Evaluation of Hyperketonemia in the Transition Period of Dairy Simmental Cows and Association with Liver Activity, Uterine and Oviductal Health, and Reproductive Performance
Abstract
1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
3.1. Monitoring of Beta-Hydroxybutyrate at Day 7 pp (HYK7)
3.2. Monitoring of Beta-Hydroxybutyrate at Day 14 pp (HYK14)
3.3. Monitoring of Beta-Hydroxybutyrate at Day 28 pp (HYK28)
3.4. Reproductive Health and Performance of HYK7, HYK14, and HYK28
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial insemination |
| ALB | Albumin |
| ap | antepartum |
| APP | Acute phase protein |
| BAL | Balanced |
| BFT | Backfat thickness |
| BHB | Beta-hydroxybutyrate |
| CE | Clinical endometritis |
| CHOL | Cholesterol |
| CON | Controls |
| d | Day |
| DIM | Days in milk |
| DMI | Dry matter intake |
| HP | Haptoglobin |
| HYK | Hyperketonemia |
| LAI | Liver activity index |
| LIB | Ad libitum |
| n | Number |
| NEB | Negative energy balance |
| NEFAs | Non-esterified fatty acids |
| PMNs | Polymorphonuclear neutrophils |
| pp | postpartum |
| PVD | Purulent vaginal discharge |
| REST | Restrictive |
| RT | Rumination time |
| SCK | Subclinical ketosis |
| SD | Standard deviation |
| SE | Subclinical endometritis |
| TP | Total protein |
| VIT A | Vitamin A |
References
- Drackley, J.K. ADSA Foundation Scholar Award: Biology of Dairy Cows during the Transition Period: The Final Frontier? J. Dairy Sci. 1999, 82, 15. [Google Scholar] [CrossRef] [PubMed]
- Van der Kolk, J.H.; Gross, J.J.; Gerber, V.; Bruckmaier, R.M. Disturbed bovine mitochondrial lipid metabolism: A review. Vet. Q. 2017, 37, 12. [Google Scholar] [CrossRef] [PubMed]
- Bach, K.D.; Barbano, D.M.; McArt, J.A.A. The relationship of excessive energy deficit with milk somatic cell score and clinical mastitis. J. Dairy Sci. 2020, 104, 715–727. [Google Scholar] [CrossRef]
- Duffield, T.F.; Lissemore, K.D.; McBride, B.W.; Leslie, K.E. Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 2009, 92, 10. [Google Scholar] [CrossRef] [PubMed]
- Oetzel, G.R. Monitoring and testing dairy herds for metabolic disease. Vet. Clin. Food Anim. 2004, 20, 24. [Google Scholar] [CrossRef]
- Duffield, T.F.D.; Sandals, K.E.; Leslie, K.; Lissemore, B.W.; McBride, J.H.; Lumsden, P.D.; Bagg, R. Efficacy of Monensin for the Prevention of Subclinical Ketosis in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2866–2873. [Google Scholar] [CrossRef]
- Kerwin, A.L.; Burhans, W.S.; Mann, S.; Nydam, D.V.; Wall, S.K.; Schoenberg, K.M.; Perfield, K.L.; Overton, T.R. Transition Cow Nutrition and Management Strategies of Dairy Herds in the Northeastern United States: Part II—Associations of Metabolic- and Inflammation-Related Analytes with Health, Milk Yield, and Reproduction. J. Dairy Sci. 2022, 105, 21. [Google Scholar] [CrossRef]
- Suthar, V.S.; Canelas-Raposo, J.; Deniz, A.; Heuwieser, W. Prevalence of Subclinical Ketosis and Relationships with Postpartum Diseases in European Dairy Cows. J. Dairy Sci. 2013, 96, 14. [Google Scholar] [CrossRef]
- Dubuc, J.; Duffield, T.F.; Leslie, K.E.; Walton, J.S.; LeBlanc, S.J. Risk Factors for Postpartum Uterine Diseases in Dairy Cows. J. Dairy Sci. 2010, 93, 8. [Google Scholar] [CrossRef]
