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Abstract: The fuel economy of a hybrid electric vehicle (HEV) is improved, by taking the energy
relevant system states into account in the energy management system (EMS). With an increasing
number of states and decision variables, energy optimizing algorithms in the EMS can be prohibitive
for real-time implementation. In part I of this work, a model-based, multi-level approach is taken
to subdivide the original (large) optimization problem into computational efficient sub-problems,
based on optimal control techniques using a preview. The resulting EMS solves the problem of
power-split between engine and motor/generator, mode and gear switching including switching
costs, with battery energy constraints. The superior energy efficiency of the multi-level EMS is
simulated on a representative heavy duty drive cycle, where it saves 7.0% fuel, compared to a
conventional vehicle, where the baseline EMS for the HEV saves 5.8%. In part II, real-world validation
of the EMS is performed.
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1. Introduction

Hybrid electric vehicles (HEVs) have emerged as a promising solution to reduce operational cost
in commercial road transportation, while complying to increasingly stringent emission legislation.
Since HEVs have more than one power converter, they offer additional control freedom, compared to
conventional vehicles, which give opportunities for the energy management system (EMS) to decrease
fuel consumption and emissions. The EMS has to consider the energy relevant systems of the HEV and
already a large amount of solutions have been proposed that take the battery energy dynamics into
account [1]. However, the system efficiency can be further improved by taking additional system states
into account as suggested by [2,3], referred to as a ‘unified’, ‘integrated’, ‘total’ or ‘holistic’ energy
management. Examples of such additional systems are the battery with its temperature and aging
characteristics [4,5], engine after-treatment system [3,6], waste-heat recovery system [7], combustion
engine [8], or the cabin heater [9].

Using model information of these systems, the EMS can be posed as an optimization problem,
in order to ensure energy efficiency. The computational complexity of this problem, however, increases
with the number of states, presence of state constraints, number of decision variables, type of decision
variables (continuous/discrete) and nonlinearity of the models. Many methods exist to design an
optimizing EMS, using e.g., Dynamic Programming [10,11], Pontryagin’s Minimum Principle [12]
or Model Predictive Control [13,14] and generate close to optimal results; however they can be
computationally too demanding for real-time implementation. In this work, a combination of methods
is used, to ensure an efficient computation for each of the sub-problems.
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An overview of real-time implementable optimization approaches for a (parallel) hybrid vehicle
with the decision variables: power-split, stop-start and gear selection, is given in Table 1. In particular,
discrete control variables increase the computational complexity, explaining why gear selection is
often omitted from the EMS or solved in a separate step with heuristics [15–17]. In [18], an integrated
approach is presented, where gear selection and stop-start are part of a sequential optimization with
the power split. In these approaches, the cost of stop-start and gear change events are not considered,
which can result in unacceptable switching behaviour, like hunting oscillations. To overcome
this problem, costs on switchings are included, solved using Dynamic Programming (DP) and
Quadratic Programming (QP) [19] or as one Mixed Integer Linear Program (MILP) [20]. For real-time
solving, the allowed model complexity is limiting and adding additional states to these EMSs is
computationally prohibitive.

Table 1. Optimizing Energy Management System (EMS) algorithms, for power-split, stop-start and gear.
‘Cost’ indicates if switching events are penalized in the algorithm. See Table 2 for the used abbreviations.

Reference Power-Split Stop-Start Gear Selection

[15] PMP PMP -
[16] QP RB -
[17] QP PMP RB
[18] PMP DP DP
[19] QP DP + cost DP + cost
[20] MILP MILP + cost MILP + cost

this work PMP DP + cost DP + cost

Table 2. Abbreviations.

Components

BT Battery
CE Combustion Engine
CL Clutch
EMS Energy Management System
FT Fuel Tank
GB Gearbox
HEV Hybrid Electric Vehicle
MG Motor Generator
RD Road
VH Vehicle

Algorithms

DP Dynamic Program
MILP Mixed Integer Linear Program
PMP Pontryagin’s Minimum Principle
QP Quadratic Program
RB Rule Based (heuristics)

By partitioning a large optimization problem into a set of smaller problems, as in a distributed
control system [21], the computational efficiency and robustness are improved, albeit losing the
guarantee of global optimality. The process of partitioning is not trivial and many different structures
exist. For the power-split problem, two-level structures can be identified in literature [22–24],
where planning of the battery energy is separated from the power-split decisions. In this work, a novel
EMS is developed as a multi-level system [25,26], in which the higher layers have an increasing level
of abstraction of the system, to be able to optimize and coordinate the lower layers [27], while having a
large decoupling between the levels. The multi-level EMS solves this control problem with preview,
for real-time implementation, using optimal control techniques (PMP and DP), thereby eliminating
calibration of parameters. In Figure 1, the proposed control system is illustrated. Each level minimizes
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fuel, however, dependent on the function of the level, different model information and corresponding
optimal control techniques are used.

• On the first level, the power-split is explicitly solved using the Pontryagin Minimum Principle
(PMP), starting from [15]. This method is extended with costs on mode and gear switching,
thereby eliminating unacceptable switching behaviour. A Dynamic Programming (DP) routine
solves the discrete subproblem. Route and vehicle information determine the switching costs,
supporting a full model based approach.

• The second level optimizes the battery state of charge with input- and state-constraints,
and provides efficiency information of the hybrid system to the other levels using the
battery costate from the PMP solution. Due to the mode switching system on the vehicle,
charge sustaining behaviour must be enforced, by using an additional switching algorithm
between non-unique solutions.

• The third level provides the necessary route information to the lower layers. By predicting the
velocity along the route, using road slope and velocity limitations, the road load on the driveline
is determined.

Figure 1. Multi-level optimization of the velocity (v), battery energy (Eb) and power split (Pe, Pb)
including mode and gear selection (IM, IG). In Section 3 the scheme is described, with the prediction
of: road slope (α), velocity limit (v), driveline rotational speed (ω), driveline power (Pd), velocity (v)
and battery costate (λb), dependent on: vehicle position (s), velocity (v), battery energy (Eb), driveline
power (Pd), mode (M) and gear (G).

In Section 2, the model of the parallel hybrid vehicle is described, after which the multi-level EMS
for this vehicle is formulated in Section 3. The algorithms used on each of the three levels are explained
in Section 4 (power-split, mode and gear switch optimization), Section 5 (battery energy optimization)
and Section 6 (velocity prediction). Offline and online solution schemes of the multi-level optimization
are compared in Section 7, where high fidelity simulation results show the fuel benefit of the algorithm.
The conclusions are drawn in Section 8. The real-world validation of the multi-level EMS is described
in [28].
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2. Parallel Hybrid Electric Vehicle Model

For the design of a model-based EMS, the applied models of the hybrid electric vehicle (HEV) are
described in this section. The parallel hybrid vehicle under consideration is schematically depicted in
Figure 2. The fuel power Pf flows from the tank (FT) to the Combustion Engine (CE), converted to
mechanical power Pe, thereby depleting the available fuel energy E f . Dependent on the position of
the clutches CL1 and CL2, the power from the Motor/Generator (MG) Pm is added to Pe, resulting in
the power at the power-split point Pp. This power is transferred through the gearbox, final drive and
wheels (GB), resulting in the driveline power Pd of the vehicle (VH). Dependent on the road load acting
on the vehicle (F0), the travelled distance s and velocity v will change. The MG exchanges electrical
power Pb with the battery (BT), thereby (dis-) charging the buffer Eb. Due to the two clutches, both CE
and MG can be disconnected and stopped, thereby eliminating their friction losses. In the following
sections, the models for this topology are given, with typical model parameters denoted in Table 3.

Figure 2. Topology of the parallel Hybrid Electric Vehicle with its relevant power flows, defined
positive towards the road and relevant states (between parenthesis).

Table 3. Model parameters for the internal combustion engine (CE), motor generator (MG), battery (BT)
and vehicle (VH).

Model Parameter Value Unit Description

CE ηe 0.45 - indicated efficiency
Pe0 Pe0(ωe) W friction (cf. Figure 3)
Pe Pe(ωe) W minimum power (cf. Figure 3)
Pe Pe(ωe) W maximum power (cf. Figure 3)
Ie 3 kg m2 moment of inertia

MG ηm 0.95 - mechanical efficiency
Pm0 Pm0(ωm) W friction (cf. Figure 3)
Pm Pm(ωm) W minimum power (cf. Figure 3)
Pm Pm(ωm) W maximum power (cf. Figure 3)
Im 1.5 kg m2 moment of inertia

BT β 1× 10−6 1/W loss coefficient
Eb − Eb 4× 106 J effective battery size

VH m 20× 103 kg vehicle mass
ρ 1.2 kg/m3 air density

cw 0.65 - air drag coefficient
A 10 m2 frontal area
cr 4× 10−3 - rolling resistance coefficient
rd 52.2 - drive ratio
cG 1.29 - gear base constant
g 9.8 m/s2 gravitational constant

2.1. Internal Combustion Engine

The internal combustion engine (CE, or ‘engine’) is modeled as an affine relation between the fuel
Pf and the power output Pe, often referred to as a Willans approximation [29]:

Pe(t) = Pe0(ωe(t)) + ηePf (t), (1)
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with ηe the indicated efficiency (see Table 3) and Pe0(ωe) the speed dependent friction losses. It should
be noted that Pf (t) ≥ 0 and Pe0(ωe(t)) ≤ 0. The power output is limited by

Pe(t) ∈ [Pe(ωe), Pe(ωe)], (2)

as shown in Figure 3. The CE has Pe(ωe) ≤ Pe0(ωe), meaning that additional engine braking can be
applied on top of the nominal friction, which is a feature typically available on heavy duty commercial
vehicles. For Pe ≤ Pe ≤ Pe0, no fuel is consumed (Pf = 0). The total fuel consumption E f is the integral
of Pf :

Ė f = Pf (t). (3)

2.2. Motor Generator

The mechanical output of the motor generator (MG) is modeled as:

Pm(t) =

{
Pm0(ωm(t)) + ηmPb(t), if Pb > 0,

Pm0(ωm(t)) + 1
ηm

Pb(t), if Pb ≤ 0,
(4)

with Pm the mechanical output power, Pm0 the friction, Pb the electrical power from the battery and ηm

the constant efficiency of the MG; see Table 3. The power output is limited by

Pm(t) ∈ [Pm(ωm), Pm(ωm)] (5)

and is shown in Figure 3, together with Pm0(ωm).
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Figure 3. Power capabilities of internal combustion engine (CE) and motor generator (MG) as a function
of the rotational speed. Dotted lines indicate the nominal friction Pe0 and Pm0.

