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Abstract: Designing new mechatronic systems for vehicle applications is a complex and time-consuming
process. The increasing computational power allows us to generate automatically novel and new
mechatronic discrete-topology concepts in an efficient manner. Using state-of-the-art computational
design synthesis techniques assures that the complete search space, given a finite set of system
elements, is processed to find all feasible topologies. The topology generation is done by converting
the design synthesis problem into a constraint satisfaction problem. Accordingly, this mathematical
problem is solved by assigning the presence of components and connections to variables, whereby a
set of mathematical constraints need to be satisfied. These constraints capture, in essence, formalized
engineering knowledge. After solving this problem, the results are post-processed to discard redundant
topologies due to isomorphism. In this paper, a newly developed software application with automated
constraint generation is presented that facilitates the topology generation with multiple system levels in
a loop. The scalability of the problem and the different levels of expressiveness are analyzed, and the
influence of the abstraction level choice on the search space is discussed. Finally, a relevant mechatronic
design study from the automotive engineering field is discussed concerning the topology synthesis of
alternative electro-hydraulic actuation systems being part of new continuously variable transmission
topologies, thus showing its applicability.

Keywords: generative engineering; computational design synthesis; constraint programming;
discrete topology design; mechatronic systems; mechanical engineering; continuously variable
transmissions; vehicle technology

1. Introduction

Mechatronic system design is a complex and time-consuming job. For example, a conventional
vehicles equipped with an engine and a robotized transmission with increasing integration of electronic
control units have been built over decades now. As a result, a knowledge base is achieved about how
to build such systems. With the introduction of advanced new technologies, like electric-drive systems
and advanced hybrid power-split configurations, there is a lack of experience in designing such novel
systems. To solve this problem, computational design synthesis (CDS) is one of the techniques that can
be used effectively, and it focuses on automating synthesis during the design process. Through the
support of (increasing) computation power, the drafting and structural analysis become easy tasks that
can be outsourced by an engineer to a computer. A computer performs well on time-consuming or
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tedious tasks. However, the user should define the problem and must interpret the results cautiously.
With the use of CDS, the creative phase of designing a product is supported by software as well.

1.1. Automated Computational Design Synthesis Methods of Discrete System Topologies

Constraint programming (CP) techniques are already used to generate hybrid electric vehicle
(HEV) topologies in [1] or for the optimization of mechanical systems [2]. In these cases, CP is
introduced because of the system complexity and the multi-objective character, i.e., the system cost,
emissions, powertrain efficiency, and vehicle performance. Therefore, two types of constraints are
defined in [1] to prevent infeasible topologies from being generated. The first category of functional
constraints is introduced for a proper system behavior. The second category is the cost constraint type.
This latter type is used to prevent, e.g., a redundant series connection between two or more identical
components. This additional component does not add functionality, yet increases the system cost
and complexity.

In [3], a generic framework and guidelines for CDS are proposed. Thereby, four major CDS
activities are distinguished: representation, generation, evaluation, and guidance. At the beginning
of the process, the representation is defined (step 1). After that, an initial design is generated (step 2)
and evaluated (step 3). This evaluation is used as guidance (step 4) in the next design generation.
These four steps are used in the search process for new designs. Basically, that work introduces the
application of engineering knowledge into the generation step. In [4], constraint-based methods are
listed for automated CDS of solution spaces. CDS is related to introducing artificial intelligence (AI)
into the design process of mechanical topologies.

For manufacturing and assemblage of mechanical parts, the use of a computer is already standard.
Software can convert technical drawings into a program for a milling machine, and robots are able to
assemble parts without the control of humans. However, when the product design is finished and already
in production, then the costs are very high to change the (architectural) design. Ideally, every possible
topology should be simulated and evaluated in an early design stage. This reduces the risk of having
selected a suboptimal architectural solution. In [5–14], the importance of introducing computational
power into the design process due to the increasing system complexity is emphasized.

The method in [5] is based on object-oriented graph grammars. That method uses a hybrid
knowledge representation to formulate generic design rules in graph grammar. In this graph grammar,
every function, behavior, and structure (FBS) is defined for a particular problem. By means of an
open-source software application, topologies are automatically generated based on the formalized
knowledge in the graph grammars. In [8], the graph-theoretic method is used to generate designs.
The authors of [5] strongly recommend new supporting efforts from the field of computer science for
rapid progress in this area. Recently, a generic CDS framework has been modified and tailored to
complex dynamical systems in [9], with an example case study on advanced continuously variable
transmissions (CVTs) for vehicles. Thereby, CDS is applied on a lower system level compared to [1].
In [1], the search space and constraints are manually defined to generate feasible designs, while in [9],
the dynamic models of feasible topologies are automatically composed and simulated in Matlab
Simscaper for automated evaluation purposes, which is seen as a significant improvement.

1.2. Research Contributions and Outline

Based on the literature review above, it is shown that the research area of CDS for active dynamic
systems is becoming increasingly more relevant. Therefore, the work of [1,9] in particular is here
further extended with:

(a) A CDS framework to automatically formalize engineering knowledge into generic constraints.
Moreover, this enables the automated generation of multi-level systems with predefined constraints;

(b) The generation of multi-domain (electrical, mechanical, hydraulic, or combinations thereof)
discrete system topologies. This requires a library format that specifies the domain of each
component. For example, an electric machine has an electrical input and a (rotational) mechanical
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output. Based on these assigned domains, the constraints on the connection variables can
automatically be derived;

(c) The generation of topologies with different levels of expressiveness. Whereas [1,9] only declares
component types and instances, this work introduces the declaration of ports and analyzes the
benefits and drawbacks of this higher level of expressiveness. Furthermore, this higher level of
expressiveness supports (b);

(d) Further analysis of the search space: The influence of the number and degree of components vs.
computational time as well as the working principle of the solving algorithm is analyzed and
insights are created.

