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Abstract: Often in the area of road transport solutions and intelligent transport systems, two or
more alternative solutions or methods compete in terms of energy gains, time efficiency, or other
aspects. Measurements collected from field trials are used to make a comparative assessment but are
usually limited because of resource constraints. The present paper describes how statistical inference
techniques can be used in a systematic way, in order to validate the superior performance of one
method over the other. We adopt such an approach to study the performance of two alternative
routing methods in terms of achievable energy savings, although the same methodology can be widely
applied to other use cases as well. We specifically employ and describe three different techniques to
achieve the intended comparison, namely paired sample tests, statistical testing of mean value in a
normal population, and two-sample tests in normal populations with unknown yet equal variances.
We reach conclusions on whether claims of outperformance of one routing method over the other can
be supported by our collected experimental data and to what extent.

Keywords: statistical inference; vehicular consumption; energy efficiency; experimental design; field
trials; intelligent transport systems; sustainability; validation

1. Introduction

This paper concentrates on revealing and explaining practical and systematic ways in which the
results of different methods designed and applied in the area of intelligent transport systems (ITS) can
be effectively compared against each other. The motivation behind this study resides in the claims
often found in research articles (e.g., [1,2]) and technical projects (e.g., [3–6]) that a newly proposed
method (for instance, on topics relevant to driving performance, efficient routing, traffic prediction,
vehicular communication) leads to a significant improvement in terms of energy efficiency (e.g., energy
savings in the order of 10–20% over the state-of-the-art). Such a claim is often dealt with skepticism
from the relevant evaluators, because of the usually limited-in-size measurement samples. Moreover,
the validation of such claim from the researchers’ side is often not dealt with the proper care. For this
reason, the validation of a new method is frequently limited to qualitative criteria and the quantification
of the results is usually avoided.

1.1. Aim and Research Questions

Considering the above, the focal point of this paper is to investigate and describe ways of
validating if and to what extent a method over-performs compared to a conventional, alternative one.
In this context, we employ and apply the hypothesis-testing method of the statistical inference science.
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In particular, to properly exemplify our approach, we discuss on ways of evaluating two different
routing methods, i.e., methods of identifying the optimal route from an origin point to a destination
point inside the road network. In detail, our goal is to investigate the validity of arguments such as
the following:

• Does Method A provide better results than Method B according to a certain routing criterion? As such
criterion, the vehicle’s energy consumption is considered in our use case. Thus, in other words,
we would like to study whether the average energy consumption of a vehicle following the same
routing method A is statistically lower than the consumption of the same vehicle following routing
method B.

• Is Method A better at a γ% percentage compared to Method B, on the basis of the adopted routing criterion?
In other words, we would like to examine whether the average energy savings percentage of a
vehicle following routing method A is at least γ% compared to the energy consumption of the
same vehicle following routing method B.

In order to provide convincing answers to the above posed questions, a proper statistical analysis of
the available experimental data should be performed. In particular, we employ, establish and describe
the process of hypothesis testing of the statistical inference for drawing relevant conclusions. To the best
of the authors’ knowledge, it is the first time that such a systematic and practical approach is explained
in the literature for transport-related use cases. It is also worth noting that, despite the fact that our
study concentrates on the comparison and validation of routing methods, based on real experimental
data, the same techniques can be adapted and followed in a wide range of transport-related application
domains, such as driving efficiency, driver profiling, traffic prediction and optimization, logistics,
vehicular communication, and others.

1.2. Related Work

To substantiate the importance of this issue, we examine papers from the literature related
to energy, fuel, or emissions improvements brought by novel methods in the fields of eco-driving and
green routing.

For instance, the work in [7] evaluated, among other aspects, the CO2 benefits of eco-driving for
various degrees of penetration rates (from 25% up to 100%) and three levels of traffic congestion. It was
found that, under free flow traffic, the savings can reach 15% and in normal traffic 10%. In contrast,
in cases of congested traffic, it was found that the presence of eco-drivers could increase the overall
CO2 emissions. The work in [8] proposed an eco-approach and departure application which uses
information coming from fixed-time traffic signals to guide a driver through the intersection in an
environmentally friendly way. The authors report a reduction in emissions in the range of 11–30% when
the initial speed is low (up to 30 mph) and a smaller reduction in-between 3.3% and 6.2%, depending
on the type of pollutants, for higher initial speeds. The study in [9] evaluated the environmental
benefits of time-dependent green routing in the greater Buffalo-Niagara region of the U.S., using a
combination of two simulation models. Results show that the percent reduction was 12.76% for trucks
(vs. 12.63% for passenger cars) when attempting to minimize CO emissions, and 10.22% (vs. 10.37%
for passenger cars) when minimizing NOx. The study in [10] assessed the efficiency of eco-driving as a
means for reducing the fuel consumption of freight transport. A large field test was carried out in
the Chinese province of Jiangsu, showing savings of fuel up to 5.5% for high-duty vehicles, but not
substantial benefits for light commercial vehicles. None of these papers reports the use of a statistical
validation approach for their findings.

The work in [11] provides a comprehensive overview of many solutions for the improvement of
green-house gas (GHG) emissions of road freight transport. Specifically, the authors in [11] review
58 relevant solutions and classify them into four classes, according to the percentage of CO2 equivalent
(CO2e) savings that they can achieve (Class I: 0–6%; Class II: 6–11%; Class III: 11–16%; Class IV:
>16%). In the context of the present paper, we select and examine four of these solutions in terms
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of the approach that they have followed to validate the percentage of CO2e savings. The selection
was random, but we made sure to cover all different classes and to select papers that spanned different
years and that contained case studies conducted in various geographic regions.