2.3. Battery

The battery (BT) is modeled as an integrator, with quadratic losses, see [15]:

Ėb = −Pbi(t), (6)

Pbi(t) = Pb(t) + β · Pb(t)
2, (7)
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with Eb the energy in the battery, Pbi the internal battery power, Pb the power at the terminals and β

the loss constant. Note that Pb > 0 discharges the battery. The effective size of the battery is limited,
such that

Eb ≤ Eb(t) ≤ Eb. (8)

In [8], the validation of the compression-ignition engine (CE), motor generator (MG) and the
battery (BT) model is described.

2.4. Mode Selection

The topology has two clutches, CL1 for connecting the CE to the driveline and CL2 for connecting
the MG to the driveline. When the clutch is open, the respective component is disconnected from the
driveline and stopped to eliminate the friction losses in the component. The two clutches create four
modes M ∈ {Mc, Me, Mm, Mo}, representing the driveline states, as defined in Table 4. If connected,
then the rotational speed of the CE(ωe), respectively, the MG (ωm), is equal to the rotational speed
ω at the gearbox input shaft, and zero otherwise. The gearbox input power Pp is the sum of the
connected components.

Table 4. Driveline modes M.

M Description CL1 CL2 ω Pp(M)

Mc combined closed closed ωe=ωm=ω Pe + Pm
Me engine-only closed open ωe=ω, ωm=0 Pe
Mm motor-only open closed ωm=ω, ωe=0 Pm
Mo open driveline open open ωe=ωm=0 0

The mode is controlled with IM ∈ {ic, ie, im, io} for the respective four modes. Mode switch
dynamics are defined by the state machine in Figure 4. When a mode switch (∆M) is performed,
the driveline is open (Mo) for a duration of ∆tM, during which no traction is available (Pp(Mo) = 0).
During the mode switch, a series of events, involving (de-)coupling and synchronization of rotating
masses, cause energy losses, represented by the lumped parameter εM:

εM =

{
0, if ∆M = 0,
> 0, if ∆M ∼ 0.

(9)

In Appendix C, the dependency of εM on the driveline state and the drive cycle is described.

Figure 4. State machine for switching between modes M. All mode switches go through Mo (‘open
driveline’), which is maintained for ∆tM. The negation of the mode command is denoted with ∼ i.

2.5. Gear Selection

The gearbox with final drive and wheels (GB) is modeled as a geometrically stepped transmission
without losses. The ratio of the gearbox rG is a function of the gear position G ∈ {1, 2, ..., 12} with the
gear base constant cG
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rG(G(t)) = cG
(12−G(t)). (10)

The gearbox input shaft speed ω [rpm] is related to the vehicle speed v [m/s], through the gearbox
ratio, final drive and wheels, with

ω(G(t), v(t)) = rG(G(t)) · rd · v(t), (11)

where rd is the drive ratio from speed [m/s] to gearbox out [rpm]. The gear selection is controlled with
IG ∈ {i1, i2, ..., i12}. Gear switch dynamics are defined by the state machine in Figure 5. When a gear
switch (∆G) is performed, the driveline is open (Go) for a duration of ∆tG, during which no traction
is available:

Pd(G) =

{
0, if G0,
Pp, if ∼ G0.

(12)

During the gear switch, a series of events, involving (de-)coupling and synchronization of rotating
masses, cause energy losses, represented by the lumped parameter εG:

εG =

{
0, if ∆G = 0,
> 0, if ∆G ∼ 0.

(13)

In Appendix C, the dependency of εG on the driveline state and the drive cycle is described.

Figure 5. State machine for switching between gears G. All gear switches go through G0 (‘open
driveline’), which is maintained for ∆tG. The negation of the gear command is denoted with ∼ i.

2.6. Vehicle

The dynamics of the vehicle (VH) are modeled for the longitudinal motion:

d2s
dt2 (t) =

F0(s, v(t)) + Fd(t)
m

, (14)

with vehicle mass m, vehicle position s, v(t) = ds
dt the vehicle speed, and the total vehicle road load F0:

F0(s, v(t)) = Fa(v(t)) + Fr(s) + Fg(s), (15)

with:
Fa(v(t)) =

1
2

cw · A · ρ · v(t)2, (16)

Fr(s) = m · g · cr · cos α(s), (17)

Fg(s) = m · g · sin α(s), (18)

respectively, the air drag, rolling resistance and gravitational force, and Fd the driveline force:

Fd(t) =
Pd(t)
v(t)

, (19)
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where α is the road inclination, and the other parameters as defined in Table 3. The velocity of the
vehicle is limited, such that

0 ≤ v(s) ≤ v(s), (20)

with v the maximum speed limit.

3. Multi-Level Energy Management

Optimizing the energy consumption for a system, with multiple states and a mix of continuous and
discrete decision variables, is computationally demanding for real-time implementation. Partitioning the
optimization into smaller problems reduces the computational burden. Not only are the sub-problems
smaller and thereby easier to solve, but also each partition can have its own optimization algorithm,
making the selection of more efficient algorithms possible, suited to the specific problem of that
partition. e.g., in [19] Dynamic Programming is used for the partition with discrete decision variables,
while convex optimization is used for the partition with continuous states. The method of partitioning
is, however, not unique nor trivial [27].

For the generic energy management problem, described in Section 3.1, a functional hierarchy
is introduced in Section 3.2, inspired by the ‘multi-level structure using conjugate variables’ in [27].
In this section, the partitioning in levels, and the solution of the multi-level EMS, for two solution
schemes, are described:

• the iterative scheme (Section 3.3), used in simulation to show convergence of the EMS in
Section 7.1,

• the model predictive scheme (Section 3.4), that is real-time implementable and simulated in
Section 7.2.

The control system for each individual level is described in Sections 4–6.

3.1. Generic Energy Management Problem

The general task of the Energy Management System (EMS) is to minimize the fuel energy E f
needed to move the vehicle from distance s0 to s f . For the vehicle model in Section 2, this EMS can be
posed as a nonlinear, mixed-integer, input- and state-constrained dynamical optimization problem:

min J = min
u

∫ t f

t0

(Pf (u, x, w, t) + Pε) dt,

s.t.

he(u, x) = 0,

hn(u, x) ≤ 0,

(21)

with continuous decision variables Pd (driveline power), Pb (battery power) and discrete decision
variables IM ∈ {ic, ie, im, io} (mode request), IG ∈ {i1, i2, ..., i12} (gear request):

u =


Pd
Pb
IM
IG

 , (22)

continuous states s (distance), v (velocity), Eb (battery energy) and discrete states M ∈
{Mc, Me, Mm, Mo} (mode), G ∈ {1, 2, ..., 12} (gear):
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x =


s
v
Eb
M
G

 , (23)

disturbances, representing the preview information, α (road slope), v (maximum velocity):

w =

[
α(s)
v(s)

]
, (24)

switching cost εM (for mode switch), εG (for gear switch):

Pε =

[
εM
εG

]
, (25)

equality constraints on s0 (initial distance), s f (final distance), Eb (battery energy) sustenance:

he =

 s(t0)− s0

s(t f )− s f
Eb(t0)− Eb(t f )

 = 0, (26)

inequality constraints on v, Eb upper and lower limits, Pe (CE power) upper and lower limits, Pm (MG
power) upper and lower limits:

hn =



v(t)− v(s)
Eb(t)− Eb
−Eb(t) + Eb
Pe(t)− Pe(ω)

−Pe(t) + Pe(ω)

Pm(t)− Pm(ω)

−Pm(t) + Pm(ω)


≤ 0, (27)

together with the model equations in Section 2.

3.2. Multi-Level Optimization

In the multi-level EMS, the global optimization problem is subdivided into three levels based
on its function: velocity determination, optimizing battery energy and optimizing the power-split
including switching of modes and gears. Each level (indicated with subscript i) has the same objective,
i.e., minimizing (equivalent) fuel:

min Ji = min
ui

∫ t f i

t0

(Pf (ui, xi, wi, t) + Pεi) dt,

s.t.

hei = 0,

hni ≤ 0,

(28)

but with a subset of the decision variables, and on each level a different model complexity, belonging to
the abstraction and dynamics on that level. In Table 5, the sub-problems of the optimization are defined,
including the output y of each level. Numbering of the levels start at 1 for the lowest level, as control of
the component itself (e.g., for safe operation) is indicated with Level 0, and is not contained in the EMS.
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Information exchange between the three levels is shown in Figure 1 and the function and interfacing
of each level is briefly explained next.

Table 5. Generic optimization problem, subdivided into three levels (i).