The research objectives (a) and (b) are considered as future work in [5], and follow the trend
towards a complete product design using CDS. Given (b), a library format is required in order to
define all components’ properties, including the energy domain. Objective (b) transforms the topology
generation problem into a port-matching problem, which is, however, still interpreted as a satisfiability
problem. In this suggested library format, all the components are specified with their corresponding
ports. When a component is subject to an energy conversion, like from electrical to mechanical, then the
ports of the component must be properly connected to ensure proper functionality. For the intended
analyses, as described in (c) and (d):

• A new computer-aided engineering (CAE) software tool has been developed, enabling the user
(system engineer) to quickly set up and solve CSPs from the system to the component level,
fully automated, in the field of powertrain systems.

Hence, different CSPs can be put in a queue and solved successively for analysis purposes.
Moreover, to obtain deeper insights into the topology design synthesis problem, the following aspects
are also considered in this work: the size of the search space and the computation time to solve the
constraint satisfaction problem (CSP). A second technological innovation and result from the tool
applied in a relevant case study comprises:

• New electro-hydraulic actuation systems to be used in a continuously variable transmission
(CVT) system (friction-based transmission type, cf. Figure 1); this is selected as a representative
topology synthesis case study due to the high level of complexity and in order to demonstrate the
multi-domain capabilities of the software application.

This subsystem type covers multiple domains; e.g., electrical (machines), mechanical
(pulleys, gears), and hydraulic (pump, valve) components are, typically, used to construct such
designs. Next, the multi-level capabilities are evaluated with use of the CVT topologies generated
in [9]. Finally, this case study, elaborated upon in Section 7, shows a design space of > O(1017) possible
topologies using a library that contains 14 components.

The outline is as follows: Firstly, this paper introduces the developed methodology in
Section 2. Next, in Section 3, the CSP programming and solving are further explained. The work
is continued with Section 4 about the automatic constraint generation and the implemented constraints.
Furthermore, the scalability of the method is considered in Section 5. The abstraction level choice of
the topologies is described in Section 5.5. The following section, Section 6, discusses the possibility
of multi-level topology generation. The research is finalized by applying the method to a case study,
described in Section 7. Finally, the conclusions and recommendations for future research are described
in Section 8.
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Figure 1. Continuously variable transmission (CVT) technology (courtesy of Punch Powertrain).

2. Topology Generation Methodology

Here, the developed methodology in this research is introduced. One of main goals of this research
(cf. (a) in Section 1.2) is to automate the generation of topologies, starting with the use of formalized
engineering knowledge and a library of components selected by a system engineer. This process is
visualized in Figure 2.

Figure 2. Visualization of methodology: generation of topologies with the use of formalized component
properties and engineering knowledge.

To support this research, a software application has been developed that formulates and solves
the constraint satisfaction problem (CSP). First, the components and their properties are stored in
a session library. Secondly, the engineering knowledge is formalized and stored. The next step is
applying the formalized knowledge to the session library and expressing it mathematically. As a
result, the problem of topology generation is converted into a CSP. This set of mathematical and logic
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expressions is solved and converted into easily interpretable graphs (topologies). Finally, the results
can be analyzed by a system engineer. The five discrete steps of this methodology are:

Step 1: Creation of a library;
Step 2: Formalization of engineering knowledge;
Step 3: Formulation and solving of a CSP;
Step 4: Result post-processing;
Step 5: Result analysis and classification.

Below, the methodology is sequentially discussed.

2.1. Step 1: Creation of a Library: Identification of Useful Components

First, a library of components and a finite number of input and output ports for each of these
components are defined and specified by the user. The number of ports represents the degree of the
component. The following generic properties are assigned to each port: energy domain, flow direction,
and controllability. In the developed method, two different libraries can be distinguished: a base
library and a session library. The base library contains unique (hydraulic) components, e.g., Pump,
Sump, and Valve. When a new project is created, e.g., the topology generation for an electro-hydraulic
actuation system, a session library is composed. This basically assigns the instances to each component
from the base library.

2.2. Step 2: Formalization of Engineering Knowledge: Mapping Functions to Components

A second requirement is the formalization of the engineering knowledge and experience into
mathematical constraints by mapping functions to components. During the generation of feasible
topologies, constraints are used to determine whether a topology is feasible. The feasibility of a
topology depends on several design considerations; for example:

• Are the components correctly physically connected? For example, are the components from
different domains properly interconnected?

• Does a topology contain any unconnected components? For example, are all the ports of each
component connected?

• Does the topology meet the functional requirements? For example, to power a hydraulic pump,
rotational energy needs to be supplied by an engine or electric machine.

The quality of the generated (feasible) topologies depends on the completeness of the set of the
constraints. This completeness is related to the number of infeasible topologies as part of the total
generated topologies. The more complete the set is, the fewer infeasible topologies are prevented
from being generated. However, the constraint set can also be too strict (overregulation). As a result,
feasible topologies are prevented from being generated due to carelessly defined constraints.

Constraint Classification

To make the set of constraints as complete as possible, two subsets are introduced: general and
custom constraints. General constraints are applied to all components; for example, a constraint
to prevent redundant topologies with only the identifier is interchanged between those topologies.
These are hard coded and can be evaluated by a system engineer easily. The input of engineering
knowledge can be defined with the use of custom constraints. The most fundamental constraint in the
generation of topologies is whether a component is present and that the number of connections with
this component is equal to the number of ports.

The constraints can be further classified into four different constraints: functional, redundancy,
physical, and application-specific [9]. Functional constraints are needed to ensure the required
functionality in the system. Next, there are physical constraints. This class is used to prevent,
e.g., the connection between a battery cell and a hydraulic valve, since their energy domains do
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not match. A constraint of the redundant class can prevent a sequence of two identical hydraulic
valves or two identical clutches. These sequences do not add functionality, yet raise the cost and
complexity. Application-specific constraints are specific to the project. For example, the technology
choice can be defined with such a constraint; for instance, when hydraulic topologies with five pumps,
or transmission topologies with or without a planetary gear set must be generated. The presence of a
component can be forced or prevented with constraints.