In this framework, the study in [12] (Class I) presented a methodology based on a Geographic
Information System (GIS) model developed in order to improve fuel and CO2 efficiency of a Greek
municipality’s waste collection and transport system, via the reallocation of waste collection bins
and the optimization of vehicle routing in terms of distance and time travelled. Using a simulation
model coupled with a field study, the authors show that the routing optimization results in a 5.5–12.5%
reduction in the distance travelled by the waste collection vehicle, in comparison to the empirical route.
The validation approach is not based on statistical inference and it is not clear whether the reported
results constitute average values.

The research approach presented in [13] (Class II) adopted a probabilistic model for vehicle routing
and scheduling problems with time windows that was finetuned and applied using a test vehicle in
the area of South Osaka, Japan. The authors reported average CO2 savings of 7.6%, as well as similar
reductions in local pollutants, compared to the previous routing solution. Although the authors report
not just the average values but also the standard deviations of their measurements, yet they do not
proceed in a systematic statistical validation.

The work in [14] (Class III) employed the vehicle specific power concept and used second-by-second
vehicle dynamics to extract the emissions on various route alternatives, based on car-floating data
collected from various regions in Portugal. Results show that choosing eco-friendly routes can lead
to significant savings in CO2 (up to 25%) and other types of emissions. Descriptive statistics and
boxplots are provided for the collected measurements in various routes under investigation, however
reductions in emissions are presented in the form of percentages compared to the worst alternative
route available, without elaboration on the type of statistical validation employed.

The study in [15] (Class IV) proposed an environmentally conscious optimization model of a
supply chain network, based on integer non-linear programming, with an expanded objective function
that takes not only transportation costs into account, but also environmental parameters, such as
GHG emissions, fuel consumption, noise, and others. The paper studies various solutions related to
the planning of changes in suppliers’ or manufacturers’ capacity in a simulated supply chain network.
The impact of these planning decisions is reported in terms of percentages (e.g., in the environmental,
transportation, and overall costs) against the baseline scenario, without further elaboration on the
statistical significance of these results.

Beyond the aforementioned four papers, there are also other interesting relevant studies that
we have found and reviewed. For instance, the study in [16] (corresponding to Class II) conducts a
thorough assessment of the impact of green navigation systems in a city’s traffic flows, combining a
macroscopic traffic model with a macroscopic emissions model and a GIS. Results show up to 10.4%
reductions in CO2 and up to 13.8% in NOx in congested traffic conditions for a 90% penetration of
green drivers, but also that the overall population’s exposure to NOx increases up to 20.2%. Similarly,
the eco-routing study in [17] in Lund (corresponding to Class I), Sweden, showed that in 46% of
journeys (in a sample of 109 journeys), drivers do not choose the most fuel-efficient route. It also
showed that green routing can lead to a mean saving of 4.0% in fuel. Despite the thoroughness of
these reports, details on the approach followed for the statistical validation of the corresponding results
were not provided.

The examples presented above are only a few from a range of studies related to improvements
in energy, fuel, and emissions in road transport, which often neglect to present the validation of
their results through statistical inference. There might be several reasons for this, e.g., sometimes
authors might choose to place more emphasis on the description of their scientific or technological
solution rather than on the validation of their results. In other cases, researchers might wish to keep
the presentation of results as simple as possible, in order to be able to communicate them more easily
to the uninitiated reader. In others, the researchers might not be familiar with the statistical testing
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process that they have to follow in order to validate their claim, and this reports only average and
best-case results as well as standard deviations.

On the other hand, there are also studies in which the authors place adequate emphasis on
validation based on statistical inference, even if the corresponding descriptions are somewhat limited.
The approaches followed and presented in [18–21] are the most relevant to our work presented herein.

In [18], the authors proposed a novel eco-routing technique using vehicle-to-infrastructure
communication, according to which a vehicles registers its fuel consumption when it transverses a
road link and then transmits it to a traffic management center, so that next vehicles can exploit this
information. Using simulation results and the analysis of variance, the authors show that the effect of
the packet delay and packet loss are not statistically significant on the eco-routing system performance.
In [19], the authors evaluated the impact of car dashboards on real-world eco-driving behavior.
Particularly, the study assessed the effect of numeric and symbolic eco-driving feedback against a
control group, by means of field trials conducted in Switzerland. Using a series of regression analyses,
results showed that only the symbolic feedback design led to significant reductions of 2–3% in fuel
consumption. In [20], the authors employ a smartphone application as a means of eco-feedback and
assess its impact on fuel efficiency. Using a systematic statistical validation approach based on paired
sample tests, the authors demonstrate an improvement of 3.23% in the overall fuel efficiency. In [21],
the authors proposed a dynamic eco-driving approach in an arterial corridor with traffic signals, based
on velocity planning algorithms which can achieve approximately 10–15% fuel economy improvement.

In summary, the former study [18] uses simulation results (instead of field data), the second
one [19] focuses on regression analysis and the use of a control group, the third one [20] employs
paired sample tests for validating fuel efficiency, although it does not elaborate on what approach can
be followed in cases where paired sample tests are not possible, whereas the fourth one [21] involves a
statistical t-test, although it does not reveal sufficient details (such as the null hypothesis). Thus, these
four papers, which seem to have a strong methodological component, all feature some limitations
and/or differences with the type of analysis proposed herein.

The remainder of this paper is organized as follows: Section 2 provides the background relevant
to the methodology employed for the statistical validation. Section 3 describes the experimental data
and elaborates on three different approaches of comparative assessment regarding the efficiency of two
competing routing methods. Also, the same section draws practical guidelines for the applicability
and limitations of the three approaches. Section 4 draws additional useful conclusions.