‘Generic’ ‘Velocity’ ‘Battery Energy’ ‘Power-Split’

i 3 2 1

ui


Pd
Pb
IM
IG

 [Pd]

[
Pb
IM

] Pb
IM
IG



xi


s
v

Eb
M
G


[

s
v

] [
Eb
] [

M
G

]

wi

[
α
v

] α
v
ω

 [
Pd
ω

] Pd
λb
v


Pεi

[
εM
εG

]
0 0

[
εM
εG

]

hei

 s(t0)− s0
s(t f )− s f

Eb(t f )− Eb(t0)

 [
s(t0)− s0
s(t f 3)− s f

] [
Eb(t f 2)− Eb(t0)

]
0

hni



v− v
Eb − Eb
Eb − Eb
Pe − Pe
Pe − Pe

Pm − Pm
Pm − Pm


 v− v

Pf − Pf
Pf − Pf




Eb − Eb
Eb − Eb
Pe − Pe
Pe − Pe

Pm − Pm
Pm − Pm




Pe − Pe
Pe − Pe

Pm − Pm
Pm − Pm



t f i t f = t(s f ) t f 3 ≤ t(s f ) t f 2 ≤ t f 3 t f 1 ≤ t f 2

yi


Pd
Pb
IM
IG

 [
Pd
v

] [
λb
]


Pe
Pb
IM
IG
ω



3.2.1. Level 1, ‘Power-Split Including Switching’ (Section 4)

Level 1 is the lowest control level in the EMS, responsible for the optimal power split (defined
by Pb and given Pd), mode (IM) and gear (IG) selection. Based on information from the higher levels,
it has to act fast, in order to have a responsive vehicle. However, the required fast update rate
(typically 10–100 Hz) limits the computational time available for calculations. This is solved by moving
computational expensive calculations to higher layers, and having explicit solutions for the remaining
optimizations, using optimal control techniques (DP and PMP, see Appendix A). Information from the
higher levels is provided by vectors over time (indicated in bold) with estimated quantities:

• λb, estimated equivalent cost of battery energy,
• Pd, estimated power demand,
• v, estimated vehicle speed,

and, after optimizing the decision variables, the calculated driveline speed ω is provided to Levels 2
and 3.
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3.2.2. Level 2, ‘Battery Energy’ (Section 5)

Level 2 is responsible for optimizing the battery energy over the cycle, considering the battery
constraints. As the battery energy dynamics are slower than the decisions needed in Level 1,
its optimizations can run at a lower rate (typically 1 Hz), facilitating the more complex calculations,
caused by battery limits and longer horizons. Abstraction of the Level 1 model, by e.g., not considering
gear switching and no penalties on switching, combined with PMP techniques, make the optimization
computationally efficient. Based on an estimated driveline speed ω, the estimated power demand Pd
and the current battery energy Eb, the optimal λb is calculated, which is input for Level 1.

3.2.3. Level 3, ‘Velocity’ (Section 6)

Level 3 determines the velocity v. Of the three levels, it uses the most abstracted model of the
hybrid driveline, by e.g., not considering battery dynamics, hybrid modes, power-split or switching.
Using-distance based route information for preview, i.e., slope α(s) and maximum speed limits v(s),
and current vehicle velocity v and position s, an estimate speed v is determined, resulting in an
estimated power demand Pd.

3.3. Multi-Level Iteration

The multilevel iteration scheme is used for offline simulation. In this multilevel, nested,
optimization, the decisions on one level impact the objective on other levels and thereby influencing
optimality [21,30]. This dependency can be seen in Figure 1, where the variables and ω, λb are fed back
to the higher level controllers. Solving the optimization by starting at the highest level and sequentially
transmitting information to the lower levels, we need an a priori estimate of ω and λb. When all levels
are calculated, the sequence can be repeated, where ω and λb are updated from the last sequence,
thereby providing the higher levels with the latest decision details of the lower levels. The solution
scheme of the optimization results in:

1. Initialization:

(a) all levels optimize over the complete drive cycle, from t(s0) to final time t f3 = t f2 = t f1 = t(s f ),
(b) initialize ω with an estimated average speed,

2. Velocity prediction:

(a) retrieve α(s), v(s) (road slope and speed limit information), s(t0), v(t0) (position and
speed) and model parameters (Table 3),

(b) use the vehicle model and results from optimal control, to predict the velocity profile,
(c) store resulting Pd, v.

3. Battery energy optimization:

(a) retrieve Pd, ω, Eb(t0) and model parameters (Table 3),
(b) calculate PMP necessary conditions and optimize the remaining boundary value

problem(s),
(c) store resulting λb.

4. Power-split and switch optimization:

(a) retrieve λb, Pd, v and model parameters (Table 3),
(b) calculate PMP necessary conditions and solve the remaining DP problem,
(c) store resulting ω and output Pd, Pb, IM, IG to the component controllers on the vehicle.

5. Iterate:

(a) repeat from step 2 with an improved estimate of ω and λb, unless stop conditions are met
(number of iterations). Note that the initial conditions at t0 remain identical.
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It is expected that each iteration will increase fuel efficiency, until the solution is converged.
The effect of the number of iterations on the fuel efficiency, is analyzed by simulation in Section 7.

3.4. Multi-Level Model Predictive Control

To apply the EMS in real time, the multilevel optimization is implemented as a model predictive
(or receding horizon) controller (MPC), which performs the optimization in a regular schedule
(‘sampling’). Each sampling period the optimization is performed with updated states, over a subset
of the cycle (‘horizon’), thereby creating feedback for disturbance rejection and model mismatch
compensation. In Figure 6, the differences with the multi-level iteration, in horizon and iteration, are
illustrated. Compared to the solution scheme in Section 3.3, the following adjustments are made:

• t0 now refers to the vehicle’s current time and t f is relative to t0, with a fixed horizon length
(which implements the receding horizon),

• each sample time, only one iteration is applied, i.e., step 5 in the iteration scheme is skipped,
• the horizon length decreases on each level: t(s f ) > t f 3 > t f 2 > t f 1,
• each level runs in its own regular schedule (sample time), where the higher levels run slower than

the lower levels.

All adjustments are for improving computational efficiency; however, optimality will reduce.
In Section 7, we will show that, in simulation, the optimality is marginally decreased and the multi-level
approach shows good fuel economy in a high fidelity simulation environment. In Sections 4–6,
the algorithms are described in detail for Levels 1, 2 and 3, respectively.

Figure 6. Schematic of the horizon in the ‘multi-level iteration’ and ‘multi-level Model Predictive
Controller (MPC)’ solution schemes. The multi-level iteration has an identical horizon, for all levels,
and for all iterations, comprising the complete drive cycle. The multi-level MPC has a solution scheme,
with shorter horizon lengths. With each time sample, the vehicle moves along the drive cycle. At each
time sample, one iteration is performed, over a horizon starting at t0, having a fixed horizon length to
t f . When the level has a faster sample time, iterations are performed more often, thereby improving
the feedback performance.

4. Level 1: Power-Split and Switch Optimization

The Level 1 optimization calculates the optimal power-split, mode and gear selection for a
simplified plant model, as a subset from optimization (21). In [8,15], it is shown that the power-split
problem with battery dynamics can be efficiently solved using PMP, resulting in two solutions steps,
see Appendix A:

• minimization of the Hamiltonian as a function of λb, resulting in the optimal power-split, mode
and gear,

• calculation of λb that complies to the battery constraints.
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Level 1 performs the first step: minimization of the Hamiltonian. The second step, calculation of
λb, is performed at Level 2, as described in Section 5.

On Level 1, we assume a predetermined velocity profile v(t) = v, which defines Pd using α(s) in
Equations (14)–(19). As λb is controlling Eb (see Section 5), all continuous states (Eb, s, v) are removed
from Equation (23), together with the equality and inequality constraints on the respective states in
Equation (26) and Equation (27). As a result, the minimization Equation (28) for Level 1, denoted with
subscript 1, is

min J1 = min
u1

∫ t f 1

t0

(Pf (u1, x1, w1, t) + Pε1) dt,

s.t.

he1 = 0,

hn1 ≤ 0,

(29)

with

u1 =

Pb
IM
IG

 , (30)

x1 =

[
M
G

]
, (31)

w1 =

Pd
λb
v

 , (32)

he1 = 0, (33)

hn1 =


Pe(t)− Pe(ω)

−Pe(t) + Pe(ω)

Pm(t)− Pm(ω)

−Pm(t) + Pm(ω)

 ≤ 0, (34)

with the switching cost Pε1 = 0 in Sections 4.1 and 4.2 and with Pε1 ≥ 0 in Section 4.3.

4.1. Explicit Minimization of the Hamiltonian per Mode

On Level 1, the Hamiltonian is minimized. For the hybrid drive train, this Hamiltonian is solved
explicitly in [8,15], i.e., an analytical expression is found for the minimization. This section extends that
solution for the driveline topology with an additional clutch between MG and GB. The Hamiltonian of
Level 1 to minimize is

H1 = Pf (Pb, IM, IG, Pd, v)− λb · Pbi(Pb, IM, IG, Pd, v), (35)

using the PMP conditions (Appendix A). When we assume instantaneous switching, i.e., ∆tM =

0, ∆tG = 0, the control signals IM and IG bring the system immediately to its corresponding state,
hybrid mode M, respectively, gear G, such that IM ≡ M, IG ≡ G. Then, for each M, G, the minimum
of H1 is found by solving dH1

dPb
= 0. For each M, G, the result is given in Table 6, where only parameter

Pm0(ω(G, v)) depends on the rotational speed ω, as defined by G and v through Equation (11).
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Table 6. Explicit solution of the power-split as a function of the mode.