2.3. Step 3: Formulation and Solving of a CSP: Using SWI-Prolog

The system topology generation, which satisfies a set of constraints, is performed with the use
of a CSP solver. The mathematical problem consists of tuple variables, domains, and constraints.
As described in [1], constraint programming (CP) is suitable for tightly constrained problems. A formal
description of this mathematical problem is given by a set [1]:

CSP = 〈X, D, C〉 (1)

with: X = {X1, X2, . . . , Xn}, (2)

D = {D1, D2, . . . , Dn}, (3)

∀ i ∈ {1, 2, . . . , n}, Xi ∈ di = {0, 1}, (4)

C = {C1, C2, . . . , Cm}. (5)

The finite set of variables X represents two aspects: the individual components (as vertices
in a graph) from the session library and the connections between the components (as edges in a
graph). Here, the components are identified with characters. Therefore, for each component in the
session library, a character is assigned to the component, such as A, B, . . . , Z. If the session library
contains more than 26 components, two-character identifiers can be used, such as AA, AB, . . . , ZZ.
The connections between the components are represented by the identifiers from both components.
Variables representing the connections between components are declared once in alphabetical order.
Connections are considered as unidirectional; therefore, the connections AB and BA are represented by
AB. Subsequently, when two-character identifiers are used for components, the connection identifier
has four characters. The domain D for every variable (components and/or connections) is 1 (present) or
0 (not present). A set of constraints C completes this type of mathematical problem. These constraints
are used to formalize engineering knowledge and design experience from Step 2.

Constraint Logic Programming over Finite Domains

The CSP is solved with SWI-Prolog [15], including the constraint logic programming (CLP) over
finite domains (FDs) library [16]. This combination is selected because of the following benefits in
comparison to other solvers, such as GNU Prolog, B-Prolog, or ECLiPSe. In relation with GNU Prolog,
the CLP(FD) library is more consistent when it exceeds the predefined limits. Another benefit is
that SWI-Prolog can be controlled by another program, which is useful for automating the topology
generation process. Next, the software is freely available and open source. Finally, the functions
implemented in the CLP(FD) library are suitable for formalizing engineering knowledge into
constraints. Two major aspects of a solver are: firstly, the expressiveness of the used language—for
example, the number of lines needed to express the formalized engineering knowledge— and secondly,
the solver speed. In general, the lower the expressiveness level, the faster the solving.
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In Section 3, the notation and solving algorithm used will be further elaborated upon. Future
research may include a comparative study of different solvers for the application of discrete topology
generation, since this is beyond the scope of the current research.

2.4. Step 4: Result Post-Processing: Using Filter Designs

After solving the CSP, the set of topologies is post-processed by applying different filters.
These filters (seen as post-processing constraints) may be developed due to a tradeoff between the
initially required (and perhaps possible) level of expressiveness and the overall computation time.
For example, when a group of components is not connected to the main power flow of the topology,
i.e., to any ‘power source’ or ‘power sink’, these topologies are redundant and need to be discarded.
With this (quickly evaluating) filter, there are two options. First, it is only checked whether there
is a (power) path from a sink to a source. Second, a stricter (and slower) filter requires that every
component is connected to a source. This optional filter choice depends on the application of the
concepts. For example, as discussed in our case study later on, a transmission (subsystem level) should
not have separated power paths, unlike a hydraulic system (component level).

Isomorphism Detection

The second post-process filter comprises isomorphism detection and removal. With the
introduction of virtual nodes (VNs), the topology isomorphism becomes an issue. These node types
were introduced in [1] in order to connect three components properly; they have no key properties
assigned to them. Hence, when two VNs are connected in series and four components are connected,
then the total number of different configurations is 24 at the port level of expressiveness (cf. Figure 3).

Figure 3. Illustration of an isomorphism topology that includes two virtual nodes (VNs) and four
first-degree components (A–D). This results in 24 different possible configurations, of which 23
are isomorphous.

This can be calculated with k permutations of n components, where k = n and the number of
topologies becomes n! or, hence in this case: 4! = 24. Consequently, when topologies are generated,
then only one topology is valid, and the other 23 are isomorphous to the first one and are discarded
from the set of generated topologies.

This phenomenon of isomorphism is prevented by removing the VNs from the string that contains
all connections of a topology and replacing them with all the possible connections between the
components that the VN connects. This solution procedure is visualized in Figure 4. Next, isomorphism
can easily be detected through a piecewise topology comparison.

Another cause of isomorphism is when there multiple instances of the same components are
present. In Figure 5, two isomorphous topologies are shown due to such multiple instances, since B1

and B2 are of the same component type, so topologies X and Y are isomorphous.
It is assumed here that the components are bidirectional. Due to the raised abstraction level,

the solver cannot detect that they are identical, since their identifiers are different. This is solved by
editing the connection string, which contains every connection in the topology. When the session
library contains more than one instance of a component, all identifiers representing that particular
component are replaced by the first instance. This is done for all topologies. These edited connection
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strings are compared to each other to find the isomorphous topologies. Post-processing the results
is not preferred, since it is relatively slow compared to the CSP solving; however, it is considered
unavoidable due to the inherent nature of assigning the identifiers to the components.

Figure 4. Remapping the connections to discard isomorphous topologies due to virtual nodes (VNs).

Figure 5. Two isomorphous topologies introduced by different component identifiers for multiple
instances of a component.