2. Methodology-Statistical Hypothesis Testing Process

The following paragraphs describe an overview of the basic steps of the statistical hypothesis
testing process, in order to provide the main theoretic background for the proposed methodology [22,23].
Hence, the objective of statistical control is often to evaluate a hypothesis regarding the values of one
or more parameters of a population [24]. In a statistical hypothesis, all parameters of a distribution can
be determined partially or completely. A statistical hypothesis in which there is only one unknown
population parameter is called a simple hypothesis, whereas in case there are two or more unknown
parameters, the hypothesis is referred to as a composite hypothesis [25]. Some indicative examples
of simple and composite hypotheses in the case of a normal population (when the only unknown
parameters are the mean value µ and the variance σ2 of the population) are presented below:

i. µ = µ0, σ2 = ω0 (simple hypothesis)
ii. µ = µ0, σ2 > ω0 (composite hypothesis)
iii. µ = µ0 (simple hypothesis)

The four primary components of hypothesis testing are the null hypothesis, the alternative hypothesis,
the critical region, and the test statistic. The statistical hypothesis under consideration is called null
hypothesis and is often denoted as H0. For each null hypothesis, a suitable alternative hypothesis is
also determined, denoted as HA.
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The alternative hypothesis, for example, for the null hypothesis H0: µ = µ0 can take one of the
following forms:

i. HA: µ > µ0 (right-tailed, directional)
ii. HA: µ < µ0 (left-tailed, directional)
iii. HA: µ , µ0 (two-tailed, non-directional)

The form of the selected alternative hypothesis is determined by the conclusion that is desired to
be drawn in case of rejection of the null hypothesis H0. The definition of the form of the alternative
hypothesis affects the positioning of the so-called critical region.

After determining the null and the alternative hypothesis, the observed value of the test statistic
is calculated, a process enabling the approval or rejection of the null hypothesis. In order for this
decision to be taken, the sample space is divided into two mutually exclusive and complementary areas:
the critical region and its complementary region. If the observed value of the test statistic resides inside
the critical region, then the null hypothesis H0 is rejected. In the opposite case, when the observed
value of the test statistic resides outside of the critical region, the null hypothesis H0 is accepted.

At this point, it should be highlighted that the terms acceptance and rejection should not be considered
with their literal meaning; for example, acceptance of the null hypothesis does not necessarily mean
that the latter is true. It just means that, based on the experimental or observation data, there is no
reason to believe otherwise. In the same sense, rejection of the null hypothesis does not necessarily
mean that it is false, but rather that the experimental data do not substantiate its approval as true.

As known, in order to reach conclusions on the attributes or characteristics of a population a
sample of and not the entire population is studied. Thus, for any decision rule applied, an error at the
acceptance or rejection of the hypothesis exists. The four possible cases are depicted in Table 1.

Table 1. Possible cases of the decision process.

Decision
Real Situation

H0 Is true or HA Is False H0 Is False or HA Is True

Rejection of H0
Rejection of H0 while it is true

(Type I error) Rejection of H0 while HA is true

Acceptance of H0 No rejection of H0 while it is true Acceptance of H0 while HA is true
(Type II error)

Table 1 indicates that two error types may exist during the decision process:

• Type I error: Rejection of hypothesis H0 while the latter is true
• Type II error: Acceptance (or no rejection) of H0 when the latter is false

The corresponding error probabilities are expressed as:

• Probability of type I error = P (rejection of H0 | H0 is true) = α

• Probability of type II error = P (acceptance of H0 | HA is true) = β

Using quality control terms, type I error corresponds to the case of a batch being rejected despite
of being good and, thus, is referred to as producer’s risk, while type II error is related to the case of a
faulty batch being accepted and is referred to as consumer’s risk.

Significance level. The probability of Type I error (α) is also referred to as level of significance
and reflects the size of the critical region.

Power function. The probability of rejecting H0 when HA is true is called power function.
It states that:

Power function = P (rejection of H0 | HA is true) = 1 − P (acceptance of H0 | HA is true) = 1 − β (1)
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During the statistical hypothesis testing process, the minimization of the probabilities of both
error types is ideally desired. Unfortunately, for a sample of given size n, these two probabilities cannot
be controlled simultaneously. This occurs because any decrease of one error type leads to the increase
of the other. For example, if a critical region where type I error is zero exists, then this means that
hypothesis H0 will always be accepted and, therefore, the probability of Type II error will be equal
to 1. Thus, it is necessary to maintain the probability of one type of error at a fixed level and select the
critical regions, so that the probability of the other type of error is minimized. Since Type I error is
considered to be more important than type II error, a value for the Type I error probability, a, is selected
and the probability of Type II error, β, is minimized by maximizing the power function.

To sum up, the steps performed during a statistical hypothesis testing process are:

1. Identification of the population distribution and determination of the parameters of interest
(e.g., mean value), which will be the subject of hypothesis testing. Identification of the null
hypothesis H0 as well as of the form of the alternative hypothesis HA.

2. Selection of a suitable test statistic.
3. Identification of the critical region.
4. Calculation of the observed value of the test statistic.

Acceptance or rejection of the null hypothesis, depending on whether the observed value of the
test statistic resides inside or outside the critical region, respectively.

3. Experimental Process and Results

3.1. Description of the Experiment and the Collected Dataset

In the framework of our study, let us assume that our research engineers declare that routing
Method A provides better results than routing Method B regarding the energy consumption of a test
electric vehicle. In order for this claim to be either verified or proven inaccurate, an experiment
comprising 30 field tests is performed. In detail, 30 pairs of origin-destination points inside a trial site
(i.e., specific geographic area) are selected in a random manner.