Mode Description P∗b
Mm motor-only (Pd − Pm0)/ηm
Me engine-only 0

Mc combined


−

(λb+
ηm
η )

2βλb
if Pb > 0

−
(λb+

1
ηηm

)

2βλb
if Pb ≤ 0

With the explicit expression for P∗b (where the superscript ∗ denotes the optimal solution),
the reduced Hamiltonian H1a (with subscript a denoting the variant) is an explicit expression, for each
mode and gear combination. Finding the optimal H1 is thereby reduced to:

H∗1 = H∗1a = min H1a(M, G|λb, Pd, v). (36)

In Figure 7, H∗1 is illustrated. As a function of λb, H∗1 changes modes at B1, B2 and B3. Due to
the mode changes, the control signal P∗b for M∗ jumps as a function of λb at B1, B2 and B3, as shown
in Figure 8. That jumping behaviour, caused by the additional clutch between MG and GB, is new
to [8,15] and adds complications to the controllability of Eb, as will be shown in Section 5.2.

H

Mm
Mc
Me

M*

B3 1 2B B
|λb |

1

Figure 7. The Hamiltonian H∗1 of the three modes Mm, Mc, Me as a function of λb for a power demand
and rotational speed. The optimal mode M∗ changes at the boundary points B1, B2, B3.

B3 1 2B B

0

|λb |

P b

Mm
Mc
Me

M*

*

Figure 8. P∗b as a function of λb for the modes Mm, Mc, Me for a power demand and gear. At B1 and B2,
the optimal mode M∗ switches between Mc and Me, with a corresponding jump in P∗b . At B3 a jump
occurs due to switching between Mc and Mm.
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4.2. Mode Selection, without Cost on Switching

Instead of calculating all H1a(M, G) and selecting the minimal one in Equation (36), a computationally
more efficient approach can be taken where the optimal mode is calculated beforehand. Figure 7 shows
that the optimal mode is changed at B1, B2 and B3 where the Hamiltonians of two modes are equal.
Equating the Hamiltonians, using Equations (1), (4), (7), (36) and Table 6, results in five expressions,
representing all the switching lines (guards B) where the optimal mode M∗ is changing. Two guards
are a function of λb∀Pd:

B1 : λb = −ηm

η
+

2βPm0

η
+

2
√

βPm0(βPm0 − ηm)

η
, (37)

B2 : λb = − 1
ηηm

+
2βPm0

η
− 2

√
βPm0(βPm0ηm − 1)

ηηm
, (38)

and three guards are a function of (Pd, λb):

B3 : Pd = Pm0 −
ηm + ηλb

2βλb
η

ηm

−
√

4βλbηP0

2βλb
η

ηm

, (39)

B4 : Pd = Pm0 −
ηm + ηλb

2βλb
η

ηm

−
√

4βλbη(P0 − Pm0) + (λ1η + ηm)2

2βλb
η

ηm

, (40)

B5 : Pd = Pm0 −
ηm + ηλb

2βλb
η

ηm

−

√
4βλbηP0 + 2λbη(ηm − 1

ηm
) + (η2

m − 1
η2

m
)

2βλb
η

ηm

. (41)

All optimal modes M∗ are explicitly defined with Equations (37)–(41), as a function of (Pd, λb) and
the model parameters (Table 3). In Figure 9, the guards and optimal modes are illustrated.

0
|λ |b

P d

Mc*

B1

Mm

Me
Mc

B4

B3

B5

B2

*
*

*

Pd
#

Figure 9. Explicit mode change map as a function of costate λb and power demand Pd, indicating
the guards B between the optimal modes M∗m (motor-only), M∗e (engine-only) and M∗c (combined).
Figures 7 and 8 are cross sections at P#

d .

A further reduced Hamiltonian H1b(λb, Pd, v) is now obtained in three steps:

1. for each (feasible) gear, select the optimal mode M∗(G), using Equations (37)–(41),
2. for each (feasible) gear, calculate H1a(M∗(G), G),
3. select G∗ that minimizes H1a(G),
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thereby reducing Equation (36) to:

H∗1 = H∗1b = min H1b(λb, Pd, v), (42)

which statically defines the decision variables Pb, IM, IG as a function of λb, Pd, v.
Note that power constraints of the components in Equation (34) are easily added by including the

corresponding guards, thereby refining the area of M∗, see [15]. The cost function in Equation (29) is
now reduced to

min J1b =
∫ t f 1

t0

H∗1b(t|λb(t), Pd(t), v(t)) dt, (43)

which is the integral of all locally minimized Hamiltonians.

4.3. Mode Selection, with Cost on Switching

When the system operates near the guards, frequent switching (so called ‘hunting’) between modes
and gears can occur under influence of disturbances, thus preventing acceptable real-life implementation.
Each switch involves connecting and/or disconnecting of components, synchronization of their speeds
and additional friction losses, which cause driveability, durability and efficiency issues. As a solution
to hunting, the cost function in Equation 21 adds a penalty Pε = εM + εG ≥ 0 on mode switching ∆M
and gear switching ∆G.

The parameters εM, εG can be tuned to balance hunting behavior, with fuel economy. To prevent
tuning of the parameters, Appendix C quantifies the model-based, equivalent fuel losses during a
switch, identified by:

• synchronization losses, caused by acceleration and deceleration of rotating masses (Appendix C.1),
• traction interruption, caused by disconnection of the driveline and leading to vehicle speed

deviations (Appendix C.2). As the speed deviation during disconnection of the driveline, depends
on the road load (e.g., up-hill resulting in a large speed decrease, on flat road resulting in a small
speed decrease), the corresponding equivalent fuel costs are a function of the speed change and
time loss.

The calculated penalties are then a function of mode change, gear change and vehicle speed.
Adding the cost of switching, changes Equation (29) to the new Level 1 cost function

min J1c = min
M,G

∫ t f 1

t0

H∗1a(M, G, t|λb(t), Pd(t), v(t)) + εM(∆M, t|v(t)) + εG(∆G, t|v(t)) dt, (44)

which is the integral of the explicit Hamiltonian solution in Equation (36), with switching costs εM and
εG added to the integral, when a switch occurs. By discretizing time,

min J1d = min
M,G

t f 1

∑
t0

H∗1a(M, G, k|λb(k), Pd(k), v(k)) + εM(∆M, k|v(k)) + εG(∆G, k|v(k)), (45)

with the discrete time vector k ∈ {0 · Tk, 1 · Tk, 2 · Tk, ..., t f 1} and sampling time Tk, the optimization
is solved using Dynamic Programming. The outline of the algorithm is as follows, as illustrated in
Figure 10:

1. all feasible modes M and gears G over the time horizon t f 1 are enumerated,
2. for each combination of mode and gear and time, the Hamiltonian is explicitly solved using

Equation (36), resulting in H(M, G, k),
3. a Dynamic Program (DP) is formulated with H(M, G, k) as elements for the cost-to-go matrix

(M, G, k),
4. to implement the cost for switching, for each mode change and gear change, the cost-to-go matrix

is penalized with εM and εG,
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5. the optimal sequence of modes and gears is calculated using DP,
6. for the MPC implementation, only the first control action is implemented. The next sample time,

the algorithm is repeated with updated inputs, disturbances and states.

For the resulting M and G, P∗b is selected using Equation (36) and with Pd given, Pe and Pb are
known with Equations (4), (12) and Table 4. With the selection of Tk such that ∆tM ≈ ∆tG ≈ Tk, we have
IM(k) = M(k + 1) and IG(k) = G(k + 1), which completes the calculation of the output of Level 1.

Figure 10. Illustrating the Receding Horizon Integer Program to solve at each time step. Over a horizon
of four seconds with a sampling time of one second, all feasible modes and gears are enumerated (blue),
starting at the current mode and gear (red). For all feasible modes, H is calculated, increased with an
equivalent fuel penalty Pε on each mode or gear change, and the optimal trajectory over the horizon
(blue dotted line) is determined, using Dynamic Programming (DP).

5. Level 2: Battery Energy Optimization

The Level 2 optimization determines λb, which is an input for Level 1 control. That λb is found by
solving the power-split problem, taking the battery dynamics Eb in Equation (23), with corresponding
limits (Eb, Eb, in Equation (27) ), into account.

On Level 2, we assume:

• a predetermined velocity profile is available, which defines Pd using Equations (14)–(19).
• a prescribed rotational speed ω, which defines G ∈ [1, 12] with the predetermined velocity profile.

Before iteration over the levels an estimated average ω is selected. After each iteration, ω from
Level 1 is used.

• mode and gear switching is instantaneous (∆tM = 0, ∆tG = 0), without costs associated (Pε = 0).

As a result, minimization of Equation (28) for Level 2 is

min J2 = min
u2

∫ t f 2

t0

(Pf (u2, x2, w2, t) dt,

s.t.

he2 = 0,

hn2 ≤ 0,

(46)
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with

u2 =

[
Pb
IM

]
. (47)

x2 =
[

Eb

]
, (48)

w2 =

[
Pd
ω

]
, (49)

he2 = Eb(t f 2)− Eb(t0) = 0, (50)

hn2 =



Eb − Eb
−Eb + Eb
Pe(t)− Pe(ω)

−Pe(t) + Pe(ω)

Pm(t)− Pm(ω)

−Pm(t) + Pm(ω)


≤ 0. (51)

Following [31], this dynamic state constrained problem is solved using PMP (Appendix A). Using
Equations (6) and (7), the system dynamics are:

ẋ = Ėb = −Pbi(Pb) (52)

and with Equation (3) result in the Hamiltonian:

H2 = Pf (Pb, IM, Pd, ω)− λb · Pbi(Pb, IM, Pd, ω), (53)

where λb is the costate of Eb. As no switching costs are defined, H2 is explicitly minimized with
Equation (42) as a function of λb, among others. The dynamics of λb in Equation (A6),

λ̇b = − ∂H
∂Eb

=
∂Pbi
∂Eb

= 0, (54)

show that λb is constant for the problem without constraint in Equation (8), or changes stepwise where
Eb is constrained [8,32]. Solving the problem is reduced to a boundary value problem [1], with λb the
decision variable. The boundary value problem, for the topology with clutches, state constraints and a
limited horizon, has the following properties, which are handled by the developed algorithms in this
section, with the flowchart in Figure 11:

I1 Constraint activation increases the number of boundary value problems to solve, where the
number of sub-problems is not known a priori. The iterative solution method from [32] is
recapitulated in Section 5.1.

