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Abstract: In random-effects models, hierarchical linear models, or multilevel models, it is typically
assumed that the variances within higher-level units are homoscedastic, meaning that they are
equal across these units. However, this assumption is often violated in research. Depending on
the degree of violation, this can lead to biased standard errors of higher-level parameters and thus
to incorrect inferences. In this article, we describe a resampling technique for obtaining standard
errors—Zitzmann’s jackknife. We conducted a Monte Carlo simulation study to compare the tech-
nique with the commonly used delete-1 jackknife, the robust standard error in Mplus, and a modified
version of the commonly used delete-1 jackknife. Findings revealed that the resampling techniques
clearly outperformed the robust standard error in rather small samples with high levels of het-
eroscedasticity. Moreover, Zitzmann’s jackknife tended to perform somewhat better than the two
versions of the delete-1 jackknife and was much faster.
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1. Introduction

Random-effects models, hierarchical linear models, or multilevel models are pow-
erful tools for analyzing longitudinal, e.g., [1–5], and cross-sectional designs, e.g., [6–11]
with lower-level units (e.g., individuals) nested within higher-level units (e.g., groups)
in educational psychology and related sciences. In these models, the assumption of ho-
moscedasticity is commonly made by assuming that the variances within groups are
homoscedastic [12,13], meaning that they are the same across the groups. Although multi-
level models deal with violations of the independence assumption (i.e., the assumption
that observations are independent) by taking the nesting of units into account, they are not
robust against violations of homoscedasticity, and an effective solution to deal with this
issue, such as explicitly modeling heteroscedasticity or using newly developed, more robust
methods, e.g., [13], is not always available. As Goldstein [12] noted, heteroscedasticity
is often found in naturally occuring groups. For example, males tend to be less similar
than females are in, for example, intellectual abilities [14]. Depending on the level of
heteroscedasticity, it can lead to biases in standard errors of group-level parameters and
thus to incorrect inferences regarding these parameters, e.g., [15]. Although these problems
are well-known, and robust methods have long been used in other areas, e.g., [16–18], little
progress has been made to adapt these and other methods to multilevel modeling.

A multilevel model is given by the following equations. If we apply the notation of
Raudenbush and Bryk [19], the model reads at the individual level:

Level 1: Yij = β0j + β1jXij + rij (1)
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for an individual i = 1, . . . , nj in a group j = 1, . . . , J. The rij are normally distributed residu-

als with variance Var
(
rij
)
. This model is homoscedastic, meaning that Var

(
rij′
)
= Var

(
rij′′
)

for different groups j′ and j′′. At the group level, the intercepts β0j and the slopes β1j are
modeled as

Level 2: β0j = γ00 + γ01Zj + u0j
β1j = γ10 + γ11Zj + u1j

(2)

where γ00 and γ10 are the overall intercept and the overall slope of Xij, γ01 and γ11 are the
main effect of Zj and the cross-level interaction of Xij and Zj, and u0j and u1j are normally
distributed residuals with variances Var

(
u0j
)

and Var
(
u1j
)
, respectively. The parameters

γ01, γ11, Var
(
u0j
)
, and Var

(
u1j
)

are typical group-level parameters of interest. By inserting
Equation (2) into Equation (1), the model simplifies to one equation:

Yij = γ00 + γ10Xij + γ01Zj + γ11ZjXij + u1jXij + u0j + rij (3)

In this article, we describe a resampling technique for obtaining standard errors of
group-level parameters that has been proposed by Zitzmann [20] as an efficient way to
obtain standard errors in multilevel factor score regression; see also [21,22]. However, the
technique can also be applied with other types of estimation, such as Maximum Likelihood
(ML) estimation, which can be useful particularly when the standard error from ML esti-
mation lacks robustness. Hereafter, we will refer to this specific resampling technique as
Zitzmann’s jackknife. Although the technique has not specifically been developed for the
purpose of dealing with heteroscedasticity, it is reasonable to assume that this technique
would perform well under heteroscedasticity. In other words, unlike Zitzmann [20], we
identify his method as a specific means to deal with heteroscedasticity in multilevel model-
ing, and thus, we are the first to discuss it more in relation to robust methods (i.e., robust
against the violation of homoscedasticity). However, as Zitzmann [20] did not study its
performance in the presence of heteroscedasticity, it is yet unknown to what extent this
method is really robust. Therefore, we conducted a Monte Carlo simulation study in order
to test its performance, in which we also compared this method with the commonly used
delete-1 jackknife, the robust standard error in Mplus [23], and a modified version of the
commonly used delete-1 jackknife, as these are the methods that are either readily available
in standard software or easily computable. Note that to the best of our knowledge, such a
study does not yet exist.