In the specific dataset, the distance of each destination point from the corresponding origin point
ranges from 2 km to 4 km inside the road network. For each pair of origin-destination points, two
routes are calculated and then travelled: the route suggested by Method A and the route suggested by
Method B. For each of the 30 trials (i.e., for each pair of origin-destination points), the two routes are
travelled under the same external conditions, i.e., with the same electric vehicle and driver, inside the
same time frame (e.g., 12:00–14:00), at the same day of the week and the same month, with similar
initial battery levels and under the same weather conditions. It should be noted that external factors
may change from one trial to another, but not between routes of Type A and Type B of the same trial.
In case that the external conditions change substantially, within the same trial, when driving the Type-A
and Type-B routes, the measurements of the specific trial are discarded.

Furthermore, before each test, the method (i.e., Type A or Type B) to be tested first is selected in
a completely random way (by tossing a coin). Moreover, in each trial, the driver is kept unaware of
whether the route being travelled is of Type A or Type B, so as to avoid any bias in the results due to
systematic changes in driver behavior.

In this study, Method A is based on the use of neural networks [26–28] for the estimation of the
energy consumption of alternative routes to the desired destination. Once the energy cost of every
road segment toward the selected destination is estimated by the neural networks (a properly trained
neural network is used for each segment of the road network), the route, i.e., the sequence of adjacent
road segments, that is expected to lead to the lowest energy consumption is computed and suggested
to the driver.

On the other hand, Method B relies on the use of a currently commercially available routing
software, whose routing algorithm selects the fastest route from the origin to the destination point
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according to the denoted speed limits but also based on historical and car-floating data of travelling
times through the urban road segments.

Table 2 summarizes an excerpt of the test results. As can be observed, the results for both routes
travelled are recorded in each trial. In detail, the route length (LENGTH in meters), the consumed
energy (ENERGY in Watt-hours), the time travelled (TIME in seconds), as well as the number of road
segments (LINKS) are recorded for each type of route (Type A or Type B).

Table 2. Excerpt of the experimental results.

Method A Method B Method A vs. Method B
[Ratio = (A − B)/B]

Test Length
(m)

Energy
(Wh)

Time
(s) Links Length

(m)
Energy
(Wh)

Time
(s) Links Length

(Ratio %)
Energy
(Ratio)

Time
(Ratio %)

1 3037 402.6 293 36 3040 422.8 256 35 −0.10% −0.047781 14%
2 2349 275.0 181 27 2100 300.2 164 31 11.85% −0.083814 10%
3 2175 311.8 194 35 3014 441.0 167 37 −27.84% −0.293006 16%
4 2098 234.4 154 16 2496 339.6 188 31 −15.95% −0.309695 −18%
5 2101 328.3 274 36 2112 345.3 257 37 −0.52% −0.049346 7%
6 2244 324.8 298 42 2086 341.3 252 40 7.57% −0.048488 18%
7 2660 196.8 198 21 2682 213.9 162 22 −0.82% −0.079729 22%
8 2772 343.0 346 33 3112 416.2 334 32 −10.95% −0.175933 4%
9 2732 342.4 313 30 3026 411.3 321 31 −9.72% −0.167596 −3%

10 3128 365.9 319 30 3903 465.6 313 30 −19.87% −0.214217 2%
11 2376 311.8 275 26 2721 365.0 283 27 −12.66% −0.145646 −3%
12 2695 353.4 336 34 3040 406.4 313 35 −11.33% −0.130481 7%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, in order to compare the energy consumption, the following ratio is used:

ξi =
eAi − eBi

eBi

, where i = 1, 2, . . . ., 30 (2)

and the result is stored inside the “Energy (Ratio)” table column, with eAi and eBi representing the
recorded energy consumption values for the Type A and the Type B route, respectively, at the end of
the ith trial.

In order to verify or disprove claims such as the ones presented in the Introduction, regarding the
comparative performance of the two routing methods, A and B, we proceed to formulate a suitable
statistical hypothesis testing process, taking advantage of the collected experimental data.

3.2. Paired Sample Tests

The grouping of available observations into pairs is a method aimed at reducing the usually
large variance that exists in the effects of two so-called “treatments” (candidate solutions). Under the
assumption that a suitable external factor is selected for implementing the grouping into pairs, the
usual methods of statistical inference (hypothesis testing and confidence intervals) are rendered more
efficient for detecting actual differences in the average influences of different treatments [24].

Based on the experimental results of Table 2, we consider n = 30 random pairs of energy
consumption observations

(
EAi , EBi

)
in n respective combinations of the external factors’ values

(external conditions), where in each pair the observation EAi corresponds to the first “treatment”
(Method A) of the ith trial and the observation EBi corresponds to the second “treatment” (Method B) of
the ith trial, respectively. The following assumptions are made for these random pairs:
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• Concerning the
(
EAi , EBi

)
pairs: For each i (where i = 1, 2, . . . , n), the random pair

(
EAi , EBi

)
has

a two-dimensional normal distribution with parameters µEAi
, µEBi

, σEAi
, σEBi

, ρEAi ,EBi
such that:

µEAi
= µ` + µD, µEBi

= µ`
σEAi

= σEA , σBAi
= σEB

ρEAi ,EBi
= ρEA,EB

(3)

and that the random pairs
(
EA1 , EB1

)
,
(
EA2 , EB2

)
, . . . , (EAn , EBn) are random vectors independent

from one another.
• Concerning the differences Di = EAi − EBi : The differences D1, D2, . . . , Dn , where:

Di = EAi − EBi , where i = 1, 2, . . . , n (4)

comprise a random sample out of a normal population with mean value µD. Thus, we assume
that the random variables D1, D2, . . . , Dn constitute a random sample of a normal population
with mean value equal to the difference µD of the average values of each pair’s observations [24].