2.5. Step 5: Result Analysis and Classification

If the generation phase is finished, then the topologies can be classified, for example, based on
the present component instances. As a result, the size of the design space can be reduced or analyzed
with respect to the distribution of the different topologies. Additionally, based on the gained results,
new constraints can be defined and implemented. The process of refining the constraint set and
analyzing the results is an iterative process. The analysis of the generated topologies can be done
with the application’s built-in result viewer. This viewer provides a graphical representation of
the generated topology design. When this is finished, then the (dynamic) system performances
(e.g., efficiency, top speed of the vehicle, ratio tracking accuracy, etc.) of the static topology models
can be evaluated by an automated parameterized modeling step (e.g., using Matlab or Simulink) that
transforms each relevant topology into a scalable dynamic system topology design analysis model.
Note that this model-based evaluation step can then be used as well to classify topologies, e.g., based on
their operation modes [9]. This evaluation step is not discussed further in this work.

3. CSP Programming and Solving

As mentioned in Section 2.3, the process of formulating and solving the CSP is here further
elaborated upon using illustrative examples. The constraints of the CSP problem are programmed and
solved with SWI-Prolog. For every combination of the variable values, the set of constraints is checked
to determine if the whole set is true. If the set is true, then every label of the variables with the value
of one (component and/or connections) is written to an output file. The solving algorithm and the
suggested and implemented solving improvements are explained in Sections 3.2 and 3.3, respectively.
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Here, mainly two categories of constraints are used from the CLP(FD) library to formalize engineering
experience and knowledge: arithmetic and reification constraints, as discussed below.

3.1. Arithmetic and Reification Constraints

The arithmetic constraints are used to compare two expressions. For every expression, the equality
or inequality is checked. Such an expression can be a constant or a result of addition, subtraction,
or multiplication. Furthermore, maximum and minimum functions are supported. In addition,
constraints can be defined with a condition, such as the presence of one or more connections and/or
the presence of a certain component. A couple of the constraint types used are defined in Prolog code
and provided in Listing 1; each constraint is discussed below.

Explanation of constraints (1)–(7):

(1) These constraints use a logical equality. The truth table of logical equality is shown in Table 1.
The only solution for this constraint is that A is always present.

(2) In the definition of the search space, this constraint is used to force the presence of a component
(1) or to prevent a connection (2) from being generated.

(3) This constraint combines a sum, a logical operator, and a relational operator. This results in a
constraint that limits (due to the relational operator) the presence of components A, B, and C to a
maximum of two out of three.

(4) This constraint uses classic negation, material implication, and an AND logic connector. This is
to prevent connection CD (due to the negation) when (due to the material implication) there are
connections AB and (due to the AND gate) BC. The truth table of the AND, OR, and NOT logic is
shown in Table 2.

(5) This constraint is the same as (4), except for the OR gate instead of the AND gate. Now, connection
AC is prevented when there is a connection AB or (due to the AND gate) CD.

(6) This combines the OR and AND gates from (4) and (5), respectively, to prevent connection BD.
(7) This constraint combines a sum function to force the number of connections of D. For example,

component D is a second-degree component, i.e., it can have two connections (two edges). To force
that this component has two connections, this constraint can be added. When component D is
present, then there can also exist two connections with D. However, when D is not present (D = 0),
there are no connections containing D.

Listing 1: Examples of constraint types in Prolog code that are used to convert engineering
knowledge into a constraint satisfaction problem (CSP). Note that the ‘%’ sign indicates a
comment.

Components = [A, B , C,D] ,
ComponentsDomain 0 . . 1 ,
Connections = [AB,AC,AD, BC, BD,CD] ,
ConnectionsDomain 0 . . 1 ,
% 0 = not present
% 1 = present

A #<==> 1 , %(1)
AB #<==> 0 , %(2)
sum ( [A, B ,C] , #=< , 2 ) , %(3)
AB #∧ BC #==> #\ CD, %(4)
AB #∨ CD #==> #\ AC, %(5)
(AB #∨ AD) #∧ (AC #∨ BC) #==> #\ BD,%(6)
sum ( [AD, BD,CD] , #= , 2∗D) , %(7)
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Table 1. Truth table for the material implications (⇒) and logical equality (⇔). Note: # indicates a
Prolog notation.

Input A Input B A ⇒ B A ⇔ B

A # ==> B A # <==> B

False False True True
True False False False
False True True False
True True True True

Table 2. Truth table of the AND gate, OR gate, and NOT gate. Note: # indicates a Prolog notation.

Input A Input B A AND B A OR B NOT A

A#∧B A#∨B #\A

0 0 False False True
1 0 False True False
0 1 False True
1 1 True True

3.2. SWI-Prolog Solving Algorithm

Prolog is a logic programming language that is widely used in scheduling, sequencing, and routing
problems [17]. Here, the working of constraint solving is described. The search algorithm used
by Prolog is a backtracking tree search extended with local consistency checking and constraint
propagation [18]. An example of a backtracking tree search is illustrated in Figure 6.

Figure 6. Illustration of the first eight steps of searching with a depth-first search and backtracking.
Solutions are listed in Table 3.
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Table 3. Solutions for the search algorithm example depicted in Figure 6.

Solution # Solution #

1 - 11 AC
2 D 12 ACD
3 C 13 AB
4 CD 14 ABD
9 A 15 ABC
10 AD 16 ABCD

As can be seen, after step three, the solutions one and two are generated, i.e., the constraint set
is satisfied, and the variables, which are one, are written to the results file. In this figure, the search
steps and solutions are displayed. The displayed red-colored ‘path’ is conditionally constrained with
NOT A⇒ NOT B. With the mentioned search extensions, the solver ‘tries’ to simplify the problem.
As a result of that, the number of backtracking steps can be reduced significantly by filtering values
from some domains. Due to this, after search step 7, the tree is not further searched with A = 0 and
B = 1. Consequently, the solutions 5–8 are not possible. The solutions of this search are listed in
Table 3. In the next section, the implementation of a different variable sequence selection is described,
which results in better solving times.