- Ribeiro, E.S.; Lima, F.S.; Greco, L.F.; Bisinotto, R.S.; Monteiro, A.P.A.; Favoreto, M.; Ayres, H.; Marsola, R.S.; Martinez, N.; Thatcher, W.W.; et al. Prevalence of Periparturient Diseases and Effects on Fertility of Seasonally Calving Grazing Dairy Cows Supplemented with Concentrates. J. Dairy Sci. 2013, 96, 16. [Google Scholar] [CrossRef] [PubMed]
- Bretzinger, L.F.; Tippenhauer, C.M.; Plenio, J.-L.; Heuwieser, W.; Borchard, S. Effect of transition cow health and estrous expression detected by an automated activity monitoring system within 60 days in milk on reproductive performance of lactating Holstein cows. J. Dairy Sci. 2023, 106, 14. [Google Scholar] [CrossRef]
- Bruinjé, T.C.; Morrison, E.I.; Ribeiro, E.S.; Renaud, D.L.; Couto Serrenho, R.; LeBlanc, S.J. Postpartum health is associated with detection of estrus by activity monitors and reproductive performance in dairy cows. J. Dairy Sci. 2023, 106, 23. [Google Scholar] [CrossRef]
- Walsh, R.B.; Walton, J.S.; Kelton, D.F.; Leblanc, S.J.; Leslie, K.E.; Duffield, T.F. The Effect of Subclinical Ketosis in Early Lactation on Reproductive Performance of Postpartum Dairy Cows. J. Dairy Sci. 2007, 90, 9. [Google Scholar] [CrossRef] [PubMed]
- Dubuc, J.; Denis-Robichaud, J. A Dairy Herd-Level Study of Postpartum Diseases and Their Association with Reproductive Performance and Culling. J. Dairy Sci. 2017, 11, 3068–3078. [Google Scholar] [CrossRef]
- Lacasse, P.; Vanacker, N.; Ollier, S.; Ster, C. Innovative dairy cow management to improve resistance to metabolic and infectious diseases during the transition period. Res. Vet. Sci. 2018, 116, 7. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G.; Trevisi, E.; Han, X.; Bionaz, M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 2008, 91, 11. [Google Scholar] [CrossRef]
- Horst, E.A.; Kvidera, S.K.; Baumgard, L.H. Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef]
- Katoh, N. Relevance of apolipoproteins in the development of fatty liver and fatty liver-related peripartum diseases in dairy cows. J. Vet. Med. Sci. 2002, 64, 15. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G.; Trevisi, E. Use of the Liver Activity Index and Other Metabolic Variables in the Assessment of Metabolic Health in Dairy Herds. Vet. Clin. Food Anim. 2013, 29, 19. [Google Scholar] [CrossRef]
- Graugnard, D.E.; Bionaz, M.; Trevisi, E.; Moyes, K.M.; Salak-Johnson, J.L.; Wallace, R.L.; Drackley, J.K.; Bertoni, G.; Loor, J.J. Blood immunometabolic indices and polymorphonuclear neutrophil function in peripartum dairy cows are altered by level of dietary energy prepartum. J. Dairy Sci. 2012, 95, 1749–1758. [Google Scholar] [CrossRef]
- Mezzetti, M.; Minuti, A.; Piccioli-Cappelli, F.; Amadori, M.; Bionaz, M.; Trevisi, E. The role of altered immune function during the dry period in promoting the development of subclinical ketosis in early lactation. J. Dairy Sci. 2019, 102, 18. [Google Scholar] [CrossRef] [PubMed]
- Janovick, N.A.; Trevisi, E.; Bertoni, G.; Dann, H.M.; Drackley, J.K. Prepartum plane of energy intake affects serum biomarkers for inflammation and liver function during the periparturient period. J. Dairy Sci. 2022, 106, 168–186. [Google Scholar] [CrossRef]