Figure 1 provides a through description of the measured Di differences of the paired samples by
means of a histogram, an individual value plot and a boxplot. Part (d) of Figure 1 contains a normal
probability plot that confirms that the measured differences follow a normal distribution (since the
data points fall within the area defined by the adjustment to the normal model).

Consequently, the steps of the statistical test process are described below:
Step 1: In order to investigate whether the average energy consumption of Method A is lower

than the energy consumption of Method B, we must check the following null hypothesis:

H0 : µD = 0 (5)

This null hypothesis is tested against the alternative hypothesis:

HA : µD < 0 (6)

In case our statistical test supports the acceptance of the null hypothesis, then there will be
strong indications that the average energy consumption through the application of Method A is equal
to or greater than the energy consumption through the application of Method B. In other words,
acceptance of the null hypothesis suggests that Method A does not have better results regarding
the energy consumption compared to Method B. On the other hand, rejection of the null hypothesis
(and consequent acceptance of the alternative hypothesis) implies that Method A provides indeed better
results (i.e., lower energy consumption on average).

Step 2: The test statistic that should be used is:

T =
D− δ0

SD/
√

n
(7)

where D is the sample mean value and SD the sample standard deviation of the Di values, while the
critical region is the following:

C =
{
t : t < −ta,n−1

}
(8)

Setting α = 0.05 as the significance level and with n = 30, we have:

C =
{
t : t < −t0.05,29

}
= {t : t < −1.699} (9)
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Figure 1. (a) Histogram; (b) individual value plot; (c) boxplot; (d) normal probability plot of the
differences of paired samples.

It should be highlighted herein that the normal practice is to work with only one significance level
(fixed in advance). By convention, typical values for α used in the literature are: 0.10, 0.05, or 0.01 [29].
In this paper, we report and discuss results when working with any of these typical levels.

Step 3: The observed value of the test statistic is:

t =
d− δ0

sD/
√

n
(10)

where d = −42.61, δ0 = 0, sD = 34.171, n = 30 and thus:

t = −6.830 (11)

Step 4: The observed value of the statistical test function falls inside the critical region, thus, we
reject the null hypothesis H0, since:

t = −6.830 < −1.699 (12)

Step 5: Rejection of H0 suggests that we have adequate evidence that Method A achieves lower
average energy consumption than Method B or, in other words, that by adopting Method A the vehicle
saves energy.

From the results summarized in Table 3, we confirm that the observed value of the test statistic
is the one calculated in Step 3, and the observed significance level is p = 0.000 (i.e., with accuracy of
three decimal places) which means that p < α for all typical values of the significance level α (typically,
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0.10, 0.05, and 0.01). Hence, the null hypothesis is rejected at all three levels of significance and the
alternative hypothesis is accepted, resulting in the conclusion that Method A indeed achieves lower
energy consumption compared to Method B.

Table 3. Results obtained for the paired sample test.

Paired T for A–B

N Mean StDev SE Mean

A 30 308.4 79.3 14.5
B 30 351.0 88.6 16.2

Difference 30 −42.6 34.17 6.24
95% upper bound for mean difference: −32.01

t-Test of mean difference = 0 (vs. <0): T-Value = −6.83 p-Value = 0.000

Expanding our conclusions, we can observe that, since the 95% confidence level for the average
difference is equal to −32.01, as depicted in Table 3, there is sufficient evidence at the 5% significance
level that Method A achieves average energy savings greater than 32 Wh compared to Method B in urban
routes of 2–4 km length.

3.3. Statistical Testing of the Mean Value in a Normal Population (with Unknown Variance)

By performing the statistical analysis of the previous section (Section 3.2), we succeeded in
answering two types of questions: (1) whether Method A achieves-on average-better results than Method
B and (2) whether Method A achieves, on average, energy savings greater than δ0 energy units (Wh)
in 2–4 km urban routes. Going one step further, we would like to investigate whether the average
energy saving achieved by Method A over Method B is of the order of γ% (e.g., γ = −10%) or better.
In other words, we would like to quantify even further the benefits of adopting Method A over Method
B and verify or disprove a claim that Method A leads to average energy savings in the order of γ%
or better.

To this end, we calculate through Equation (2) the ratios ξi, where i = 1, 2, . . . ., 30. The values
of ξi represent the ratio of the energy difference between the Type A route and the Type B route as a
percentage of the energy consumed in the Type B route, for the ith trial.

Before proceeding with the selection of the most appropriate statistical hypothesis test, it is
necessary to confirm our “intuition” about the normality of the population. The corresponding
graphic normality test is depicted in Figure 2. Figure 2 suggests that our data conform to the normal
distribution with average value µ̂Ξ = Ξ = −0.1182 and standard deviation equal to σ̂Ξ = sΞ = 0.08369.
This conclusion is drawn [24] not only because all points in the graph fall within the area defined by the
adjustment to the normal model but also because the observed significance level of the Anderson-Darling
(AD) criterion is greater than all typical significance levels. In particular, p = 0.486 > α for α equal to
0.10, 0.05, and 0.01. The AD criterion is used to test if a sample of data belong to a population following a
particular distribution [30] (in this case, the normal distribution). It is based on the Kolmogorov-Smirnov
(K-S) test but uses tables of critical values for the distribution under consideration.