3.3. Improvements Implemented in the Solving Process: Reducing Computation Time

First, the variable selection strategy can be changed into different approaches to speed up the
solving process. In the example above, the variable selection is A, B, C, and D. The solver default is
the order of variable definition in the script. The variable declaration of the components in the Prolog
file is based on the component sequence in the base library. The solving strategy can be adjusted to
the domain sizes. However, this is not advantageous, since the domain is the same for every variable.
The preferred strategy is to select the variable that participates in the most constraints first. The solving
process is about six times faster with this strategy compared to the default selection strategy. Note that
the value order is, by default, ascending, as shown by the sequence listed in Table 3, and changing this
to descending does not affect the solving time. Finally, the branching strategy can be set. This does
affect which and how many values are chosen from the domain. This can be ‘step’, ‘all’, or the ‘mean
value’ of the domain. This is kept as ‘step’ by default due to the chosen domain of binary values.

SAT Solvers

The solving time may also be reduced by selecting another solver. Consequently, the notation
of the constraints can differ from the current notation. For instance, the ‘sum’ expression,
which is part of the function set of the CLP(FD) library, might be rewritten into a set of logic
expressions. Although the number of constraints increases, the solving time will be smaller due
to the efficiency of the satisfiability problem (SAT) solvers. SAT solvers are able to process such
significant constraint sets more efficiently. Basically, the constraint set becomes larger, yet the solving
time is reduced simultaneously.

4. Automated Constraint Generation

In general, the more complete the constraint set for the CSP is, the better the results regarding the
number of feasible topologies as part of the total number of topologies will be. To speed up the process
of topology generation, the constraint generation should also be automated. This is done by applying
the defined general and/or custom constraints to the session library. The more properties are defined
for every component, the better the capabilities for automated constraint generation. Here, the set
of constraints is applied to the session library. In the case that the library does not contain one or
more individual components, the constraint is skipped. The power of automated generation is that
all possible combinations of components are covered. This is explained by means of the notations
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on three different (types of semantic) levels for an arbitrary trivial constraint using the components
(variables) from a library: (1) engineering level, (2) mathematical level, and (3) logic level. Using a
simple example, these levels are explained with the use of the following constraint defined at:

(1) The engineering level:

“The output of an oil pump may not indirectly, by means of two virtual nodes, be connected to
the input of an oil pump.” Moreover, this constraint is visualized in Figure 7 and can be defined at:

(2) The mathematical level:

(V6,i, V4,k) + (V4,k, V6,j) = 2⇒ (V6,i, V6,j) = 0

∀ i, j, k ∈ {1, 2, 3}, i 6= j,

where Vτ,ι represents a node, with the component type τ and the instance of that particular
component ι [1].

Figure 7. Visualization of the constraint: “The output of an oil pump may not indirectly, by means of
two virtual nodes, be connected to the pumps input."

When the session library contains multiple instances of a component—for example, two electric
machines and two virtual nodes—then this results in a constraint set that includes all possible sequences
of these components. If, for example, the session library contains three instances of a pump (F, G,
and H) and three instances of a virtual node that handles hydraulic energy (K, L, and M), then this
results in the following expressions at:

(3) The logic level:

(FK ∧ FL) ∨ (GK ∧ GL) ∨ (HK ∧ HL)⇒ \KL

(FK ∧ FM) ∨ (GK ∧ GM) ∨ (HK ∧ HM)⇒ \KM

(FL ∧ FM) ∨ (GL ∧ GM) ∨ (HL ∧ HM)⇒ \LM.

The strength of automated constraint generation also holds for preventing a loop between three
virtual nodes. For instance, F, G, and H are the identifiers of virtual nodes and the constraint “When
three virtual nodes are connected in series, the first and the last cannot connect" is applied, all possible
sequences are covered, such as F-G-H, F-H-G, G-H-F, etc. Before the generation of constraints is done
by the software application, the constraints can be set to as active or inactive. This enables the ability
to do analysis on the influence of certain constraint(s).

5. Scalability of the Method

A major aspect of the proposed method is the scalability of the discrete topology generation
problem: adding/removing components at single or over multiple system levels. Here, the limiting
factor is the solving performance of the satisfiability problem. This is due to the software used
(SWI-Prolog and the CLP(FD) library), which is, typically, running on only a single processor core.
The search space of the problem can be defined as the number of variables that SWI-Prolog has
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to process during the satisfiability check, since the domain size of each variable is two. The more
components are in the session library and the more connections are possible between those components,
the bigger the search space that needs to be processed is. The search space is, on a higher level, directly
influenced by the chosen abstraction level, since this level does affect the number of components.
The influence of the abstraction level choice is further discussed in Section 5.5. On a lower level,
the search space is defined by the level of expressiveness, which will be explained below.

5.1. Influence of the Topology Expressiveness Level

There are two levels of expressiveness considered: the lower ‘component’ and the higher
‘port’ level, respectively. An example of these expressiveness levels is visualized in Figure 8 for
an electro-hydraulic system.

Figure 8. Example topology with two different levels of expressiveness.

Both levels have their advantages and disadvantages. The advantage of the component level
is that the search space size is smaller than at the port level; hence, the time to solve is less,
since fewer variables need to be processed while solving compared to the port level. The advantage of
the port level is that topologies contain more details about the connections between the components.
This can be useful, e.g., when Matlab models are generated from a topology’s description. This becomes
more relevant when components are multi-domain, i.e., the ports do not have the same energy domain
(e.g., hydraulic, mechanical, or electrical). The port mapping of the topologies can be directly applied
to the component connections of the model. The downside of the port level is that the search space
increases due to all the possible connections between the ports.

In the following, the influence of the level of expressiveness on the topology generation is further
quantified and evaluated. The solved example problem contains two energy sources, two converters,
three virtual nodes, and three consumers (sinks). In Table 4, the influence of the chosen expressiveness
level is quantified.