- Nonnecke, B.J.; Kimura, K.; Goff, J.P.; Kehrli, M.E., Jr. Effects of the Mammary Gland on Functional Capacities of Blood Mononuclear Leukocyte Populations from Periparturient Cows. J. Dairy Sci. 2003, 86, 10. [Google Scholar] [CrossRef]
- Scalia, D.; Lacetera, N.; Bernabucci, U.; Demeyere, K.; Duchateau, L.; Burvenich, C. In Vitro Effects of Nonesterified Fatty Acids on Bovine Neutrophils Oxidative Burst and Viability. J. Dairy Sci. 2006, 89, 8. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Dobson, H. Postpartum uterine health in cattle. Anim. Reprod. Sci. 2004, 82–83, 11. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.O.; Shin, S.T.; Guard, C.L.; Erb, H.N.; Frajblat, M. Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 2005, 64, 1879–1888. [Google Scholar] [CrossRef]
- Hammon, D.S.; Evjen, I.M.; Dhiman, T.R.; Goff, J.P.; Walters, J.L. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 2006, 113, 9. [Google Scholar] [CrossRef]
- Owhor, L.E.; Reese, S.; Kölle, S. Salpingitis Impairs Bovine Tubal Function and Sperm-Oviduct Interaction. Sci. Rep. 2019, 9, 15. [Google Scholar] [CrossRef]
- Rico, J.E.; Barrientos-Blanco, M.A. Invited review: Ketone biology—The shifting paradigm of ketones and ketosis in the dairy cow. J. Dairy Sci. 2024, 107, 22. [Google Scholar] [CrossRef]
- Bruinjé, T.C.; LeBlanc, S.J. Invited Review: Inflammation and Health in the Transition Period Influence Reproductive Function in Dairy Cows. Animals 2025, 15, 633. [Google Scholar] [CrossRef] [PubMed]
- Spiekers, H. Gruber Tabelle zur Fütterung der Milchkühe, Zuchtrinder, Schafe, Ziegen. In Gruber Tabelle zur Fütterung der Milchkühe, Zuchtrinder, Schafe, Ziegen: Praktische Richtwerte für eine Milchkuhration, 42nd ed.; Bayerische Landesanstalt für Landwirtschaft: Munich, Germany, 2017; p. 101. [Google Scholar]
- Pothmann, H.; Tichy, A.; Drillich, M. Der Verlauf der Rückenfettdicke von Österreichischen Fleckviehkühen—Erstellung einer Referenzkurve (Back fat thickness throughout lactation for Austrian Simmental cows—A reference curve). Wien. Tierarztl. Monat—Vet. Med. Austria 2014, 101, 8. [Google Scholar]
- Reiter, S.; Sattlecker, G.; Lidauer, L.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Schweinzer, V.; Klein-Jöbstl, D.; Drillich, M.; Iwersen, M. Evaluation of an ear-tag-based accelerometer for monitoring rumination in dairy cows. J. Dairy Sci. 2018, 101, 13. [Google Scholar] [CrossRef] [PubMed]
- Kanz, P.; Drillich, M.; Klein-Jöbstl, D.; Mair, B.; Borchardt, S.; Meyer, L.; Schwendenwein, I.; Iwersen, M. Suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in dairy cows by using 3 different electronic hand-held devices. J. Dairy Sci. 2015, 98, 11. [Google Scholar] [CrossRef]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Epidemiology of subclinical ketosis in early lactation dairy cattle. J. Dairy Sci. 2012, 95, 11. [Google Scholar] [CrossRef]
- Williams, E.J.; Fischer, D.P.; Pfeiffer, D.U.; England, G.C.W.; Noakes, D.E.; Dobson, H.; Sheldon, I.M. Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle. Theriogenology 2005, 63, 15. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Duffield, T.F.; Foster, R.A.; Gartley, C.J.; Leslie, K.E.; Walton, J.S.; Johnson, W.H. Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology 2004, 62, 9–23. [Google Scholar] [CrossRef]