Consequently, we may proceed in testing the mean value of the normal population with unknown
variance. In this case, the most suitable test statistic is:

T =
Ξ − µΞ

sΞ/
√

n
(13)

Accordingly, we carry out the following testing procedure. The null hypothesis to be tested is:

H0 : µΞ = γ (14)
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where µΞ is the average value of the ratio Di/EBi and γ < 0. The null hypothesis is tested against
the alternative:

HA : µΞ > γ (15)

In case the null hypothesis is accepted, there will be strong evidence that the average difference
of Type A and Type B energy consumption is equal to or better than γ% compared to the average
Type B consumption. In other words, acceptance of the null hypothesis means that Method A presents
energy savings equal to or better than γ% compared to Method B. For instance, if γ = −10% or γ =

−0.10, then accepting the null hypothesis suggests that there are average energy savings of 10% or
greater if Method A is selected over Method B. If γ is lower, then the benefit obtained from using Method
A is higher.
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By executing the corresponding statistical test, we get the results depicted in Table 4. As can
be seen, the observed significance level is p = 0.878 which means that p > α for all typical values of the
significance level α (0.10, 0.05, and 0.01). Hence, for all typical significance levels, the null hypothesis
is accepted and the alternative is rejected, resulting in the conclusion that Method A indeed achieves
average energy savings equal to or better than 10% compared to Method B.

Table 4. Results obtained for the statistical test of the mean value in a normal population with
unknown variance.

Test of µΞ = −0.1 vs. > −0.1

Variable N Mean StDev SE Mean
95%

Lower
Bound

T p

Ξ 30 −0.1182 0.0837 0.0153 −0.1442 −1.19 0.878

Expanding our conclusions, we observe that the 95% confidence interval for the mean value µΞ

has a lower bound at −0.1442. This means that there is strong evidence at the 5% level of significance
that Method A achieves average energy savings 14% or better compared to Method B. On the other hand,
there is no sufficient evidence at this level of significance that the average energy savings are greater
than 15% when Method A is selected.
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3.4. Statistical Testing of the Difference of the Mean Values of Two Populations with Independent Samples

There are cases where the paired-wise comparison employed in Section 3.2 cannot be applied,
because the conditions used for the data collection between Method A and Method B differ substantially.
For instance, when it cannot be ensured that the Type-A route and the Type-B route in each trial
can be travelled in the same time window, with the same driver or in the same weather conditions.
In such cases, in which the field trials are designed in such a way so that the two sets of experimental
data are collected (run by run) for the same origin and destination points but in different contexts
(external conditions), and are thus independent, then the paired sample methodology of Section 3.2
cannot be applied, but an alternative statistical validation approach exists.

In this light, hereinafter we assume that we have two independent samples: Sample A regarding
the energy consumption when using routing Method A, and Sample B regarding the energy consumption
when using routing Method B. The test statistic that should be used in this case is:

T =
EA − EB − δ0

Sp

√
1

nA
+ 1

nB

(16)

which follows the t-distribution with nA + nB − 2 degrees of freedom, when hypothesis H0 is true.
In Equation (13), EA and EB represent the average energy consumption values of the two samples A
and B, respectively, whereas nA and nB represent the sizes of the two samples, respectively. In addition,
δ0 represents the difference between the mean values of populations A and B (see also Table 5).

Table 5. Critical region for testing H0: µA − µB = δ0, when the populations are normal with unknown
but equal variances.

HA Critical Region

µA − µB < δ0
{
t : t < −ta,n1+n2−2

}
µA − µB > δ0

{
t : t > ta,n1+n2−2

}
µA − µB , δ0

{
t : t < −ta/2,n1+n2−2

}
∪

{
t : t > ta/2,n1+n2−2

}
The metric Sp is the square root of the weighted sampled variance, which is given by:

Sp
2 =

(n1 − 1)SA
2 + (n2 − 1)SB

2

nA + nB − 2
(17)

where SA and SB denote the standard deviations for the two samples. The critical region in this case is
given in Table 5.

The statistical testing described above is used in practice when the sample size is small and
the distributions of the two populations do not differ significantly from the normal distribution.
Furthermore, this testing is usually performed after first conducting an F testing for the ratio of the
variances of the two populations, and after ensuring that the null hypothesis that this ratio is equal to 1
has not been rejected. However, it is also applied in case where the hypothesis of equality of the two
variances has been rejected, but the samples are of equal size.

Hereafter, we further elaborate on how to apply this method and its respective limitations.
As aforementioned, this time we have collected two independent sets of field measurements, i.e.,
two independent samples, which are different from the ones used in the previous, paired tests of
Section 3.2. These two independent samples, A and B, are of equal size n = 20, and their descriptive
summary is given in Figure 3a,b, respectively. We first test whether the collected data follow the normal
distribution, as illustrated in Figure 3c,d. The test for normality is necessary because the sample sizes
are small (i.e., n < 30).



Vehicles 2020, 2 554

Vehicles 2020, 2, FOR PEER REVIEW 12 

 

𝑇 = 𝐸஺തതത − 𝐸஻തതതത − 𝛿଴𝑆௣ට 1𝑛஺ + 1𝑛஻
 (16) 

which follows the t-distribution with nA + nB − 2 degrees of freedom, when hypothesis Η0 is true. In 
Equation (13), 𝐸஺തതത and 𝐸஻തതതത represent the average energy consumption values of the two samples A 
and B, respectively, whereas nA and nB represent the sizes of the two samples, respectively. In 
addition, 𝛿଴ represents the difference between the mean values of populations A and B (see also 
Table 5). 