2. Zitzmann’s Jackknife

Zitzmann’s jackknife is a specific resampling method that may be located within the
class of the jackknife techniques. As such, Zitzmann’s jackknife shares some features with
more common jackknifes, but it also deviates from them. In the following, we describe how
this method works, using a minimal example.

Let θ be a group-level parameter such as γ01, γ11, Var
(
u0j
)
, or Var

(
u1j
)

in the above
model; Zitzmann’s jackknife first computes estimates of this parameter from R subsamples.
These subsamples are obtained by omitting d groups. More specifically, they are obtained
by dividing the indices of the groups (1, . . . , no. of groups) into R =

no. of groups
d non-

overlapping subsets, and then using these nonoverlapping subsets of indices to create
the subsamples. For example, suppose the total number of groups is 15, and R = 5
subsamples should be created (each omitting d = 3 groups). The indices of the groups can
be arranged as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (4)

One natural way to divide these indices into R = 5 nonoverlapping subsets is

1 2 3︸ ︷︷ ︸
1

4 5 6︸ ︷︷ ︸
2

7 8 9︸ ︷︷ ︸
3

10 11 12︸ ︷︷ ︸
4

13 14 15︸ ︷︷ ︸
5

(5)
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For each subset, a subsample of the data is created by omitting the indexed groups. Thus,
each resulting subsample includes only 12 groups. The five subsamples are

Subsample 1: 4 5 6 7 8 9 10 11 12 13 14 15
Subsample 2: 1 2 3 7 8 9 10 11 12 13 14 15
Subsample 3: 1 2 3 4 5 6 10 11 12 13 14 15
Subsample 4: 1 2 3 4 5 6 7 8 9 13 14 15
Subsample 5: 1 2 3 4 5 6 7 8 9 10 11 12

(6)

Note that omitting groups implies omitting individuals as well because individuals are
nested within groups. However, the procedure operates at the group level in the first place,
which differs from single-level resampling techniques.

On each of the five subsamples, the analysis model (i.e., the multilevel model of
interest) is run, each yielding an estimate of the group-level parameter:

θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 (7)

Based on these estimates, the standard error of the estimate θ̂ from the complete sample is
then estimated by the following formula:

Zitzmann’s jackknifed ŜE =

√√√√(R− 1)
R

∑
j=1

(
θ̂j − ¯̂θ

)2
/R (8)

where ¯̂θ = ∑R
j=1 θ̂j/R is simply the average across the estimates from the subsamples.

3. Simulation Study

As with all new methods, it is crucial to assess the performance of Zitzmann’s jack-
knife, preferably by means of a simulation—a study in which one or more methods are
tested or compared using a large number of artificially generated data. Therefore, we
conducted a simulation study to compare the performance of Zitzmann’s jackknife with
the performances of the commonly used delete-1 jackknife, the robust standard error in
Mplus, and a modification of the delete-1 jackknife.

3.1. Method
3.1.1. Data Generation

The data-generating model was a heteroscedastic version of a simple multilevel model,
namely the two-level random intercept-only model. The model reads at the individual level:

Level 1: Yij = β0j + rij (9)

Note that in this model, Var
(

rij′
)
6= Var

(
rij′′
)

for different groups j′ and j′′ (i.e., het-
eroscedasticity). At the group level, the intercepts β0j are modeled as

Level 2: β0j = γ00 + u0j (10)

In the context of this model, we call Var
(
u0j
)

the variance between groups. If we insert
Equation (10) into Equation (9), the model becomes

Yij = γ00 + u0j + rij (11)

We varied the sample size by varying the number of groups (J = 20 vs. 40 vs. 100 vs. 400)
and the group size (small vs. medium vs. large). Although there are studies involving fewer
than 40 groups of small to large group sizes, around 40 are commonly found in educational
psychology [24], and 400 were chosen to study the asymptotic behavior of the methods.
The group size was not held perfectly equal across groups in order to generate data that
resembled data structures typically found in multilevel research. For each group, the group
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size was drawn from a uniform distribution with specified bounds. As a consequence, in
the condition with a small group size, the group size varied between nj = 7 and 9, in the
condition with a medium-sized group size, it varied between nj = 11 and 17, and in the
condition with a large group size, it varied between nj = 19 and 25. More importantly,
we varied the degree of violation of the homoscedasticity assumption, which we hereafter
also refer to as the level of heteroscedasticity (moderate vs. high vs. very high). To this
end, the within-group standard deviation for each group was drawn from a uniform
distribution with bounds depending on the level of heteroscedasticity. In the condition
with a moderate level of heteroscedasticity, the standard deviation varied between groups

between
√

Var
(
rij
)
= 70 and 130. That is, the most homogeneous group had a standard

deviation of 70, and the most heterogeneous group had a standard deviation of 130. In the
condition with a high level of heteroscedasticity, the standard deviations varied between√