I2 Controllability of Eb(t f 2) is not a continuous function of λb, due to the clutches in the topology,
resulting in non-unique solutions. The switching algorithm in Section 5.2 ensures controllability
for all λb.

I3 When the horizon does not include t f , the end condition on Eb(t f 2) is not known, thereby
removing charge sustenance ∆Eb = 0 as a control target. In Section 5.3, a solution is proposed,
which is guaranteed to be optimal for a subset of scenarios.

In the remainder of this section, t f 2 = t f for ease of notation, but without loss of validity of the
Level 2 problem where t f 2 < t f .
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Figure 11. For dealing with constraints, non-unique solutions and a limited horizon, the flowchart
shows the procedure for solving the boundary value problems (BVP). Starting with one unsolved
(sub)problem (SP), from t0 to t f , the process is started. Dependent on the number of constraint
violations, the procedure ends with a set of solved subproblems, each providing a segment of λb over
the complete horizon. Each subproblem contains the solution to a BVP, and dependent on the stated
conditions, the additional procedures I1, I2 or I3 are needed.

5.1. Constraint Handling (I1)

The optimal solution to Equations (21)–(27) results in a constant λb when Eb constraints are not
present in Equation (54), which can be efficiently found by solving the two-point boundary value
problem. When constraints on Eb are violated, the original problem must be subdivided into one or
more subproblems dependent on the amount of constraint violations, as described in [32]. As we
elaborate on this procedure in the next sections, we repeat an outline of the procedure here:

• The unconstrained subproblem is solved for a constant λb.
• If no constraint violation is present, the subproblem is solved. The procedure is repeated for the

next unsolved subproblem.
• If constraint violations are present, the time tc of the largest constraint violation is identified.

The subproblem is divided at tc into two new subproblems, with the first subproblem, having
Eb(tc) = Eb as an end point constraint and the second subproblem having Eb(tc) = Eb as a start
point constraint, when Eb is violated. For Eb violations Eb(tc) = Eb.

This sequence is repeated, until all subproblems are solved, resulting in a piecewise constant λ∗b
for the whole cycle.

5.2. Controllability of Eb: Non-Uniqueness (I2)

The optimal solution has a non-continuous Eb(t f ) controllability as a function of λb, leading
to problems in realizing charge sustenance. The cause are the guards in the optimal solution of H
(see Section 4.2), where a switch from one mode to another is enforced. When Pd and λb coincide with
one of the guards B, the optimal solution is non-unique (singular), i.e., several control inputs lead to
the same fuel optimum [31,33,34].
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The first type of guards are a function of Pd (and λb), i.e., B3, B4, B5 (see Section 4). As Pd normally
varies in time, the optimal solution will seldom be at one of the guards for a prolonged duration.
For that reason, Ref. [15] selects one mode a priori, when Pd is on the guard, thereby being optimal,
but without a guarantee to be charge sustaining. In simulations, especially with perfectly constant Pd,
switching between the modes could be necessary for a charge sustaining solution. Therefore, Ref. [18]
opts to vary λb around λ∗b , which causes switching between the modes, but is inherently sub-optimal
because of the deviation from λ∗b . In [33], this is correctly solved by using a so-called ‘sliding mode’
control, which minimizes the number of mode changes, which does not change λ∗b . In our EMS, we also
unalter λ∗b and remain in the last mode, when Pd coincides with the guards B3, B4, B5.

The second type of guards is not a function of Pd, only of λb, i.e., B1 and B2. As λ∗b is (piecewise)
constant, the solution can be on B1 and B2 for a prolonged period of time. Figure 8 shows that the
optimal solution switches from Mc to Me when λb is at guards B1 or B2. Consequently P∗b jumps at B1

and B2, and, for an arbitrary drive cycle, the controllability of Eb(t f ) (or charge sustenance) jumps as a
function of λb—see Figure 12.

E b(
t f)

B1
-

B1
+

B2
-

B2
+

B2B1 |λb |

Eb(t0 )

Figure 12. Changing the constant λb for a drive cycle, causes jumps in the charge sustenance, due to
non-unique (singular) solutions at B1 and B2.

To have continuous controllability of Eb(t f ) in B1 and B2, a switching sequence must be chosen
and, in the following sections, algorithms for the two (extreme) switching scenarios are explained:

I2a with an infinite number of switchings,
I2b with a minimal number of switchings (elaborating on [33]).

The switching scenarios are illustrated for a drive cycle of 2000 s, see Figure 13, for which λ∗b
coincides with B1. Trajectory B+

1 (dash-dotted line) starts at Eb(0) and is above charge sustaining at
t f = 2000 s. Trajectory B−1 (dashed line) starts at Eb(0) and is below charge sustaining at t f = 2000 s.
In the top plot, Pm is shown for both trajectories, where the difference is in supporting the CE with
MG or not (boosting). The charge sustaining solution consists of switching between B+

1 and B−1 over
time, such that Eb(0) = Eb(t f ). At least one switch must be made, i.e., at ts1 or ts2 dependent on the
initial mode. The next subsections provide algorithms to determine the switching sequence, taking
constraints on Eb into account. The algorithms, as illustrated for B1, also hold for B2.
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Figure 13. Illustration of algorithm I2a. Power demand Pd of a drive segment with λ∗b = B1 and two
optimal modes: B−1 (Pm is positive during high power demands, resulting in too low Eb(t f )) and B+

1
(Pm is zero during high power demands, resulting in too high Eb(t f )). A charge sustaining trajectory
(Eb(t f ) = Eb(0)), is possible with one switch at ts1 or ts2, or with infinitely many switchings indicated
as B∞

1 .

5.2.1. Infinite Number of Switchings (I2a)

As the dynamics of Eb in Equation (6) are state independent, a charge sustaining solution can be
realized by taking a linear combination of the two trajectories B−1 and B+

1 , such that:

r · EB−1
b (t f ) + (1− r) · EB+

1
b (t f ) = Eb(0), (55)

where r is a ratio between 0 and 1. In the example in Figure 13, this combined solution is charge
sustaining with r = 0.46 (dotted line). This combined solution implies an infinite amount of switchings
between the two trajectories, and will be referred to as B∞

1 .

5.2.2. Minimal Switching (I2b)

To enforce minimal switching, considering constraints on Eb, a combination of algorithms I1 and
I2a is needed. First, it is checked if the subproblem must be further subdivided as in Section 5.1 to
guarantee Eb within its bounds:

• if E
B−1
b > Eb, then procedure I1 for constraint handling is performed,

• if E
B+

1
b < Eb, then procedure I1 for constraint handling is performed,

• if EB∞
1

b exceeds limits, then procedure I1 for constraint handling is performed,
• else a switching sequence exists in order to maintain Eb within bounds.

The switching sequence with minimal switchings is determined, by choosing when to switch
between the two state trajectories B−1 and B+

1 . The algorithm is illustrated in Figures 14 and 15.
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• The initial mode M is maintained, here resulting in B−1 ,
• Check for constraint violations. Eb violation is detected at t = 388s, so switching to B+

1 is
mandatory. Switching at t = 388s results in Eb undershoot of E∧b . With the known relative Eb
trajectories of B−1 and B+

1 , the advancement of the switching time is determined, here at 83 s,
Figure 15,

• The previous step is repeated, until t f is reached,
• Eb(t f ) is now within limits, but not at Eb(0). A switch to the other mode is back propagated from

Eb(t f ) = Eb(0), resulting in a last switch at 1191 s.

With this procedure, the discontinuity in the controllability of Eb(t f ) is solved with a switching
sequence between modes, where the number of switchings is minimal. The value of λ∗b has not
been altered.

Note that knowing the switching sequence is not necessary on Level 2, as the interface from Level 2
to Level 1 does not use Eb, but λb, which is not influenced by the switching sequence. Knowing that a
switching sequence exists is thereby sufficient. The Level 1 optimization then decides on switching,
taking switching costs into account (Section 4.3).

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ts
^

time [s]

E b

Eb

B1
-

B1
+

Figure 14. Illustration of algorithm I2b, first part. Starting with B−1 the lower boundary is violated at ts

and a switch must be made to B+
1 . However, ts = 388 s as switching point is too late, as B+

1 exceeds Eb
with E∧b .
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E b

Figure 15. Illustration of algorithm I2b, second part. A new ts1 = 83 s is found, and B+
1 is continued,

until at ts2 = 1191 s the switch to B−1 has to be made to ensure Eb(t f ) = Eb(0).
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5.3. Limited Horizon (I3)

When Eb(t f ) is prescribed, the boundary value problem is fully defined and the optimal solution
can be found. However, in real life, Eb(t f ) is only prescribed if the complete drive cycle is used
(full horizon) and Eb(t f ) has a value, e.g.,

• for a repeating cycle, with Eb(t0) = Eb(t f ), which is often used in simulation assessments,
• when entering a zero-emission zone at t f , with Eb(t f ) = Eb for maximal electrical driving after t f ,
• when arriving at a charging station at t f , with Eb(t f ) = Eb for cheap charging of the battery

after t f .

If the prediction does not include t f , e.g., when implemented as a receding horizon algorithm,
Eb(t f ) is undefined.