- Madoz, L.V.; Giuliodori, M.J.; Jaureguiberry, M.; Plöntzke, J.; Drillich, M.; de la Sota, R.L. The relationship between endometrial cytology during estrous cycle and cutoff points for the diagnosis of subclinical endometritis in grazing dairy cows. J. Dairy Sci. 2013, 96, 4333–4339. [Google Scholar] [CrossRef]
- Melcher, Y.; Prunner, I.; Drillich, M. Degree of variation and reproducibility of different methods for the diagnosis of subclinical endometritis. Theriogenology 2014, 82, 57–63. [Google Scholar] [CrossRef]
- Pothmann, H.; Müller, J.; Pothmann, I.; Tichy, A.; Drillich, M. Reproducibility of endometrial cytology using cytobrush technique and agreement for the diagnosis of subclinical endometritis between five predefined endometrial sites. Reprod. Domest. Anim. 2018, 54, 350–357. [Google Scholar] [CrossRef]
- Besenfelder, U.; Havlicek, V.; Kuzmany, A.; Brem, G. Endoscopic approaches to manage in vitro and in vivo embryo development: Use of the bovine oviduct. Theriogenology 2010, 73, 9. [Google Scholar] [CrossRef] [PubMed]
- Neubrand, L.; Pothmann, H.; Besenfelder, U.; Havlicek, V.; Gabler, C.; Dolezal, M.; Aurich, C.; Drillich, M.; Wagener, K. In vivo dynamics of pro-inflammatory factors, mucins, and polymorph nuclear neutrophils in the bovine oviduct during the follicular and luteal phase. Sci. Rep. 2023, 13, 14. [Google Scholar] [CrossRef]
- Nicola, I.; Chupin, H.; Roy, J.-P.; Buczinski, S.; Fauteux, V.; Picard-Hagen, N.; Cue, R.; Dubuc, J. Association between prepartum nonesterified fatty acid serum concentrations and postpartum diseases in dairy cows. J. Dairy Sci. 2022, 105, 9. [Google Scholar] [CrossRef] [PubMed]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J. Dairy Sci. 2010, 93, 7. [Google Scholar] [CrossRef] [PubMed]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of nonesterified fatty acids and β-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 2010, 93, 9. [Google Scholar] [CrossRef]
- Mills, S.E.; Beitz, D.C.; Young, J.W. Characterization of Metabolic Changes During a Protocol for Inducing Lactation Ketosis in Dairy Cows. J. Dairy Sci. 1986, 69, 10. [Google Scholar] [CrossRef] [PubMed]
- Cocco, R.; Andrighetto Canozzi, M.E.; Fischer, V. Rumination time as an early predictor of metritis and subclinical ketosis in dairy cows at the beginning of lactation: Systematic review-meta-analysis. Prev. Vet. Med. 2021, 189, 11. [Google Scholar] [CrossRef]
- Gusterer, E.; Kanz, P.; Krieger, S.; Schweinzer, V.; Süss, D.; Lidauer, L.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Drillich, M.; et al. Sensor technology to support herd health monitoring: Using rumination duration and activity measures as unspecific variables for the early detection of dairy cows with health deviations. Theriogenology 2020, 157, 9. [Google Scholar] [CrossRef]
- Bobe, G.; Young, J.W.; Beitz, D.C. Invited Review: Pathology, Etiology, Prevention, and Treatment of Fatty Liver in Dairy Cows. J. Dairy Sci. 2004, 87, 3105–3124. [Google Scholar] [CrossRef]
- LeBlanc, S.J. Reproductive tract inflammatory disease in postpartum dairy cows. Animal 2014, 8, 10. [Google Scholar] [CrossRef]
