses,
the coefficients c1 to c9 are referred to as the nominal mechanical output power Pmech,N
at nominal speed, maximum torque, and nominal voltage. As a result, coming from the
normalized (per unit) losses, the losses can be calculated with

Ploss(n, T, VDC) = Ploss,pu(npu · nN(VDC), Tpu · Tmax)Pmech,N. (4)

3.1.2. Maximum Torque Model

By using a new normalized (per unit) parameter plane, in the 1990s, Soong et al. [45]
demonstrated that the maximum torque characteristic of brushless synchronous AC ma-
chines can be described by only two parameters: the normalized magnet flux ΨPM,pu and
the saliency ratio ζ = Lq/Ld. To reduce the number of necessary parameters to only two pa-
rameters, the machine is simplistically assumed to be ideal, i.e., no saturation is accounted
for, and zero armature winding resistance and zero losses are assumed. Winzer et al. [46]
extended the theory to electrically excited synchronous machines.

According to [45], the normalized torque Tpu can be calculated with

Tpu = ΨPM,pu Ipu cos(αI) +
1
2
(ζ − 1)Ld,pu I2

pu sin(2αI), (5)

where αI denotes the current advance angle with respect to the q-axis, and the normalized
d-axis inductance Ld,pu is a function of ΨPM,pu and ζ.

Ld,pu =

√
sin2(αI)−

(
Ψ2

PM,pu − 1
)

ζ cos2(αI) + sin(αI)ΨPM,pu

sin2(αI) + ζ cos2(αI)
. (6)

The normalized current Ipu is limited to

Ipu =
√

I2
d,pu + I2

q,pu ≤ 1 (7)

and the current phase advance angle αI is chosen to maximize the normalized torque in
Equation (5). In the field-weakening region, the voltage constraint

Vpu =
√

V2
d,pu + V2

q,pu ≤ 1 (8)

also has to be met. With f being the electric frequency, the d- and q-axis contributions are
calculated by

Vd,pu = −2π f Lq,pu Ipu cos(αI) (9)

and

Vq,pu = 2π f
(

ΨPM,pu − Ld,pu Ipu sin(αI)
)

. (10)
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Equations (8)–(10) lead to a restricted choice of possible values for αI, and for higher
speeds, Ipu may be forced to take values smaller than unity. The per unit maximum torque
characteristic over speed Tpu(npu) can further be calculated by searching the combination
of current and current phase advance pairs fulfilling the current and voltage constraints in
Equations (7) and (8) while maximizing the torque in Equation (5).

In order to approximate the influences of saturation, resistive voltage drop, and
losses, this work introduces two additional parameters. The first is a correction factor
ksat to take into account the effect of saturation. With increasing load, the magnetomotive
force introduced by the armature current rises, while the magnetomotive force introduced
by the permanent magnets remains constant. Due to the nonlinear characteristic of the
iron material, the magnetic permeability is reduced, leading to a falling contribution of
the permanent magnet on the total flux at maximum torque. By multiplying ΨPM,pu in
Equations (5), (6), and (10) with the reciprocal correction factor 1/ksat, this effect can be
considered. The correction still assumes a constant saturation over speed. In contrast
to the loss model, however, where ΨPM,pu is a characteristic parameter at open circuit
(cf. Equation (3)), the normalized permanent magnet flux is thus assigned a slightly smaller
contribution at maximum load.

The second additional parameter is the normalized voltage drop ∆Vpu over the ar-
mature winding and semi-conductors at maximum current. It characterizes the different
transition speed from constant torque to constant power region in motoring and generating
mode. While the machine is operating in motoring mode, 0 ≤ αI ≤ π/2 yields ∆Vpu > 0,
whereas in generating mode, π/2 ≤ αI ≤ π yields ∆Vpu < 0. Given this correction, the
voltage constraint in Equation (8) becomes

Vpu =
√

V2
d,pu + V2

q,pu ≤ 1− ∆Vpu. (11)

The effect of the resistive voltage drop on the per unit d-axis inductance Ld,pu
is neglected.

To obtain the maximum airgap torque characteristic Tδ(n), the normalized base torque
Tb,pu has to be set to the maximum torque Tmax, and the normalized speed vector npu
is multiplied by the nominal speed nN. The influence of a varying DC-bus voltage is
considered by a change in the nominal speed nN = f (VDC).