It can be observed that the size of the constraint set increases due to the higher number of possible
connections between the components. The solving time is also higher due to the larger search space
and the size of the constraint set. Moreover, topology isomorphism plays also an important role here,
as stated in Section 2.4. At the port level, there are five times more topologies generated than at the
component level. However, there are slightly more (unique) topologies generated. The difference in
generated topologies at the component and port levels could be further investigated and could result
in additional constraints.

The usage of these two expressiveness levels depends on the project phase and goals. In the
beginning, when the search space is unclear and the constraint set incomplete, the lower component
level is used, since it is faster. Accordingly, the generated topologies can be analyzed and more
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constraints can be defined because of all of the discovered infeasible topologies. When this is finished,
as a second step, the higher port level can be chosen. A higher expressiveness level offers more
topology detail for multi-domain model-based evaluation. If components are multi-domain and/or
have several ports, then the port mapping is more explicit and can be more robustly exported to, e.g.,
a Matlab Simulink environment.

Table 4. Influence of the expressiveness level on the Prolog script.

Expressiveness Level

Component Port

# Component variables 11 11
# Connection variables 55 171
# Constraints (characters) 2K 11K
# Total constraints 26 168
Search space size 262 ≈ 5× 1018 289 ≈ 6× 1026

Solving time (seconds) 45 218
# Raw solutions 21,536 102,768
# Post-processed solutions 250 262

5.2. Component versus Port Expressiveness Level

For the constraint generation, every port combination is considered at the port expressiveness
level; therefore, every port has a variable in the CSP. For every port pair, the properties are
considered, and it is decided whether the connection between these ports must be prevented or
not. When, for instance, the port energy does not match, the connection is prevented. To prevent a
connection between two ports at the port level, one (Prolog) statement is needed, e.g., A1B1 #<==>0.
At the component level, the constraint generation is more complex because of the lack of expressiveness.
It is possible, yet more complex, with multi-domain components, like an electric machine or pump.
When a session library contains multi-domain components, then, in order to generate the constraints
and to split the energy domains for every connection, a common energy must be found. If this is
not possible, then the components cannot be connected. When there is one or more common energy
domain, then the components can connect and are added to a list. This is done for every distinct energy
domain of a component. The sum of these connections should be equal to the number of ports that
have that specific energy domain. Generally, at the port level, it is more straightforward to define the
constraints due to the expressiveness compared to the component level.

5.3. Search Space Definition without Constraints

First, the search space size is considered for both expressiveness levels. The search space is the
region where all solutions are located. The size of the search space indicates the number of variable
combinations that the solver, like SWI-Prolog, has to process to get all solutions. Notice that the
calculations below, used as a simple example, are performed here without any constraints. At the
component level, the search space size, as the cardinality |.| of the possible discrete topology set Tp,
can be quantified with:

|Tp
component level| = 2

(
nc+

nc ·(nc−1)
2

)
(6)

with: nc = nx + ny + nz, (7)

where nc is the number of components. The notations nx, ny, and nz are, respectively, the numbers for
the first-, second-, and third-degree components. The number of components is directly related to the
number of connections, since every component is able to connect to every other component unless
restricted by constraints. The search space on the port level depends on the number of components
of every degree. The degrees of components are adopted from the graph theory, as applied in [1].
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The degree of a component stands for the number of ports of a component, i.e., how many other
components the particular component can connect to. Accordingly, the size of the search space on the
port level can be calculated with:

|Tp
port level| = 2

(
np+

np ·(np−1)
2

)
(8)

with: np = nx + 2 · ny + 3 · nz, (9)

with np representing the total number of ports. It can be observed from the equations that the
search space scales exponentially and with a factor of two. With the component expressiveness level,
the increase is equal in every direction. For the port level, this differs; the higher the degree of the
component, the higher the increase for every added component. That means that the number of
second-degree nodes has a higher share in the total search space compared to first-degree nodes.
In Figure 9, the solving time is shown as a function of the search space (measurements were performed
using an Intel Core i5-M540 @ 2.53 GHz and 8 GB RAM with Win7 and SWI-Prolog 7.4.2.).

Figure 9. CSP solving time as a function of search space size. For the ease of reading: 212 s ≈ 68 min.

When the search space is <240, then the software overhead of starting the solving process is
more dominant than the solving time. When the search space is >240, then the solving time scales
exponentially with the number of possible combinations. The influence of constraints on the solving
time is considered in the next subsection.

5.4. Influence of the Constraints on the Solving Process

When an unconditional constraint is applied to one of the components and/or connections,
the search space is affected instantly. This is probably due to compiler optimizations in
SWI-Prolog. Conditional constraints do not instantly affect the search space. Therefore, all variables
whereon conditional constraints are applied need to be processed during the satisfiability check.
However, unconditional constraints do have an indirect influence on the process. This is due to
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changing the variable selection strategy in the solver (see Section 3.2 for details). The more a variable
participates in a constraint, the earlier this variable is processed by the searching algorithm. Depending
on the defined constraints, this can lower the solving time by having fewer backtracking actions.
Future research and measurements should be done on this topic to quantify this phenomenon
more reliably.

5.5. Influence of Abstraction Level Choice on Topology Generation

The abstraction level of the topologies determines the level of detail of the topologies on the
highest level. The chosen abstraction level does affect the number of different components in a
topology defined by its system’s boundary. The level of expressiveness (component or port level)
determines the level of detail on a lower level. The chosen abstraction level depends on the desired
detail (granularity) of the topologies. For example, when topologies of different hybrid electric vehicle
(HEV) configurations are desired, it does not make sense to take into account the drive axles or
separate wheels [1]. It makes more sense to include only transmissions, electric motors, and engines.
In general, the lower the abstraction level is, the more components there are, and the higher the
number of possible connections is, the bigger the search space and the longer the solving time will be.
However, an advantage is that topologies contain more details about the principles and connections
used. Therefore, for every project, the session library needs to be filled with the problem’s ‘core’
components. For instance, when there is a focus on the transmission topologies and the engine is used
as the power source, the fuel tank is assumed to be included with the engine. The same applies for the
drive axles, and the differential and the wheels are combined in the component ‘wheels’. Finally, virtual
nodes (VNs) are introduced, enabling the connection of different components with each other. Virtual
nodes are necessary due to the components’ fixed number of possible connections. By introducing
VNs, this problem is solved, but they do not add any functionality. However, due to the introduction
of these nodes, more isomorphous topologies are generated (cf. Section 2.4).