The following, suboptimal, procedure aims at finding a constant λb, without constraint violations,
resulting in a Eb trajectory that has maximal robustness towards constraint violations. Here, it is
chosen to maximize the minimal distance of the Eb trajectory to the constraints, in order to allow for
disturbances in the prediction, without violating constraints. The outline of the procedure is:

• choose λb based on bi-section and simulate Eb,
• find the time index of Eb and Eb,
• calculate the distance to the boundary for the two indices and select the minimal distance,
• select the next λb with bi-section, to increasing the minimal distance, and iterate.

The iteration stops when the increment of the minimal distance is smaller than a tolerance value.
When the resulting Eb violates constraints, the problem is subdivided as described in Section 5.2 and
each sub-problem is evaluated again.

For two special cases, the above procedure results in optimal solutions:

I3a if within the horizon, a Eb limit is activated, irrespective of the control action e.g., due to a large
energy recuperation event, the first subproblem up to this event is fully defined. The solution to
this first subproblem is then optimal, and independent from the following subproblems.

I3b if (λ∗b , Pd) is on guard resulting in non-unique solutions and the non-unique solutions are able to
span [Eb(t f ), Eb(t f )], λ∗b is optimal for all Eb(t f ) ∈ [Eb, Eb].

With these algorithms, the calculation of the output of Level 2 (λb) is complete.

6. Level 3: Velocity Prediction

The Level 3 functionality determines the velocity profile of the vehicle, given the slope and velocity
limitations of the drive cycle, and provides the Level 2 and Level 1 algorithms with an estimated power
demand Pd and velocity v. This section describes a simplified solution using results from the optimal
control formulation.

Velocity Prediction Using Three Driving Modes

The Level 3 functionality predicts Pd from information of the road ahead, i.e., road slope α and
velocity limitations v. The velocity of the vehicle determines the resulting road load, so assumptions
have to be made how the vehicle will accelerate/decelerate over the route. To determine the fuel
optimal velocity profile, an optimization has to be solved. In [35], this optimization is performed for a
conventional driveline with an affine fuel map, resulting in a set of three possible driving modes:

1. maximum acceleration with Fd,
2. minimum acceleration with Fd,
3. constant speed v0, with Fd = F0.



Vehicles 2019, 1 26

The acceleration limits depend on the capabilities of the drive-line force Fd, for a given road
load F0. When we assume a continuously variable gearbox ratio, controlled to a fixed engine speed,
and only one hybrid mode Me, Equations (2), (11), (15)–(19) and Table 4, define the acceleration limits
as a function of velocity and road slope: Fd(v, α) and Fd(v, α). For simulation, the vehicle model is
completed with Equation (14). We use the three modes, to predict the velocity profile, given the road
information and the vehicle model. The outline of the algorithm is given:

• retrieve α(s) and v(s) from the preview data source, for the drive cycle,
• decide on v0, typically the reference speed of the speed control on the vehicle,
• simulate the vehicle model forwards over the drive cycle, using mode 1 (maximum acceleration).

Limit the velocity to v0 and v(s). Store the resulting vector of the forward simulation v f (s),
• simulate the vehicle model backwards over the drive cycle, using mode 2 (minimum acceleration).

Limit the velocity to v0 and v(s). Store the resulting vector of the backward simulation vb(s),
• calculate the minimum of the two vectors vc(s) = min(v f (s), vb(s)),
• calculate Pd using the vehicle model and vc(s).

With this procedure, preview information of road slope α and velocity limitations v is converted
to a prediction of the power demand Pd and velocity v for the lower levels.

A suggestion for future research is to calculate on this level the optimal velocity profile,
considering hybrid driving modes, braking, discrete gear shifting and non-affine fuel maps.

7. Simulation Results of the Multi-Level EMS

Fuel optimality of the multi-level EMS is shown in this section, by three simulation scenarios:

• ‘Multi-level iteration, short cycle’ (Section 7.1), using full horizon optimization on a short, abstract
drive cycle. The optimization iterates over the levels, until the fuel consumption is converged
to an optimum. With the full horizon, each level has complete information of the drive cycle.
The results show how fast the algorithm converges, and, by using an abstract cycle, the decisions
on each level are interpreted.

• ‘Multi-level MPC, short cycle’ (Section 7.2), using receding horizon optimization on a short,
abstract drive cycle. By limiting the horizon and implementing the iterations over a receding
horizon, the optimality will reduce. This section shows the fuel penalty of this approach, and by
using the same abstract cycle, the decisions on each level are compared to the previous scenario.

• ‘Multi-level MPC, long cycle’ (Section 7.3). To show the real-life fuel saving potential of the
multi-level MPC, a representative, long-haul, drive cycle is used, replacing the abstracted cycles of
the previous scenarios. Furthermore, a high fidelity model of the vehicle replaces the model from
Section 2. The results are compared with a baseline EMS, which uses heuristics and no preview.

7.1. Multi-Level Iteration, Short Cycle

The first two scenarios are demonstrated for a cycle of 1055 m, with a vehicle weight of 25 tons.
The elevation profile of this cycle is shown in Figure 16, and contains four slopes of respectively +6%,
−12%, +12% and -6%. This elevation profile is also available as a physical test track as described
in [28]. The maximum feasible speed on this track is 25 km/h. The plant model uses the models from
Section 2, including the effect of open driveline during switching (∆tM > 0, ∆tG > 0).

The multi-level optimization is iteratively solved for the complete test cycle. Multiple iterations are
performed; however, no decrease in fuel consumption is observed by consecutive iterations. The energy
consumption of the first two iterations are shown in Table 7, where the energy consumption difference
(0.1%) is negligible small. The control decisions of these two iterations are analyzed and compared in
Appendix D and show that the calculated decisions after iteration 0, hardly change with iteration 1,
with the difference in charge sustenance explaining the marginal change in energy consumption.
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Figure 16. Elevation profile of the short test cycle.

7.2. Multi-Level MPC, Short Cycle

For real-time applications, the Dynamic Program in Level 1 over the complete route is
computationally too demanding. In this section, we simulate Level 1 as receding horizon optimization.
Here, we choose to optimize Level 1 at a sample time of 1 s, with a horizon of five samples. The other
levels are unaltered, as they don’t pose computational problems over the cycle’s horizon.

The energy consumption is marginally different (0.2%) from the other scenarios. The control decisions
of the multi-level MPC are analyzed and compared with the multi-level iteration in Appendix E, showing
equal decisions as the multi-level iteration. One essential difference in gear selection can be explained
from the shorter horizon, however, without a relevant impact on energy consumption.

Table 7. Energy consumption over the short test cycle. MPC: model predictive controller.

J [MJ] Energy Reduction [%]

non-hybrid 16.8 0
iteration 0 7.91 52.9
iteration 1 7.90 53.0

MPC 7.93 52.8

Comparing the three different scenarios, we conclude that the multi-level iteration scheme
converges very fast: an update of the estimate of ω is not needed to improve the results of the
optimizations on the layers, as iteration 0 is already at a minimal energy consumption. The multi-level
MPC has a shorter horizon on Level 1, which leads to slightly different control decisions, but does not
significantly alter the energy optimum. For fuel evaluation, the next section presents more realistic
long-haul simulations, with the multi-level MPC implemented.

7.3. Multi-Level MPC, Long Cycle

To show the fuel saving potential of the multi-level EMS, a typical long-haul route is simulated,
in which a non-hybrid vehicle is compared to a hybrid vehicle with baseline EMS (‘baseline’) and the
multi-level MPC (‘preview’). The baseline EMS is a proprietary non-previewing, heuristic algorithm.
The proprietary simulation environment is designed for fuel evaluation purposes and contains
high-fidelity models of the vehicle. The multi-level MPC is implemented, with the following settings:

• Level 1, 5 s horizon, sample time 0.01 s,
• Level 2, 1000 s horizon, sample time 1 s,
• Level 3, 1000 s horizon, sample time 1 s.

For the 25-ton vehicle, the fuel consumption results are shown in Table 8.
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Table 8. Fuel savings on a typical long-haul route. EMS: energy management system.

Vehicle Fuel [l/100 km] Fuel [%]

non-hybrid 33.0 0
EMS ‘baseline’ 31.1 −5.8
EMS ‘preview’ 30.7 −7.0

The difference between ‘baseline’ and ‘preview’ is best illustrated with the fuel saving and battery
energy Eb, plotted in Figure 17. There we observe the largest advantage of the previewing strategy,
when battery limits are frequently touched, i.e., in the hilly part of the cycle: from 150–350 km.
To recuperate a maximum amount of brake energy, ‘baseline’ discharges the battery as soon as possible,
which is not the most efficient use of the recuperated energy. The previewing strategy discharges the
battery sufficiently, to recuperate the maximum amount of brake energy, and uses the stored energy
more efficiently, e.g., to drive MG-only during low road loads.
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Figure 17. High fidelity simulation results on a representative long-haul cycle. The previewing Energy
Management System (EMS) saves an additional 1.2% fuel to the baseline EMS.
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Also on segments without battery limitations, the previewing strategy outperforms the baseline
strategy. On the flat road, e.g., from 0–120 km, λb coincides with guard B2 (see Figure 9 and algorithm
I3b in Section 5), resulting in fuel optimal switching control: charging the battery is performed in a
relatively short period of time, shown by the steep increase of battery energy, followed by a prolonged
period of a disconnected MG, thus eliminating MG friction Pm0. The baseline strategy, however,
uses lower charging powers, thereby having little periods of MG disconnection, and thus higher MG
friction. Furthermore, from a driveability perspective, the larger duty cycles of the previewing strategy,
in connecting/disconnecting the MG, are preferred.

8. Conclusions

In this work, a computationally efficient EMS using preview is developed, obtaining excellent
fuel economy results (−7.0%) on a typical long-haul route. To manage computational complexity,
a multi-level EMS is designed, with on each level a specific algorithm for the subproblem to solve.
Each subproblem uses different model information of the vehicle, such that optimal control techniques
can be used, to efficiently solve the problem.