The metric Sp is the square root of the weighted sampled variance, which is given by: 𝑆௣ଶ = ሺ𝑛ଵ − 1ሻ𝑆஺ଶ + ሺ𝑛ଶ − 1ሻ𝑆஻ଶ𝑛஺ + 𝑛஻ − 2  (17) 

where 𝑆஺ and 𝑆஻ denote the standard deviations for the two samples. The critical region in this case 
is given in Table 5. 

Table 5. Critical region for testing Η0: μA − μB = δ0, when the populations are normal with unknown 
but equal variances. 

HA Critical Region 
μA − μB < δ0 ൛𝑡: 𝑡 < −𝑡௔,௡భା௡మିଶൟ 
μA − μB > δ0 ൛𝑡: 𝑡 > 𝑡௔,௡భା௡మିଶൟ 
μA − μB ≠ δ0 ൛𝑡: 𝑡 < −𝑡௔/ଶ,௡భା௡మିଶൟ  ∪ ൛𝑡: 𝑡 > 𝑡௔/ଶ,௡భା௡మିଶൟ 

The statistical testing described above is used in practice when the sample size is small and the 
distributions of the two populations do not differ significantly from the normal distribution. 
Furthermore, this testing is usually performed after first conducting an F testing for the ratio of the 
variances of the two populations, and after ensuring that the null hypothesis that this ratio is equal 
to 1 has not been rejected. However, it is also applied in case where the hypothesis of equality of the 
two variances has been rejected, but the samples are of equal size. 

Hereafter, we further elaborate on how to apply this method and its respective limitations. As 
aforementioned, this time we have collected two independent sets of field measurements, i.e., two 
independent samples, which are different from the ones used in the previous, paired tests of Section 
3.2. These two independent samples, A and B, are of equal size n = 20, and their descriptive summary 
is given in Figure 3a,b, respectively. We first test whether the collected data follow the normal 
distribution, as illustrated in Figure 3c,d. The test for normality is necessary because the sample sizes 
are small (i.e., n < 30). 

  
(a) (b) 

Vehicles 2020, 2, FOR PEER REVIEW 13 

 

  
(c) (d) 

Figure 3. (a,b) Graphical summary of independent samples A and B; (c,d) normal probability plots 
for independent samples A and B. 

Based on Figure 3, we observe that, for both populations, data conform to the normal 
distribution, since all points in the two graphs fall within the area defined by the adjustment to the 
normal model, and also because the observed significance level of the Anderson-Darling (AD) 
criterion is greater than the typically used significance levels (i.e., p > α for α equal to 0.10, 0.05, and 
0.01). In case the populations from which the samples are taken do not have a normal probability 
distribution (e.g., supposedly the population from which sample B is drawn follows the skewed 
distribution), then it is not valid to follow the method suggested in this section. In such case, it is best 
to enlarge the samples (i.e., n ≥ 30), which allows the Central Limit Theorem to be applicable and a 
simple Z-test [31] can be used [32]. 

As explained, since the two sample sizes are equal, we may directly proceed into using the 
method defined, but it is better first to test whether the two unknown variances can be assumed as 
equal. For this, we use the F-test, as depicted in Table 6, to test the hypothesis of the two variances 
being equal against the alternative of not being equal, i.e.,: 𝐻଴ : 𝜎௮ଶ𝜎௯ଶ = 1  𝑣𝑠.  𝐻஺ : 𝜎௮ଶ𝜎௯ଶ ≠ 1 (18) 

From the results of the F-test, we deduce that there are strong indications to accept the null 
hypothesis, since the observed significance level p is higher than the typical significance levels (i.e., 
p>α for α equal to 0.10, 0.05, and 0.01). 

Subsequently, we carry out the main testing procedure, by testing the following null hypothesis: 𝐻଴: 𝜇௮ − 𝜇௯ = 0 (19) 

where 𝜇௮ and 𝜇஻ are the mean values of populations A and B, respectively, whereas γ < 0. The null 
hypothesis is tested against the alternative: 𝐻஺: 𝜇௮ − 𝜇௯ < 0 (20) 

In case the null hypothesis is accepted, there will be strong evidence that the average difference 
of Type A and Type B consumptions is zero. In other words, acceptance of the null hypothesis means 
that there is no proof that Method A presents energy savings compared to Method B, whereas 
acceptance of the alternative hypothesis means that Method A leads to lower energy consumption on 
average compared to Method B. 

Table 6. F-test for the variances of populations A and B. 

Test and Cl for Two Variances: A; B 
Method 

Null hypothesis Sigma(A)/Sigma(B) = 1 

Figure 3. (a,b) Graphical summary of independent samples A and B; (c,d) normal probability plots for
independent samples A and B.

Based on Figure 3, we observe that, for both populations, data conform to the normal distribution,
since all points in the two graphs fall within the area defined by the adjustment to the normal model,
and also because the observed significance level of the Anderson-Darling (AD) criterion is greater
than the typically used significance levels (i.e., p > α for α equal to 0.10, 0.05, and 0.01). In case
the populations from which the samples are taken do not have a normal probability distribution
(e.g., supposedly the population from which sample B is drawn follows the skewed distribution),
then it is not valid to follow the method suggested in this section. In such case, it is best to enlarge the
samples (i.e., n ≥ 30), which allows the Central Limit Theorem to be applicable and a simple Z-test [31]
can be used [32].

As explained, since the two sample sizes are equal, we may directly proceed into using the
method defined, but it is better first to test whether the two unknown variances can be assumed
as equal. For this, we use the F-test, as depicted in Table 6, to test the hypothesis of the two variances
being equal against the alternative of not being equal, i.e.,:

H0 :
σA

2

σB2 = 1 vs. HA :
σA

2

σB2 , 1 (18)



Vehicles 2020, 2 555

Table 6. F-test for the variances of populations A and B.