5.6. Proposed Library Format

The library format is adopted from [4] and adjusted for the purpose of our case study later
on: generating an electric–hydraulic actuation system for a CVT. In the supposed library format,
every component has an entry. In this entry, the category and the component type can be defined.
Categories are introduced to make the engineering formalization more generic. This is useful for
multi-level topology generation; a full library of constraints can be applied to a session library. Hence,
the formalized engineering knowledge can be applied to every system (level). For instance, a constraint
can be applied to a certain category like ‘pumps’. When more pumps are defined in the session
library, the constraint is applied to all those pumps. Furthermore, four different component types are
distinguished: sources, sinks, converters, and virtual nodes. These types are introduced to characterize
the component behavior. Sources and sinks are the system boundaries. Converters change the power
flow from one to another (energy) domain, as described in the paragraph below. Virtual nodes are part
of the abstraction level. These types are also used during post-processing, as described in Section 2.4.
Finally, they can be used to apply constraints to all of the components belonging to a component type.

5.7. Component Port Definition

For every component, several ports can be defined. Next, for these ports, several properties can
be set, such as specification (input or output), type (flow or signal), and energy domain (hydraulic,
mechanical, electrical). For every energy, certain other properties can be set. These properties of
the port and the flow properties can be used to generate constraints; however, this has not been
implemented yet.
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6. Automated Multi-Level Topology Synthesis

During this research, a software application was developed that enables multi-level topology
generation for hybrid and battery-electric powertrain systems (including CVT systems). With this
proposed method, feasible system topologies, including subsystems, can be automatically generated.
This process is illustrated in Figure 10 with the related work at other system levels.
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Figure 10. Schematic diagram of the multi-level topology generation process. Arbitrary example
topologies are provided per system level. Related work is also indicated.

As can be seen, for every system and/or system level, first, a ‘session library’ must be
composed. Secondly, for every system level, a ‘set of constraints’ must be composed. These can
be stored in a ‘central constraint library’ (or ‘base library’). In this base library, a complete set of
‘formalized engineering knowledge’ is stored. These constraints are valid at every system level.
‘Application-specific constraints’ might be valid for specific system levels. As illustrated in Figure 10,
the generation of the lower system level is affected by the higher level due to constraint consistency.
If, for example, the CVT topology contains four clutches, then the actuation system should also have
that number of clutches as consumers. Therefore, the components used in a higher system level might
be the system boundaries in a lower system level, as in nested graph structures [9].

6.1. New CAE Tool for Dynamic System Topology Synthesis

The ‘session library’ as part of an arbitrary ‘project setup’ defined by a ‘system engineer’ using
the newly developed CAE software application is also shown in Figure 11.

The main attributes (as building blocks: ‘problem definition’; ‘project setup’; ‘problem solving’;
‘post-processing’; ‘visualization’; ‘model-based evaluation’) of the software application developed for
the ‘engineer’ are schematically shown (for some selection options) on the left-hand and right-hand
sides, which facilitates any modifications and problem setup changes very easily and efficiently,
whereas the CP solver and post-processor running on the ‘software application’ are shown in the
middle. The sequential process steps that are in correspondence with the steps 1–5 of Section 2—yet are
here realized without loss of generality for automotive powertrain systems—are indicated by
the arrows.
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Figure 11. A new computer-aided engineering (CAE) tool for fully automated dynamic system topology
synthesis applied to all-electric and hybrid-electric powertrain systems from the system to component
level. A graphical user interface was developed for the ‘engineer’ based on the software attributes
shown on the left-hand and right-hand sides, whereas the constraint programming (CP) solver and
post-processor running on the software application are shown in the middle. The sequential process
steps are indicated by the arrows.

7. Mechatronic Actuation Systems for CVTs

The software application developed for topology generation in the automotive field from system
(powertrain topologies [1]) and subsystem (CVT topologies [9]) to the component level (actuator
topologies; this work), as in nested graph structures, was analyzed using a case study (cf. Figure 10).
The original algorithms, developed constraints, and processes developed in [1,9] are now fully
integrated in a flexible and easily accessible software tool for system engineers, which creates a
unique and novel computer-aided engineering tool in this automotive field, yet with high potential for
other engineering domains as well.

7.1. Problem Definition: Actuation System Design

The actuation system is a part of the hydraulic system inside a CVT and serves different aspects:
In addition to the actuation of the variator (clamping and speed ratio adjustments) and clutches,
the hydraulic system is needed for lubrication and cooling. In conventional CVT systems, a combustion
engine typically powers the oil pump of the hydraulic system. Since the oil pump is directly connected
to the engine speed, the oil pump is sized according to the oil demand at idling engine speed. One of
the most worst-case scenarios is maximum shifting speed when idling (harsh braking scenario),
which requires a high oil flow, as well as a high pressure. As a result, during normal driving,
much energy is lost, since there is a mismatch between the oil delivery and demand. Moreover,
in conventional CVTs, manufacturers use the power mismatch between the oil consumers and the oil
pump due to the different individual pressure and oil flow requirements of the consumers. For example,
wet-plate clutches typically operate in the range of 10 to 20 bar, whereas the variator operates up to
80 bar. The efficiency of the hydraulic system can be increased by supplying an oil flow on demand
(only when shifting occurs [19]) to all its consumers.