Tδ(n, VDC) = Tpu(npu · nN(VDC))
Tmax

Tb,pu
(12)

Lastly, the obtained airgap torque is further reduced by occurring mechanical losses
and rotor losses, leading to a smaller motoring torque and a higher negative generating
torque. This work uses an approximation based on the loss model in Equation (1). The
rotor losses can not be separated and are neglected. This is a valid assumption, since rotor
losses in PMSMs are usually small compared to the total losses. The mechanical losses are
approximated by

Ploss,mech(n) ≈
(

c1npu + c2n2
pu

)
Pmech,N. (13)

Besides a contribution of the windage losses, the loss term c2n2 also includes the eddy
current iron loss contribution evoked from the permanent magnet field. These two effects
can not be separated. This will lead to a small discrepancy; however, the effects can be
shifted into the parameters ksat and ζ, resulting in a good overall accuracy. The resulting
maximum torque characteristic is calculated by

T(n, VDC) = Tδ(n, VDC)−
Ploss,mech(n)

2πn/60
. (14)

A possible influence of the iron losses on the power factor is neglected.
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3.1.3. Combined Model

By combining the maximum torque model and the loss model, a description of the
entire EDS characteristic is possible with 16 parameters:

• Maximum torque Tmax;
• Nominal speed nN;
• Maximum speed nmax;
• Loss coefficients c1 to c9;
• Ideal machine parameters ΨPM,pu and ζ;
• Saturation correction factor ksat;
• Normalized resistive voltage drop ∆Vpu.

The first three parameters define the classical torque, power, and speed limits, whereas
the latter 13 parameters describe the normalized characteristic.

In contrast to existing models in the literature, the new polynomial model allows a
computationally efficient systematic variation of the EDS characteristic, including location
and shape of the maximum efficiency area as well as the shape of the limiting curves over
speed. In addition the DC-bus voltage is a parameterizable input. Furthermore, every one
of the 16 parameters is related to a physical mechanism. This may also allow conclusions on
the resulting necessary changes in the electromagnetic design based on expert knowledge.

3.2. Limiting Function

Those 16 parameters can now be freely varied to investigate the influence of each
parameter—and the related physical mechanism—on the overall vehicle fuel economy.
However, it is important to limit the variation of each parameter to a feasible range. This
work proposes a data-enhanced method to bound the 16 parameters to a trusted region. The
trusted region is obtained from the values found in a database of FE-calculated electric
drive systems. The considered database is obtained by numerical optimization and contains
several hundred different designs. Table 2 presents the variation range of some typical
design variables. The database can be filtered based on the design variables in order to
meet the project specific requirements (e.g., maximum installation space).

Table 2. Variation range of some typical design variables in the considered database.

Design Variable Minimum Value Maximum Value

Outer diameter in mm 140 170
Active length in mm 40 140

Slot number 24 54
Pole number 6 12

Shaft power in kW 10 40
Shaft torque in Nm 40 100

Maximum speed in min−1 9000 22,000

For each design in the (filtered) database, the 16 design parameters are determined.
The maximum torque Tmax, the nominal speed nN—defined as the speed where the torque
falls below 97% of the base torque—and the maximum speed nmax are extracted from the
maximum torque over speed curves. Additionally, the normalized resistive voltage drop
∆Vpu is calculated using the difference in nominal speed in motoring and generating mode

∆Vpu =

∣∣nN,gen − nN,mot
∣∣

nN,gen + nN,mot
, (15)

based on the maximum torque characteristics. The normalized magnet flux linkage ΨPM,pu
is obtained by FE simulation using Equation (3). The characteristic loss maps of every
design in the database are fitted to the loss model to obtain the nine loss coefficients. For
the fitting process, a secant version of the Levenberg–Marquardt method (smarquardt)
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implemented in [47] is used. Details on the loss maps fitting process are given in [40]. A
similar fitting procedure is used to assign the values for the saliency and the saturation
correction factor in the maximum torque model. In this case, the maximum mechanical
power over speed curves is fitted to the maximum torque model.

After having removed possible existing outliers, the trusted region is constructed
as a convex surface containing the parameter values found in the database. For this, the
MATLAB integrated function convhulln is used. Since it is computationally not efficient
to calculate a convex hull in 16 dimensions, a simplification is made by comparing each
dimension with any other. Figure 3 schematically illustrates the process.
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Figure 3. Schematic illustration of the limiting function. The design marked in red is identified as
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Figure 3. Schematic illustration of the limiting function. The design marked in red is identified as an
outlier and does not contribute to the limiting function.