- Humblet, M.F.; Guyot, H.; Boudry, B.; Mbayahi, F.; Hanzen, C.; Rollin, F.; Godeau, J.M. Relationship between haptoglobin, serum amyloid A, and clinical status in a survey of dairy herds during a 6-month period. Vet. Clin. Pathol. 2006, 35, 188–193. [Google Scholar] [CrossRef]
- Huzzey, J.M.; Duffield, T.F.; LeBlanc, S.J.; Veira, D.M.; Weary, D.M.; von Keyserlingk, M.A.G. Short communication: Haptoglobin as an early indicator of metritis. J. Dairy Sci. 2009, 92, 5. [Google Scholar] [CrossRef]
- Kehrli, M.E.; Nonnecke, B.J., Jr.; Roth, J.A. Alterations in bovine neutrophil function during the periparturient period. Am. J. Vet. Res. 1989, 50, 8. [Google Scholar] [CrossRef]
- Ster, C.; Loiselle, M.-C.; Lacasse, P. Effect of postcalving serum nonesterified fatty acids concentration on the functionality of bovine immune cells. J. Dairy Sci. 2012, 95, 10. [Google Scholar] [CrossRef]
- Suriyasathaporn, W.; Heuer, C.; Noordhuizen-Stassen, E.N.; Schukken, Y.H. Hyperketonemia and the impairment of udder defense: A review. Vet. Res. 2000, 31, 16. [Google Scholar] [CrossRef] [PubMed]
- Herath, S.; Lilly, S.T.; Santos, N.R.; Gilbert, R.O.; Goetze, L.; Bryant, C.E.; White, J.O.; Cronin, J.; Sheldon, I.M. Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility. Reprod. Biol. Endocrinol. 2009, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, I.M.; Price, S.B.; Cronin, J.; Gilbert, R.; Gadsby, J.E. Mechanisms of Infertility Associated with Clinical and Subclinical Endometritis in High Producing Dairy Cattle. Reprod. Domest. Anim. 2009, 44, 10. [Google Scholar] [CrossRef]
- Pascottini, O.B.; LeBlanc, S.J. Modulation of immune function in the bovine uterus peripartum. Theriogenology 2020, 150, 193–200. [Google Scholar] [CrossRef]
- Bonnett, B.N.; Martin, S.W.; Meek, A.H. Associations of clinical findings, bacteriological and histological results of endometrial biopsy with reproductive performance of postpartum dairy cows. Prev. Vet. Med. 1993, 15, 16. [Google Scholar] [CrossRef]
- Gillund, P.; Reksen, O.; Groehn, Y.T.; Karlberg, K. Body Condition Related to Ketosis and Reproductive Performance in Norwegian Dairy Cows. J. Dairy Sci. 2001, 84, 7. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, Z.; Shepley, E.; Endres, M.I.; Cramer, G.; Caixeta, L.S. Assessment of milk yield and composition, early reproductive performance, and herd removal in multiparous dairy cattle based on the week of diagnosis of hyperketonemia in early lactation. J. Dairy Sci. 2022, 105, 11. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Collier, R.J.; Bauman, D.E. A 100-Year Review: Regulation of nutrient partitioning to support lactation. J. Dairy Sci. 2017, 100, 14. [Google Scholar] [CrossRef] [PubMed]
- Churakov, M.; Karlsson, J.; Edvardsson Rasmussen, A.; Holtenius, K. Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animals 2021, 15, 100253. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, C.; Klopp, R.N.; Moraes, L.E.; Harvatine, K.J. Meta-analysis of the relationship between milk trans-10 C18:1, milk fatty acids <16 C, and milk fat production. J. Dairy Sci. 2020, 103, 12. [Google Scholar] [CrossRef]
- Kulkarni, P.; Mourits, M.; Nielen, M.; Van den Broek, J.; Steeneveld, W. Survival analysis of dairy cows in the Netherlands under altering agricultural policy. Prev. Vet. Med. 2021, 193, 8. [Google Scholar] [CrossRef] [PubMed]