7.2. Project Setup: Session Library

The introduction of multiple oil pumps and the introduction of four separate sinks increases the
number of design variations significantly, i.e., with every added component, the search space increases
exponentially. Here, a case study is performed that optimizes the actuation system topologies for a
CVT as part of a multi-level system design that is illustrated in Figure 10. For this specific problem,
the library of components can be found in Table 5, and it consists of 14 components in total. For this



Vehicles 2020, 2 621

specific case study, the pump represents an electric oil pump that can deliver and regenerate. The flow
and pressure demands of the four consumers are obtained from a CVT model according to the topology
description. The component ‘clutches’ represents the lumped flow and pressure demand of the clutch
CL1 and brake BR1 from the CVT system. The lubrication block represents the cooling and lubrication
of the clutch, brake, push belt, gears, and bearings. Please note that geometric optimization of the
pulley pistons and the variation ratio optimization are outside the scope of this project. The interested
reader is referred to [20].

Table 5. Session library: actuation topology design synthesis for a CVT.

Identifier Component Component Component Number of Energy Domain

Type, τ Name Specification Instances, ∑ ι Input Output

A,B,C 1 Sump Source 3 - Hydraulic

D,E,F 2 Pump Converter 3 Hydraulic Hydraulic

G,H,I,J 3 VN Virtual Node 4 Hydraulic Hydraulic

K 4 Primary pulley Sink 1 Hydraulic -
L 5 Secondary pulley Sink 1 Hydraulic -
M 6 Lubrication Sink 1 Hydraulic -
N 7 Clutches Sink 1 Hydraulic -

7.3. Project Setup: Project Constraints

Three general constraints are implemented: (i) prevention of the multiple instance redundancy;
(ii) splitting of the energy domains; and, finally, (iii) the constraint of forcing the presence of components
of the sink category. The following functional constraints represent the specific engineering knowledge
for this case study:

• Prevention of a connection between the sink components;
• The looping of three or more virtual nodes is prevented;
• Prevention of two or three pumps in a parallel layout;
• No connection is allowed between sump and consumers; basically, bypassing of the pump is

not allowed;
• No pumps in series connection, since this can be better replaced by a single pump;
• Only one sump may be connected to the pump in order to prevent oil recirculation.

7.4. Design Space Analysis and Model-Based Evaluation

The component expressiveness level is chosen based on the need for relatively fast exploration
of the search space. When the constraint set becomes more complete, a higher expressiveness level
can be chosen for topologies with more detail. The initial search space applied to 105 (14 component
and 91 connection) variables results in a search space of 2105 ≈ 4.1× 1031 combinations that need to
be processed. Due to internal optimizations by the solver (automated evaluation of the constraints),
this results in a reduced search space of 259 ≈ 5.8× 1017 combinations that need to be processed.
The solving was performed in 19 min, and results were obtained for 13,054 solutions; post-processing
resulted in 132 unique and feasible topologies.

When the solutions are post-processed, a complexity analysis can be performed. This analysis is
to get insight into the appearance of the individual components in the feasible designs. In Figure 12a,
the appearances of the number of component instances per component are provided; e.g., the number
of topologies that contain two oil pumps equals 21, and the number of topologies containing three oil
pumps equals 110. From that graph, it can be observed that only one topology exists that contains a
single oil pump. Specifically, that topology interconnects all consumers directly with the oil pump.

In Figure 12b, as a result of a model-based evaluation step, the simulated average and maximum
needed power are shown with respect to the Worldwide Harmonized Light Vehicle Test Procedure



Vehicles 2020, 2 622

(WLTP) [21] for a particular vehicle. Additionally, the benefits of adding one or two oil pumps to
a conventional actuation topology equipped with a single pump system are clearly observable in
terms of energy consumption and maximum hydraulic power over the drive cycle. Please note that
this maximum power is a measure for pump dimensioning and cost, whereas the hydraulic energy
saving lowers operational cost over the product’s lifetime. Using this evaluation for this set of feasible
topologies, the optimal architectural design can be quickly chosen or compared with the other solutions,
showing the strength of the methodology.

(a)

(b)
Figure 12. Topology generation and performance results. For reasons of confidentiality, the absolute
power values are not depicted. (a) Histogram of the generated feasible topologies for the electro-hydraulic
actuation system. (b) Diagram showing the average and maximum actuation power of novel and newly
synthesized on-demand CVT actuation systems simulated using the Worldwide Harmonized Light Vehicle
Test Procedure (WLTP) for a passenger car.
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8. Conclusions and Recommendations

This work provides an extension and analysis of an automated method to generate discrete
dynamic system topologies over multiple system levels. In contrast to other studies, the search space can
easily be edited by changing the selection of session library components. The generation of constraints
is fully automated based on the chosen session library components and formalized engineering
knowledge. Moreover, it is possible to formalize engineering knowledge as generically as possible.
This knowledge is stored and can be applied to any set of components. Additionally, the design space
size and the way it is processed by the CSP solving algorithm are considered. Moreover, different
levels of expressiveness are analyzed with respect to the generated topologies. The influence of the
component abstraction on the search space is discussed. Finally, a case study is performed on the
topology generation for electrical–hydraulic actuated subsystems as a part of a CVT system. The set
of feasible topologies is further analyzed using a model-based evaluation step. To do this analyses,
a new CAE software application was developed to support the generation, analysis, and evaluation
steps. Future research may include: (i) further reduction of the computation time by solving the CSP.
Currently, the solving is performed by SWI-Prolog and the CLP(FD) library, yet this can be improved by
implementing multi-core support for this solver or by selecting another one. Furthermore, the study of
different SAT solvers may lead to a reduction in solving time as well. Future research may also include
(ii) an automated physical system and optimal control design for arbitrary active dynamical systems.
This enables quantitative ranking of the automatically generated feasible topology designs over all
three system levels.
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