Test and Cl for Two Variances: A; B

Method
Null hypothesis Sigma (A)/Sigma (B) = 1

Alternative
hypothesis Sigma (A)/Sigma (B) not = 1

Significance level Alpha = 0.05

Statistics
Variable N StDev Variance

A 20 82.695 6838.408
B 20 87.219 7607.082

Ratio of standard deviations = 0.948
Ratio of variances = 0.899

95% Confidence Intervals
Distribution of

Data CI for StDev CI for Variance Ratio

Normal (0.597; 1.507) (0.356; 2.271)
Continuous (0.583; 1.471) (0.340; 2.165)
Test Method DF1 DF2 Test

Statistic p-Value
F Test (normal) 19 19 0.90 0.819

Levene’s Test
(any continuous) 1 38 0.09 0.762

From the results of the F-test, we deduce that there are strong indications to accept the null
hypothesis, since the observed significance level p is higher than the typical significance levels (i.e., p > α
for α equal to 0.10, 0.05, and 0.01).

Subsequently, we carry out the main testing procedure, by testing the following null hypothesis:

H0 : µA − µB = 0 (19)

where µA and µB are the mean values of populations A and B, respectively, whereas γ < 0. The null
hypothesis is tested against the alternative:

HA : µA − µB < 0 (20)

In case the null hypothesis is accepted, there will be strong evidence that the average difference of
Type A and Type B consumptions is zero. In other words, acceptance of the null hypothesis means that
there is no proof that Method A presents energy savings compared to Method B, whereas acceptance
of the alternative hypothesis means that Method A leads to lower energy consumption on average
compared to Method B.

By executing the corresponding statistical test, we get the results depicted in Table 7. As can be
seen, the observed significance level is p = 0.063 which means that p > α for α = 0.01 and α = 0.05.
Hence, at these two typical significance levels, the null hypothesis is accepted and the alternative is
rejected, resulting in the conclusion that there is no substantial evidence that Method A achieves better
average energy savings against Method B. We also observe that the 95% confidence interval for the
difference µA − µB has an upper bound at 3.3, which is higher than zero.
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Table 7. Results obtained for the statistical test of the difference of the mean values of two populations
with independent samples.

Two-Sample T for A vs. B

SE
N Mean StDev Mean

A 20 308.9 82.7 18
B 20 350.9 87.2 20

Difference = µA − µB
Estimate for difference: −42.0

95% upper bound for difference: 3.3
t-Test of difference = 0 (vs. <): T-Value = −1.56 p-Value = 0.063 DF = 38

Both use Pooled StDev = 84.9867

3.5. Discussion and Guidelines

It is important to highlight that, in comparison to the paired sample tests:

• The mean difference in the two cases is similar, i.e., xA − xB = −42.6 in the first case (paired
samples test) and −42.0 (measured in Watt-hours) in the second (two-sample test);

• On the other hand, as opposed to the paired samples, the two-sample experimentation has not
provided substantial evidence that Method A achieves on average better results than Method B.

This is a good example demonstrating that experimentation by means of two independent samples
might not be sufficient for a comparative assessment of two competing methods. By executing the
experimentation so that measurements are organized into pairs (which, however, is generally more
difficult in an experimental design), the variance within the data of the effects of the competing methods
is reduced, and consequently the hypothesis testing becomes more effective.

4. Conclusions

The motivation for this study lies in the fact that several research papers and research programs
dealing with transport-related solutions promise significant improvements regarding the energy
efficiency of vehicles, without however proceeding in a systematic validation of their claims. Thus,
such claims, often also used for marketing purposes, are in reality not sufficiently substantiated.
In the context of our study, two different routing methods aimed at minimizing vehicular energy
consumption were selected and comparatively assessed. In detail, a neural network-based method
(Method A) and a conventional, commercially available method (Method B) for vehicular routing
were examined. Subsequently, appropriate statistical analysis using the hypothesis testing method of
statistical inference was carried out, based on field-collected experimental data for a random set of
origin-destination points.

In order to perform the abovementioned comparison of the two methods, three different means
of comparative assessment were described and applied: (1) the paired sample tests methodology,
(2) the statistical testing of the mean value in a normal population with unknown variance, and (3)
the statistical testing of the difference of means in normal populations with unknown yet equal
variances. This allowed to draw conclusions on whether and to what extent routing Method A significantly
outperforms Method B, as far as energy consumption is concerned.

For instance, through the analysis under the 1st approach, it was proven that routing Method
A indeed achieves lower energy consumption on average compared to Method B. Through the 2nd
approach, it was deduced that the selection of Method A results in average energy savings in the order
of 10% or better, at any typical level of significance (1%, 5%, or 10%). On the contrary, selection of
Method A leads to average energy saving of 15% or more only in case the level of significance is set at
1% (but not higher). Moreover, the analysis and discussion of the 3rd approach, which used statistical
testing with two independent samples (i.e., samples were not paired as in the 1st and 2nd approach),
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showed that this type of experimentation might not be sufficient to substantiate the different effects of
the competing methods, even though the values of the sample means might differ significantly.

It should be noted that the described methodologies can be applied to a wide range of problems
in the area of road transport, either specifically for the purpose of comparing alternative means of
energy (or time) savings, which is in fact a very popular research topic, or more generally to compare
the benefits of competing methods related to driving efficiency, driver profiling, traffic prediction
and optimization, logistics operations optimization, vehicular communication, transportation modes,
and others.
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