| Sampling Days | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Day 14 ap | Day 7 ap | Day 0 | Day 7 | Day 14 | Day 28 | |||||||
| 1 Status at Day 7 pp | CON | HYK | CON | HYK | CON | HYK | CON | HYK | CON | HYK | CON | HYK |
| NEFA (mmol/L) | 0.13 a (0.08/0.19) | 0.2 b (0.13/0.32) | ||||||||||
| BHB (mmol/L) | 0.3 (0.3/0.6) | 0.3 (0.3/0.4) | 0.7 a (0.6/0.8) | 2.0 b (1.3/2.8) | 0.8 (0.6/1.1) | 0.9(0.7/1.6) | 0.9 (0.6/1.3) | 1.0 (0.6/1.9) | ||||
| HP [g/L] | 0.2 (0.1/0.3) | 0.2 (0.1/0.7) | ||||||||||
| DMI (kg/d) | 13.9 (2.7) | 12.7 (2.5) | 12.8 (3.5) | 11.5 (2.6) | 9.6 (4.5) | 10.0 (4.2) | 17.4 (4.8) | 17.3 (4.1) | 18.8 (2.9) | 16.8 (4.2) | 17.1 (3.1) | 17.8 (3.6) |
| RT (Min./d) | 544 a (504/595) | 505 b (417/542) | 525 a (72) | 493 b (75) | 345 a (99) | 367 b (159) | 610 (95) | 660 (65) | 626 (548/684) | 610 (589/647) | 614 (94) | 671 (55) |
| BFT (mm) | * 14.5 (11.2/17.0) | * 16.5 (12.0/20.7) | 16.0 (14.2/20.0) | 16.5 (12.0/20.7) | 12.0 (11.0/15.0) | 12.0 (11.0/14.0) | ||||||
| Status 1 | CON | HYK7 | CON | HYK14 | CON | HYK28 |
|---|---|---|---|---|---|---|
| CE (%) d7 | 44.7 | 61.5 | ||||
| CE (%) d14 | 50.0 | 46.7 | 53.8 | 60.0 | ||
| CE (%) d28 | 44.1 | 58.8 | 56.8 | 52.9 | 24.3 c | 5.9 d |
| SE (%) d7 | 51.7 | 41.7 | ||||
| SE (%) d14 | 44.4 | 57.1 | 61.1 | 64.3 | ||
| SE (%) d28 | 53.6 | 38.5 | 65.7 | 53.3 | 28.6 | 40.0 |
| Endometrium [PMN%] d7 | 7.7 (0.2/35.7) | 2.3 (0.3/25.3) | ||||
| Endometrium [PMN%] d14 | 11.0 (1.0/33.0) | 10.3 (2.7/57.7) | 9.5 (1.2/37.5) | 11.3 (1.2/37.3) | ||
| Endometrium [PMN%] d28 | 1.0 (0.0/9.4) | 1.0 (0.0/10.9) | 1.2 (0.0/9.4) | 8.3 (0.0/10.9) | 1.0 (0.0/7.7) | 1.7 (0.3/10.0) |
| Oviduct [PMN%] d28 | 0.4 (0.0/1.0) | 0.2 (0.0/0.9) | 0.4 a (0.1/1.0) | 0.0 b (0.0/0.35) | 0.4 c(0.2/1.0) | 0.0 d(0.0/0.7) |
| Median IC1AI (Min/Max) | 64(58/77) | 66(54/84) | 62 a (55/71) | 78 b (63/95) | 64(5876) | 65 (49/86) |
| SR (%) | 37.9 | 35.7 | 44.8 | 21.4 | 37.9 | 35.7 |
| Median DO (Min/Max) | 103 (85/129) | 120 (91/183) | 107 (82/153) | 110 (87/160) | 108 (82/127) | 124 (87/177) |
| Overall preg (%) | 67.6 | 81.3 | 64.9 | 87.5 | 69.4 | 76.5 |
| PR/1st AI (%) | 24.1 | 26.7 | 13.8 a | 46.7 b | 27.6 | 20.0 |
| 150-day in-calf rate (%) | 69.0 | 53.3 | 62.1 | 66.7 | 69.0 | 53.3 |
| CR (%) | 26.9 | 25.0 | 32.1 | 35.9 | 22.9 | 31.9 |
| Culling (%) | 32.4 | 18.8 | 35.1 c | 12.5 d | 30.6 | 23.5 |
| Milk fat [%] | 4.2 (3.8/4.7) | 4.5 (3.8/6.0) | 4.5 a (3.8/4.9) | 3.9 b (3.5/4.3) | 4.4 a (3.92/4.85) | 3.8 b (3.3/4.66) |
| Milk protein [%] | 3.2 (3.0/3.4) | 3.2 (2.8/3.4) | 3.2 (3.0/3.4) | 3.2 (2.8/3.4) | 3.2 (3.0/3.4) | 3.1 (2.9/3.3) |
| Milk yield [kg/d] | 33.4 (27.7/40.7) | 32.8 (26.0/39.1) | 31.9 a (27.2/39.4) | 39.1 b (28.3/42.3) | 33.0 (27.2/39.7) | 38.2 (27.9/42.0) |
| Milk yield [kg/305-d] | 9314 (8510/10,035) | 9707 (8969/10,546) | 9216 a (8345/9600) | 10,220 b (9681/10,511) | 9408 (8689/10,156) | 9505 (8206/10,395) |
| Sampling Days | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Day 14 ap | Day 7 ap | Day 0 | Day 7 | Day 14 | Day 28 | |||||||
| 1 Status at Day 14 pp | CON | HYK | CON | HYK | CON | HYK | CON | HYK | CON | HYK | CON | HYK |