The convex hull can be used to identify if a design with arbitrary design parameters
is valid or invalid. If the arbitrary design lies inside the hull, it is considered to be valid;
if the design lies outside, it is considered to be invalid. This test is conducted using the
Inhull-function implemented in [48].

The Inhull-function is a convenient way to decide whether a design lies inside or
outside the hull. However, the computational effort is relatively high and depends on the
number of testpoints as well as the number of surfaces of the convex hull. For the usage
in the hybrid system optimization procedure (cf. Figure 2), where the limiting function is
frequently executed, a faster method is necessary. In this work, a random forest approach
implemented in [49] is used. Therefore, a Latin hypercube of several hundreds of thousands
test points is set up, and, using the Inhull-function, every test point is classified into the
categories inside or outside the convex hull. Based on this data, the random forest is trained.
The quality of the model is verified using a k-fold cross-validation.

4. Powertrain System Optimization

To demonstrate its capability, the developed EDS model is applied to a conventional
HEV system optimization process of a 48 V mild-hybrid system. The overall process is
schematically visualized in Figure 2 and consists of the objective function and a multi-
objective optimization. The conventional manipulation of a stored loss map is replaced
with the new EDS model, which generates new loss maps and limiting curves based on
the varying 16 EDS parameters. The objective function includes a consumption simulation
with a nested optimization approach for the component sizing and the operating strategy.
An equivalent consumption minimization strategy (ECMS) is used as it was implemented
and described in [19]. The assumed exemplary D-segment vehicle has a 1.5 L gasoline
engine, and its main parameters are presented in Table 3. A parallel hybrid topology
is chosen, where a variation of the 16 EDS parameters is conducted for the P2 and P4
positions, respectively. The mechanical connection between the EDS and crank shaft is
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defined with a gear ratio to deliver 6500 min−1 at nmax in the P2 position. In the case of
the P4 position, the gear ratio is chosen to obtain 1500 Nm peak torque at the wheels, and
a small 5 kW starter generator is added in the P1 position to meet the power net energy
demand at stand-still. The consumption is evaluated for the three Artemis driving cycles
Urban, Road, and Motorway 150 [50]. The resulting consumptions are then combined in a
weighted sum to give an average value.

Table 3. Main parameters of the considered D-segment vehicle.

Vehicle Parameter Value

Frontal area in m2 2.2
Air drag coefficient in - 0.26
Rolling coefficient in - 0.007

Vehicle mass in kg 1580
Wheel radius in m 0.32

The battery is modelled with a simplified electrical circuit for each cell. It consists of an
ideal voltage source VOCV and an inner resistance Ri. The values of the open circuit voltage
and the inner resistance are stored in lookup tables and depend on the state-of-charge SOC,
the temperature ϑ, the pulse length tpulse, and the direction of power flow (i.e., charge or
discharge direction).

The temperature is set to a fixed value. The maximum power the battery is able to
provide, PBAT,max, in the charge and discharge direction with Ns cells connected in series
and Np parallel branches is calculated with

PBAT,max,ch/disch(SOC, ϑ, tpulse) =
(

VOCV Icell + Ri I2
cell

)
NsNp, (16)

where the current in each cell Icell is limited to a maximum value, depending on the
temperature and the power flow direction. The voltage

VBAT = (VOCV + Ri Icell)Ns (17)

is limited to an upper and a lower bound. In this work, a voltage level between 36 V and
52 V is targeted, determining the necessary number of serial connected cells. The battery is
dimensioned such that it is able to provide the nominal EDS power over a usable energy
window of 600 Wh in both charge and discharge directions. The active surface of each cell
is then scaled in order to vary the cell capacity and inner resistance to achieve this goal.
The necessary energy content to be installed is an output of this process.

In the outer loop, a genetic optimizer (NSGA2) implemented in [51] is used. As objec-
tives, the CO2 savings and the nominal EDS power are chosen. The variation parameters
are set to the 16 EDS parameters defined in Section 3.1.3. In the case of the P4 topology, a
reduction factor for the disconnect speed kvmax,P4 is introduced as an additional variation
parameter. This enables the electric machine to be disconnected at the second axle for a
revolutionary speed lower than the maximum speed nmax. Prior to the optimization, the
random forest describing the limiting function of the EDS parameters is built. During each
iteration of the optimizer, the limiting function verifies if the chosen new parameters are
valid. Invalid individuals are replaced with newly generated children until all individuals
in the population are considered to be valid. Every design is then evaluated regarding
its CO2 savings by conducting a consumption simulation. In order to further accelerate
the optimization procedure, the consumption simulation within the objective function is
replaced by an artificial neural network (ANN) model. This model describes the functional
interrelationship between the variation parameters and the CO2 emissions. To build this
model, the code implemented in [52] is used. The model quality is verified using a k-fold
cross-validation.
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5. Results and Discussion

This section presents the achieved results and is divided into two parts. First, the
achievable accuracy and robustness of the EDS model presented in Section 3 is shown.
Second, the results of the exemplary HEV system optimization described in Section 4 are
demonstrated, and the beneficial value of the proposed approach is discussed.