On level 1, the power-split, gear, mode decisions are optimized, including costs on switching.
For the topology with two clutches, a novel explicit PMP solution is found, which reduces power-split
and mode selection to a static calculation, dependent on the current vehicle state and battery costate
(or Lagrange multiplier). For taking switching costs into account, a Dynamic Program is designed,
using the explicit PMP solution for reducing the dimension of the problem, and thereby limiting the
complexity of the calculations.

On level 2, the use of battery energy is optimized, taking the state constraints of the battery into
account. A simpler, more abstracted vehicle model is used, e.g., by ignoring switching costs, to reduce
computational complexity. Using PMP, the battery costate (or Lagrange multiplier) is calculated,
which provides essential cost information to Level 1. The topology with two clutches, causes discrete
jumps in the optimal solution, leading to non-unique (singular) solutions. New optimal solutions are
found, minimizing the amount of switching events.

On level 3, the velocity is predicted along the route, using road slope and velocity limitations.
With the calculation, essential route information is provided to the lower layers. Future work should
include velocity optimization on this level, to further reduce the fuel consumption.

In offline simulation, on a short abstract drive cycle, the multi-level approach is shown to converge
within one iteration. When the multi-level approach is used as Model Predictive Controller (MPC),
comparable fuel energy efficiency is realized, even though the horizon is reduced.

Representative fuel saving results are obtained by running the multi-level MPC in a high fidelity
simulation environment, over a typical heavy duty drive cycle: 7.0% fuel reduction compared to a
conventional vehicle, where the baseline EMS for the hybrid electric vehicle saves 5.8%.
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Appendix A. Pontryagin’s Minimum Principle

The Pontryagin’s Minimum Principle provides a set of equations (or conditions) where the
optimal solution of a (constrained) dynamic optimization must comply to. Here, the PMP conditions
are summarized, following [31,36]. For the fuel-cost functional:
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min
u

J(u, t) = min
u

∫ t f

t0

Pf (x(t), u(t), w(t))dt (A1)

with state equations given by:
ẋ = f (x(t), u(t)), (A2)

the Hamiltonian is formulated:

H = Pf (x(t), u(t), w(t)) + λ(t)T f (x(t), u(t)), (A3)

where λ(t)T are the costates or Lagrange multipliers. For the optimal solution, it holds that

H∗(x∗(t), u∗(t), λ∗(t), t) ≤ H(x∗(t), u(t), λ∗(t), t), (A4)

with the (Euler–Lagrange) necessary conditions:

ẋ∗(t) =
∂H
∂λ

, (A5)

λ̇∗(t) = −∂H
∂x

, (A6)

where the superscript ∗ denotes the optimal solution. When the state is on a constraint at t0 < tj < t f ,
∂H
∂x is not defined and interior boundary conditions apply [37],

H+(tj) = H−(tj)− ζ(tj)
∂h(tj)

∂t
, (A7)

λ+(tj) = λ−(tj) + ζ(tj)
∂h(tj)

∂x
, (A8)

where the superscript − and + denote the left-hand side and right-hand side limit values, respectively,
at tj. The conditions describe a possible jump condition in λ and H at tj, when the state makes contact
with the boundary h. The magnitude of the jump is determined by the parameter ζ, and is, together
with the number of jumps, not known a priori. For the boundary conditions, additional transversality
conditions hold, and are given (omitting the penalty on the final state) by:

[−λ∗(t f )]
Tδx f + [H(x∗(t f ), u∗(t f ), λ∗(t f ), t f )]δt f = 0. (A9)

Appendix B. Interpretation of the Costate

For the optimal control problem, the cost function J is minimized, which represents the total
amount of fuel energy E f over a drive cycle:

J =
∫

Ldt, (A10)

with L = Ė f and
f = ẋ, (A11)

with x the state(s). Formulating the Hamiltonian leads to:

H = L + λT f , (A12)

with λ the costate(s). Using the same variational approach used to derive the PMP conditions,
the variation of the optimal J is defined as [31,36]:
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δJ = λT(t0)δx(t0) +
∫ t f

t0

∂H
∂u

δu dt, (A13)

which reveals the interpretation of λ at any time t: when t0 and t f approach each other to t, the second
term vanishes, and λ defines how much J changes, for a small change in x, i.e., λ is the gradient of
the cost function, with respect to the states. This interpretation of λ is known as equivalent cost for
the well known Equivalent Consumption Minimization Strategy [38], as it provides the equivalence
(or price) between fuel energy and battery energy. When the same optimal control techniques are used
in other EMS’s, e.g., considering more or different energy buffers, the interpretation of the costate is
not always straightforward. Looking at the case of vehicle speed optimization as in [35,39], optimal
control techniques lead to the optimal solution, but interpretation of λ is lacking. The reason is that,
in these examples, the state is chosen to be velocity, which is not energy. If, however, the problem
is reformulated with kinetic energy as state, see [40], the corresponding λ dynamics show valuable
information. Thus, before λ is easily interpretable, the states of the problem should be reformulated as
energies, as, e.g., in [8,9,40], where it is irrelevant if the reformulation is done before or after solving
the problem. An example Hamiltonian of an energy minimizing function could be

H = Ė f + λkĖk + λbĖb + λT ĖT + λt, (A14)

with fuel energy E f , kinetic energy Ek, battery energy Eb, thermal energy ET and λt for the cycle
duration. Then, by minimizing H, λ determines which energy buffer to charge and which energy
buffer to deplete, thus λ being the buffers equivalency, or when the energy is valorized: price.

Appendix C. Cost of Switching

A switch of mode or gear involves a series of events, having some disadvantages, e.g.:

1. synchronization of rotating masses (acceleration/deceleration), possibly with slipping clutches,
2. interruption of traction.

The combination of these events determines the associated (fuel) cost of a mode/gear change
event. The first item is defined by the design of the driveline itself and the low-level control of the
event, and the energy losses can be calculated irrespective of the drive cycle, [19,41]. The second item
is determined by the performance of the low-level control for the given hardware, namely the period
of time traction is interrupted. Without traction, the vehicle is freewheeling, and dependent on the
road load, will decelerate or accelerate. A cost can be associated with the lack of traction, dependent
on the road load F0—for example driving uphill, interruption of traction is much more expensive than
during cruising on a flat road. This second effect is not addressed by [41] or [19]. The novel approach
here is to use cycle information from the velocity optimization, i.e., λk and λt (Appendix B), in order to
account for the road load dependent switching cost.

The switch penalty is thereby divided into two parts: cost associated to synchronization, indicated
with subscript s, and cost associated with traction interruption, indicated with subscript t, for both
mode switches (∆M) and gear switches (∆G):

εM = cMs(∆M) + cMt(∆M, λt, λk), (A15)

εG = cGs(∆G) + cGt(∆G, λt, λk). (A16)

Appendix C.1. Synchronization Cost

During a switch, rotating masses have to be accelerated and decelerated. Here, we assume:

• the largest cost is due to acceleration of rotation masses (inertia),
• during deceleration no energy is recuperated,
• switch events are typical, e.g., based on average behavior,
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• each switch involves an inverse switch on a later moment.

The last assumption makes it possible to allocate an average cost to two linked events, e.g., starting
the Combustion Engine (CE) has large costs associated, while stopping the CE is free. However, the one
can not occur without the other, so the total cost of the two events can be averaged over the two single
events. This results in balanced switch decisions in the EMS, when the horizon is small and only one
of the linked events can be overseen within the horizon.

With the inertia from Table 3, the equivalent cost of the transitions are quantified with the change
of rotational kinetic energy:

∆UI = 1/2I+(ω+)2 − 1/2I−(ω−)2) (A17)

and translated to the equivalent fuel with:

∆Hm ≈ ∆UIλb, (A18)

which results in

cMs =

{
0, if ∆M = 0,
∆Hm, if ∆M 6= 0,

(A19)

with the inertia and speed just before (I−, ω−) and after (I+, ω+) the mode switch. As λb defines the
fuel equivalence between electrical and thermal energy, it is not relevant with which energy source
the synchronization is performed. For example, an ICE start first involves an electrical acceleration,
followed by mechanical acceleration as soon as the rotational speed is above idle speed, but, with λb,
they are equivalent. The same method is used to calculate cGs.

For the following rotational speeds,

• disconnected, stopped: 0 rpm,
• connected: 930 rpm,
• downshift: 1200 rpm,

the equivalent costs (here: λb = −2.2) are exemplified in Table A1. The downshift event losses (∗)

depend on the active mode, respectively Mm, Me, and Mc, because losses increase with the amount of
rotational mass to be accelerated, which is the largest with both CE and MG connected. The transitions
involving deceleration of the rotational masses are set to 0. However, some energy recuperation could
be implemented with the MG, resulting in lower average equivalent costs.

Table A1. Equivalent cost of transition: synchronisation.

Transition Direction⇒ [kJ] Direction⇐ [kJ] Avg [kJ]

Gk ⇔ Gk+1 0 10,20,30(∗) 20
Me ⇔ Mm 16 31 24
Me ⇔ Mc 16 0 8
Mm ⇔ Mc 31 0 16

It should be noted that the transitions are idealized. The real energy consumption of the transitions
will be worse than the posed numbers due to additional losses but can be improved by recuperation
on the decelerating masses. Nevertheless they provide a first estimate on the selection of ε, which has
clear mode dependent values. For a more thorough analysis of the gear switch event, including clutch
slip, see [41] (Chapter 6).