| NEFA (mmol/L) | 0.1 a (0.1/0.2) | 0.2 b (0.1/0.3) | ||||||||||
| BHB (mmol/L) | 0.3 (0.3/0.4) | 0.3 (0.3/0.6) | 0.7 a (0.6/1.0) | 1.2 b (0.8/2.5) | 0.7 a (0.5/0.8) | 1.5 b (1.2/2.10) | 0.8 a (0.5/1.1) | 1.4 b (0.9/2.8) | ||||
| HP [g/L] | 0.2 (0.1/0.6) | 0.2 (0.1/0.2) | ||||||||||
| DMI (kg/d) | 13.8 (2.3) | 12.8 (2.5) | 12.8 (3.5) | 11.5 (2.6) | 9.6 (4.5) | 10.3 (4.2) | 17.4 (4.8) | 17.3 (4.1) | 18.8 c (2.9) | 16.8 d (4.2) | 17.1 (3.1) | 17.9 (4.5) |
| RT (Min./d) | 534 (469/589) | 515 (500/549) | 525 (72) | 419 (75) | 351 (104) | 353 (155) | 610 c (94) | 663 d (67) | 618 (555/674) | 610 (482/669) | 616 c (93) | 670 d (57) |
| BFT (mm) | * 15.0 (11.2/18.0) | * 14.0 (10.5/18.8) | 16.0 (14.0/20.0) | 15.5 (12.8/22.0) | 12.0 (10.8/14.2) | 14.0 (11.0/15.5) | ||||||
| Sampling Days | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Day 14 ap | Day 7 ap | Day 0 | Day 7 | Day 14 | Day 28 | |||||||
| 1 Status at Day 28 pp | CON | HYK | CON | HYK | CON | HYK | CON | HYK | CON | HYK | CON | HYK |
| NEFA (mmol/L) | 0.1 c (0.1/0.2) | 0.2 d (0.1/0.3) | ||||||||||
| BHB (mmol/L) | 0.3 (0.3/0.4) | 0.3 (0.4/0.7) | 0.7 a (0.6/1.1) | 1.1 b (0.7/2.2) | 0.7 a (0.55/0.9) | 1.2 b (0.85/1.8) | 0.7 a (0.5/0.9) | 1.9 b (1.4/3.0) | ||||
| HP [g/L] | 0.2 (0.1/0.6) | 0.2 (0.1/0.4) | ||||||||||
| DMI (kg/d) | 14.0 e (2.39) | 12.6 f (2.22) | 12.9 (3.4) | 11.1 (2.5) | 10.0 (4.4) | 8.4 (4.5) | 17.3 (4.9) | 17.5 (3.6) | 18.3 (3.4) | 18.2 (3.6) | 17.4 (3.4) | 17.3 (3.0) |
| RT (Min./d) | * 573 a (509/611) | * 646 b (600/676) | 515 (70) | 517 (82) | 347 (119) | 361 (122) | 612 (93) | 653 (77) | 604 (544/668) | 643 (587/674) | 620 (91) | 656 (77) |
| BFT (mm) | 15.0 e (12.2/18.0) | 12.0 f (10.0/18.2) | 16.0 (14.2/20.0) | 16.5 (12.0/20.7) | 12.0 (11.0/15.0) | 12.0 (11.0/14.0) | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pothmann, H.; Mitterer, M.; Flicker, F.; Sahebi, M.; Havlicek, V.; Besenfelder, U.; Tichy, A.; Drillich, M. Evaluation of Hyperketonemia in the Transition Period of Dairy Simmental Cows and Association with Liver Activity, Uterine and Oviductal Health, and Reproductive Performance. Dairy 2026, 7, 2. https://doi.org/10.3390/dairy7010002
Pothmann H, Mitterer M, Flicker F, Sahebi M, Havlicek V, Besenfelder U, Tichy A, Drillich M. Evaluation of Hyperketonemia in the Transition Period of Dairy Simmental Cows and Association with Liver Activity, Uterine and Oviductal Health, and Reproductive Performance. Dairy. 2026; 7(1):2. https://doi.org/10.3390/dairy7010002
Chicago/Turabian StylePothmann, Harald, Michael Mitterer, Florian Flicker, Maryam Sahebi, Vitezslav Havlicek, Urban Besenfelder, Alexander Tichy, and Marc Drillich. 2026. "Evaluation of Hyperketonemia in the Transition Period of Dairy Simmental Cows and Association with Liver Activity, Uterine and Oviductal Health, and Reproductive Performance" Dairy 7, no. 1: 2. https://doi.org/10.3390/dairy7010002
APA StylePothmann, H., Mitterer, M., Flicker, F., Sahebi, M., Havlicek, V., Besenfelder, U., Tichy, A., & Drillich, M. (2026). Evaluation of Hyperketonemia in the Transition Period of Dairy Simmental Cows and Association with Liver Activity, Uterine and Oviductal Health, and Reproductive Performance. Dairy, 7(1), 2. https://doi.org/10.3390/dairy7010002