5.1. Validation of Proposed EDS Model

In order to demonstrate the accuracy of the EDS model, for each design in the database
(cf. Table 2), the model is parameterized. The results of each parameterized model are then
compared to the respective values in the database. As it was done in [40], for each design,
the quality of the model is evaluated using the interpolation stability index

QISI =

√
1

Ntp
∑
(

z− ẑ
z

)2
· 100 (18)

and the coefficient of determination

r2 = 1− ∑ (z− ẑ)2

∑ (z− z)2 . (19)

Both criteria are evaluated for the loss model as well as for the maximum torque
model. The variable z in Equations (18) and (19) denotes the FE-calculated power loss in
the case of the loss model and the FE-calculated maximum shaft power in the case of the
maximum torque model. The variable ẑ denotes the respective modelled values, z is the
mean of the FE-calculated values, and Ntp denotes the number of test points. All valid test
points are used for the evaluation, including those at zero load. The investigated designs
correspond to the database, and the main design variables are varied within the range
presented in Table 2. The resulting statistical distributions for both criterion are given in
Figure 4.

0 5 10 15 20 25

Q
ISI

 in %

0

0.5

1

D
en

si
ty

 F
u
n
ct

io
n

1 0.98 0.96

r
2
 in [-]

0

0.5

1

D
en

si
ty

 F
u

n
ct

io
n

(a) Loss model

0 5 10 15 20 25

Q
ISI

 in %

0

0.5

1

D
en

si
ty

 F
u
n
ct

io
n

1 0.98 0.96

r
2
 in [-]

0

0.5

1

D
en

si
ty

 F
u
n
ct

io
n

(b) Maximum torque model
Figure 4. Statistical evaluation of the EDS model accuracy. (Blue bars: probability density, red curve:
cumulative density, horizontal black line: 95% limit.)

Regarding the loss model, most of the investigated designs achieve a QISI between
7% and 12% as can be seen in Figure 4a. As indicated by the intersection between the cu-
mulative density and the horizontal black line, 95% show values better than 15%. Figure 4a
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also presents the coefficient of determination achieved with the loss model. Most designs
are found to predict the losses with an accuracy around 0.99. A value better than 0.98 is
observed for 95% of the investigated designs.

The interpolation stability index of the maximum torque model can be found around
5% for most of the investigated designs, as Figure 4b demonstrates. A QISI ≤ 10% is
observed for 95% of the designs. The achievable coefficient of determination is also plotted
in Figure 4b. More than 80% show an r2 around 0.998, and 95% of the designs are better
than 0.993.

The results demonstrate the good accuracy of the polynomial model. Even for a
variation of many design variables—such as geometry, winding, electric, and material
parameters—the model shows a good robustness. The results allow the usage of the
model within a system-level design optimization. In order to further investigate the
influence of the occurring modelling error on the CO2 emissions, a consumption simula-
tion is conducted, and the results of the polynomial model are compared to those with
the FE-calculated loss map and maximum torque curve. To investigate the worst case
scenario, a design with greater modelling error is chosen. During the fitting process,
this design shows for the loss model QISI = 13.6%/r2 = 0.9878 and for the maximum
torque model QISI = 7.1%/r2 = 0.9968. The resulting relative deviation in CO2 emissions
is calculated with

∆CO2 =

∥∥CO2,FEM − CO2,Model
∥∥

CO2,FEM
· 100. (20)

In Figure 5, the results are plotted for different driving cycles. In all cases, the mod-
elling error in the EDS model leads to only small deviations in CO2 emissions, far below 1%.
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Figure 5. Deviation in CO2 emissions if the EDS model is used compared to the original FE-calculated
loss maps and maximum torque curves.

In the following, the limiting function is constructed based on the obtained 16 pa-
rameters of the polynomial model. Designs showing a bad fit are eliminated in order to
guarantee a good quality of the model. The maximum allowable error is chosen as to
allow most of the designs to contribute to the models and is presented in Table 4. Further-
more, outliers are eliminated to prevent large white spaces within the convex hull limiting
function (cf. Figure 3).
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Table 4. Maximum allowed modelling error to contribute to the limiting function.