Appendix C.2. Traction Interruption Cost

During the transition of a switch, the traction is momentarily interrupted. This interruption causes
a deviation from the intended vehicle speed, which has to be compensated during the periods with
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traction. Dependent on the road load, the cycle and the component capabilities, this compensation is
expensive or cheap. The idea here is to quantify the cost of this compensation to the cycle through
the information contained in the costates belonging to the cycle: λt, λk in Equation (A14). To link this
information to the traction interruption cost, the following idealized transition is assumed:

• the transition has a fixed traction interruption time (∆to),
• during the transition, the road load is constant,
• the driveline is not saturated, i.e., traction is available to recover the vehicle speed,
• λt represents the equivalent cost of time loss for a certain cycle, and is constant.

In Figure A1, the idealized transition is plotted. While cruising at v0 , where Fd = −F0 , a switch
event is planned at t0. During the following open driveline period t0–t1, constant deceleration causes
the vehicle speed to drop. After the transition, we assume immediate recovery to the desired speed,
with constant acceleration at Fd, depending on the mode M and associated component capabilities.
During this event, the vehicle loses time, with respect to cruising without transition. If we compare the
total transition+recovery time to reach the position s2 at t2, with the time needed for constant cruising
to reach position s2, we define the time loss ∆tt of the transition event:

∆tt = (s2 − s0)/v0 − (t2 − t0), (A20)

with

s1 − s0 = v0(t1 − t0) +
1

2m
F0(t1 − t0)

2, (A21)

v1 = v0 + (F0/m)(t1 − t0),

t2 = −(t1 − t0)
F0

Fv + Fd
,

s2 − s1 = v1(t2 − t1) +
1

2m
(F0 + Fd)(t2 − t1)

2.

This time loss is converted to equivalent fuel, with λt, thus providing a road load dependent
penalty on switching,

cMt =


0, if ∆M = 0,
∆ttλt, if ∆M 6= 0 and |F0| < Fd,
1/2m(v1

2 − v0
2)λk, if ∆M 6= 0 and |F0| ≥ Fd.

(A22)

When the drive-line saturates (|F0| ≥ Fd), the vehicle is not able to recover the cruise speed after a
short open driveline event. In that situation, the speed deviation v1 − v0 is used with λk to calculate
the speed recovery cost. The same method is used to calculate cGt.

As an example the equivalent cost of a transition due to time loss is given in Table A2, for the model
parameters from Table 3, the vehicle driving 25 km/h, and the cycle having a λt of −25 kJ/s. The event
is tabulated for three segments of, respectively, 0%, 6% and 12% slope. The traction interruption period
t1 − t0 is set to 1 s.

Table A2 shows that more than a magnitude order of difference occurs for a switch cost.
This means that the influence of time loss on the equivalent fuel consumption is relevant when
the open driveline deceleration (acceleration) is high, where on other route segments the influence
is negligible. This shows that transitions can be best planned during the segments with smallest
deceleration (acceleration).

The switch cost is now determined by two elements: synchronization cost as a function of the
intended transition, and time loss cost as a function of position along a route and the available traction
for the transition, in Equations (A15) and (A16).
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Figure A1. Open driveline behavior for timeloss (∆tt) calculation. From t0 to t1, no traction Fd is
available, causing the vehicle to decelerate. From t1 to t2, speed recovery takes place at maximum
traction Fd. Arrival at position s2(t2) is later than without switch event (dotted line), which is the
defined timeloss.

Table A2. Equivalent cost of time loss due to a switch event of 1 s.

Segment Timeloss [s] Speedloss [m/s] Eq. Cost [kJ]

0% −0.01 −0.075 0.17
6% −0.07 −0.65 1.8

12% −0.22 −1.25 5.6

Appendix D. Simulation Results of Multi-Level Iteration

For the simulation on the short drive cycle, multiple iterations are performed in the multi-level
EMS of this work. In this section, the decisions of the first two iterations are analyzed, illustrating the
fast convergence of the algorithm.

Appendix D.1. Iteration 0

In the zeroth iteration, each level is optimized consecutively, starting at Level 3. The assumptions
in each Level are described:

• Level 3: on this level, we assume that the vehicle is cruising constantly at the maximum speed v0,
i.e., 25 km/h. The elevation is given by Figure 16. Assuming an average, constant engine speed
(here: 1100 rpm), Pd is calculated.

• Level 2: on this level, charge sustenance is enforced (Eb(t0) = Eb(t f )) by searching for
λ∗b . The capabilities of the CE and MG at 1100 rpm influence the resulting power-split and
mode switching.

• Level 1: on this level, the cost of switching is added to the power-split optimization, using the just
found λb, Pd and v. The resulting dynamic program is solved for the full horizon, here 10.6 km.
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In Figure A2, the result is shown for respectively MG power (Pm), mode (M), gear (G), battery
energy (Eb) and vehicle speed (v). The top plot also includes Pd (dotted black) as a reference. On the
flat segments, Pd = 11 kW and on the slopes Pd = [113,−192, 215,−90] kW for, respectively, the +6%,
−12%, +12% and −6% segment. The dashed lines indicate the decisions of Level 2, the solid lines of
Level 1.
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Figure A2. Decisions and results from Level 2 and 1, after the zeroth iteration. Due to the different
model abstraction, the solution on Level 1 is not exactly charge sustaining anymore.
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Level 2 (dashed line) calculates a charge sustaining λb = −1.97, shown in subplot 4, where Eb
starts and ends at 0. It uses a simplified model which keeps the engine speed at 1100 rpm, showing
in subplot 3 as a selected gear between 7 and 8. At this engine speed, it is optimal to drive the flat
segments in MG mode (Mm), with the CE switched off. The uphill segments have higher power
demands Pd, and the CE is used. On the downhill segments, brake energy is recuperated with the MG,
but the CE must assist in braking, as |Pd| is larger than the MG can recuperate. As all switches are
assumed to be infinitely fast, the bottom plot shows no speed deviation for Level 2.

Level 1 (solid line) uses λb = −1.97 and the switching costs ε to determine the optimal mode and
gear switching sequence. Most importantly, the gear on the downhill segments is shifted down to 5,
in order to maximize the recuperation power of the MG (see Figure 3), which is notable by an increased
rise in energy of the battery for these segments. Due to the downshift, the −6% can be driven with the
MG alone. The −12% still needs both MG and CE for additional braking power. The uphill segments
show a different mode selection than for Level 2. From the control map, we know that λb = −1.97 is
close to the guard G1, where the Hamiltonian of Me is only slightly lower than of Mc, causing Level
2 to decide for Me. Level 1, however, takes the switching costs into account, and where both levels
decide to start and stop the CE, Level 1 decides that stopping and starting the MG is more expensive
than the minor fuel advantage of the lower Hamiltonian, resulting in mode Mc with 22 kW boosting of
the MG. Gear selection on the flat segments is towards the highest possible gear where the MG is able
to deliver the demanded power, thereby minimizing the friction of the MG.

Due to the switching of mode and gear, several open driveline events occur. The cost of timeloss,
as calculated in Section 4.3, determines that, if a switch is needed, it should be done where the timeloss
is minimal. For this cycle, this is clearly on the flat segments, not on any of the slopes. This results in
only minor vehicle speed deviations in the vehicle speed.

Due to the different control actions between Level 1 and Level 2, charge sustenance is not enforced
anymore. This is to be corrected in the next iteration.

Appendix D.2. Iteration 1

In the first iteration, each control level is optimized consecutively, using the results from the
zeroth iteration. The differences with the zeroth iteration are:

• Level 3: the constant engine speed from iteration 0 is replaced by the speed resulting from the
gear switching sequence. As speed is not explicitly optimized and can always be maintained in
this example, Pd is not altered.

• Level 2: using the gear switching sequence, a new charge sustaining λb is calculated.
• Level 1: with the adjusted λb, the power-split and switching sequence are optimized

In Figure A3, the results are shown for Level 2 and Level 1 for the first iteration. It is evident that
no significant differences are present between the two levels. An additional gear shift occurs on the
top of the first hill, but, as the friction of the MG at different speeds is very small, the fuel advantage
is negligible. Comparing to iteration 0, the difference with Level 2 of iteration 0 is also very small.
The main effect of the iteration is that the cycle is charge sustaining again, with λb = −1.95. To realize
that, the boosting power of the MG is slightly increased from 22 kW to 29 kW on the uphill slopes.
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Figure A3. Decisions and results from Level 2 and 1, after the first iteration. After updating the
information on λb and ω, the solution on both levels converges, and are charge sustaining.

Appendix E. Simulation Results of Multi-Level MPC

In Figure A4, the results are shown for Level 2 and Level 1 for the first iteration. As Level 2 is not
changed, the Level 2 traces are the same as in Figure A2. Albeit Level 1 now has a horizon of 5 s, instead
of 10 km, the mode decisions are unaltered. However, the gear decisions differ in some segments:

• the trace starts at G5 and is maintained for a long time. That gear is selected at the end of the
−6% slope to maximize brake energy recuperation. After the slope, Pd is low, and a little friction
reduction of the MG could be accomplished with an upshift. However, the fuel improvement of
switching in MG is an order of magnitude lower than in other modes. Now, for a gear switch to
occur, the accumulated fuel improvement over the horizon (5 s) must be higher than the cost of
the switch event itself, which it is not, for this short horizon, and the switch will not occur.
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• on the +6%, a higher gear G9 is needed, in order to minimize CE friction losses. Before the +6%
slope, this decision enters the horizon, and, as the switch will be made anyhow, the algorithm
decides to do the switch immediately, as driving MG in G9 is slightly more profitable.

• on the top of the first hill, a short shift to G10 is performed, simultaneously with a mode switch,
which makes the gear switch event cheap. The decision has, however, a marginal impact on the
fuel consumption.
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Figure A4. Results for MPC, with a 5-sample horizon on Level 1. Differences with Figure A2 are mainly
in the gear decisions, with a marginal impact on fuel.
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