Statistic Loss Model Maximum Torque Model
QISI r2 QISI r2

Worst allowed value 15% 0.98 10% 0.99

5.2. HEV System Optimization

In the first step, the ANN predicting the CO2 emissions is validated. To do so, the
predicted values ẑ are compared to the calculated values z by applying the statistics QISI and
r2 in Equations (18) and (19). This time, the variable z denotes the CO2 emission obtained
by the consumption simulation, and ẑ the emissions obtained with the ANN model. For
both investigated topologies, the achieved accuracy of the CO2 models is shown in Table 5.
It allows the consumption simulation to be replaced within the global optimization.

Table 5. Validation statistics of the CO2 model.

Statistic Urban Road Motorway 150
P2 P4 P2 P4 P2 P4

QISI 1.33% 1.61% 0.70% 0.93% 0.33% 0.55%
r2 0.9799 0.9554 0.9643 0.9852 0.9430 0.9259

Finally, the optimization scheme in Figure 2 is run two times for different topologies.
During the first optimization, the EDS parameters are varied in the P2 position. The second
one optimizes a P14 topology, where the parameters in the P4 position are varied. Both
procedures are started with an identical start population. Figure 6 presents the resulting
Pareto charts. The CO2 reduction potential is defined as a percentage of the conventional
vehicle’s emission

∆CO2 =
CO2 − CO2,conv

CO2,conv
· 100, (21)

and represents the weighted average of the three investigated driving cycles. For this study,
an equal weight for all cycles is chosen.

(a) P2 topology (b) P4 topology

Figure 6. Pareto–front ∆CO2 vs. Peds,max (Blue dot: start population, black circle: last generation).

A weighted reduction potential of up to 28% can be achieved with a P2 hybrid. Most of
this potential can already be covered with an installed mechanical EDS power of 20–25 kW.
In contrast, the P4 hybrid further increases this potential with up to a 34% CO2 savings.
Again, an installed mechanical EDS power of 20–25 kW is necessary to cover most of the
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reduction potential. The large variance in the CO2 savings of up to 15% for a constant
EDS power results from the varying EDS characteristic. This underlines the importance of
investigating not only the EDS power but also the entire EDS characteristic.

The developed approach in this paper further allows conclusions on the optimal EDS
characteristics for a specific application. The sensitivity between the 16 EDS parameters
and the fuel consumption can be investigated by taking a closer look at the evolution
of the parameter range during optimization. Based on expert knowledge, conclusions
on the application-specific optimal electromagnetic design can be extracted. Figure 7
presents the parameter range of the variation parameters and compares the optimal last
generation against the random start population. The values are normalized with regard
to the maximum and minimum values. The statistic boxplot representation is chosen to
visualize the optimizer’s path. The box includes the 25th to 75th percentile. By comparing
the start population against the last generation, a contraction of the boxes can be observed,
and the parameter range is concentrated to a specific optimal region. The optimal parameter
ranges, eventual interdependencies between several parameters, and their impact on the
electromagnetic design are discussed in the following.
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Figure 7. Statistic representation of the population. (Light blue: start population, black: last generation.)

For both topologies, the nominal speed nN shows minimal values. Especially in
the P4 position, a minimal nominal speed seems to be optimal. A low nominal speed
enables the maximum power at low speed, which explains this behaviour. The missing
multi-gear transmission in the P4 position further increases the need for a small nominal
speed. This allows one to conclude that an optimal drive in the P4 position will require
a higher torque capability and therefore more active volume compared to an equally
powered optimal drive in the P2 position. Having a minimal nominal speed, the maximum
torque Tmax ensures the variation in mechanical EDS power. Therefore, the torque shows a
broad variation range. In contrast to the nominal speed, the maximum EDS speed nmax is
optimally maximized. In the case of the P4 position, the additional parameter kv,max,P4 has
been introduced. Comparable to the maximum speed, this decoupling coefficient also tends
to higher values, although it is not at its maximum for most designs on the final Pareto
front. The maximum engaged speed is proportional to the product of maximum speed
and decoupling coefficient and should be large enough to gather most of the recuperation
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energy at high vehicle velocity. For higher speeds, it is more efficient to decouple the
electric machine due to the increasing EDS losses at higher speed.

As could be expected, the optimizer tries to minimize the loss coefficients c1–c9 to
increase the CO2 savings. The only loss coefficient which is not minimized is the coefficient
c6 responsible for the asymmetric behaviour in motoring and generating mode. However,
decreasing loss coefficients will require an increase in active volume, which will imply an
increase in cost and installation space. Whereas the speed dependent coefficients c1 and c2
are minimized for both topologies, the torque dependent coefficients c3 and c4 seem to be
more important in the P2 position. While a decreasing coefficient c3 can be achieved by a
higher power factor and therefore an increasing magnet flux contribution ΨPM,pu, a higher
amount of copper will lead to a decreasing coefficient c4. The loss coefficient c7 highly
influencing the no-load losses in the field-weakening region is more important in the P4
position. Since the physical meaning of this coefficient is coupled to the field-weakening
effort, the smaller values for c7 require a smaller magnet flux contribution ΨPM,pu. Such
coupling effects between the different EDS parameters are achieved due to the limiting
function. In contrast, the optimal magnet flux contribution in the P2 position is relatively
high, leading to less magnetizing current and therefore smaller coefficients c3 and c4. The
general minimization of the loss coefficients leads to less utilized machines and therefore
to low saturation values ksat.

From the Pareto front in Figure 6, one optimal design is chosen by weighting the
objectives ∆CO2 and Peds,max at the ratio of 2 to 1. The related EDS characteristics are
plotted in Figure 8. By comparing the efficiency maps, the same correlations as before
can be observed. A good efficiency around zero torque seems to be optimal for both
investigated parallel hybrid topologies. In a P2 position, a good efficiency at low speed
and higher torque is beneficial, since the gear box maintains the operating speed within a
restricted area. In a P4 position, the EDS speed is coupled to the vehicle’s velocity. Good
efficiencies are then required at a higher speed and low torque.

As the previous results demonstrated, the newly developed data-enhanced EDS model
allows a detailed and comprehensive investigation on the optimal EDS characteristics for
different specific applications. One minor weakness of the polynomial loss model can be
observed in Figure 8. The optimizer tends to choose relatively high values for the loss
coefficient c6 responsible for the asymmetric behaviour between motoring and generating
mode. This leads to a slightly stronger asymmetry than expected. In order to keep the
coefficient c6 in check, some caution has to be paid to the limiting function and the database
it is constructed from. The size of the database is especially an important factor and should
be chosen with care.

(a) P2 topology (b) P4 topology

Figure 8. Efficiency map of the weighted optimal design.
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6. Conclusions

This paper discusses the open research issue of considering the EDS characteristic
during system-level component sizing in multi-drive systems. Different methods for sizing
are reviewed and discussed. A new data-enhanced EDS model is proposed. The new
model is capable of varying all relevant parameters including torque, nominal speed, and
level and shape of the EDS efficiency. Once a database is available, the model has good
properties regarding accuracy, scalability, and computational effort. However, a robust and
valid limiting function is crucial, since the optimizer will enter every possible gap.

The new approach is applied to an HEV system optimization of a parallel hybrid in
the P2 and P4 positions. A large influence (up to 15%) of the EDS characteristic on the CO2
reduction potential is observed. This allows for the conclusion that the EDS characteristic
should be considered during system-level component sizing. Furthermore, a dependency
of the optimal EDS characteristic on the considered topology is found. In the case of multi-
drive systems, the usage of identical electric drive systems independent of the installation
position might be sub-optimal in terms of vehicle energy consumption.

Further work may include the application of the new approach to serial or power-split
hybrids. Moreover, an adaption of the polynomial model to other machine types such as
induction machines or electrically excited synchronous machines would allow for a more
detailed investigation on the optimal EDS characteristics.
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The following abbreviations are used in this manuscript:

BEV Battery electric vehicle
ECMS Equivalent consumption minimization strategy
EDS Electric drive system
FE Finite element
HEV Hybrid electric vehicle
NSGA Non-dominant sorting genetic algorithm
OC Open circuit
PMSM Permanent magnet synchronous machine
SOC State of charge

Nomenclature

The following mathematical symbols are used in this manuscript:

αI Current phase advance angle
ζ Saliency ratio
ϑ Temperature
Ψ Magnetic flux linkage
c Coefficient
f Frequency
H Heaviside step function
I Electric current
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k Correction factor
L Inductance
n Rotational speed
N Number, quantity
P Power
QISI Interpolation stability index
r2 Coefficient of determination
R Electric resistance
t Time
T Torque
V Voltage
z Variable
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