Var
(
rij
)
= 45 and 170, and in the condition with a very high level of heteroscedasticity,

they varied between
√

Var
(
rij
)
= 25 and 200. Thus, overall, the design of the simulation

had 4× 3× 3 = 36 conditions.
For each of these conditions, S = 1000 datasets were generated in two steps: In the

first step, for each group j, the intercept β0j was drawn from a normal distribution with a
mean of γ00 = 500 and a variance of Var

(
u0j
)
= 100. For example, in the condition with

20 groups, 20 intercepts were generated. Moreover, for each group, a value of the standard
deviation within the group was drawn. For example, in the condition with a moderate level

of heteroscedasticity, this standard deviations had a value between
√

Var
(
rij
)
= 70 and 130.

Finally, a value of the group size nj was drawn for each group.
In the second step, the individual observations were drawn from a normal distribution

with mean β0j and variance Var
(
rij
)
. Each resulting dataset was analyzed with a two-level

random intercept model in which the variances within groups were assumed to be equal
across groups (i.e., homoscedasticity assumption), which is the default and often also the
only model in many software programs.

3.1.2. Model Estimation

Model estimation was carried out by ML estimation in which the likelihood function
or the log-likelihood is maximized [25]. To briefly illustrate this procedure, suppose for
a moment that Y is grand mean-centered (i.e., dropping the intercept α), group sizes are
equal (i.e., dropping the index j in nj), and homoscedasticity holds. Then, the log-likelihood
of the two-level random intercept-only model can be expressed as

logL = c− J(n− 1)log
(
Var
(
rij
))

/2− Jlog(g)/2−
J

∑
j=1

n

∑
i=1

Y2
ij/
(
2Var

(
rij
))

+ n
(

g−Var
(
rij
)) J

∑
j=1

Ȳ2
•j/
(
2Var

(
rij
)

g
) (12)

where c is a constant term, and g is used as an abbreviation for nVar
(
u0j
)
+ Var

(
rij
)
.

Analytically maximizing this log-likelihood yields the following ML estimates:

V̂ar
(
rij
)
=

∑J
j=1 ∑n

i=1 Y2
ij − n ∑J

j=1 Ȳ2
•j

J(n− 1)
(13)

V̂ar
(
u0j
)
=

J

∑
j=1

Ȳ2
•j/J − V̂ar

(
rij
)
/n (14)

While assuming homoscedasticity in the actual analysis model (i.e., the homoscedastic
two-level random intercept-only model), Y was noncentered, and the group sizes were
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allowed to differ between groups. Therefore, instead of the analytical solution from above,
we used the more flexible Mplus software in order to solve the optimization problem(

γ̂00, V̂ar
(
rij
)
, V̂ar

(
u0j
))

= arg max
(γ̂00,V̂ar(rij),V̂ar(u0j))

logL (15)

by maximizing the log-likelihood through numerical optimization; see [26].
Standard errors were obtained by three different methods. Zitzmann’s jackknife was

implemented as illustrated above, however, with a fixed number of R = 20 subsamples.
This number was taken from previous work, e.g., [20], which showed that it was sufficient
for the jackknife to perform well.

In addition to Zitzmann’s jackknife, we implemented the commonly used delete-1
jackknife, which is also used by the R-package BIFIEsurvey [27]. Using the symbol J for
the total number of groups, the jackknifed standard error is obtained by aggregating the
estimates from J subsamples created by omitting only one group:

jackknifed ŜE =

√√√√(J − 1)
J

∑
j=1

(
θ̂j − θ̂

)2
/J (16)

where θ̂ is the estimate from the complete dataset (A. Robitzsch, personal communication,
6 December 2022), which is a major deviation from Zitzmann’s jackknife. See also the
second formula in Kolenikov [28], which is equivalent to the presented one in the case of
nonstratified data.

Moreover, we retained the robust standard error from Mplus, which is essentially a
sandwich standard error that is rather robust against violations of the normality assumption
and other assumptions but not necessarily also against violations of homoscedasticity (for
a formal expression of this standard error, see [29]; see also [13,30]). Indeed, it has been
argued that “unless the number of groups is very large, the robust standard errors are not
up to that task” (p. 439, [15]).

Finally, as another benchmark, we implemented a modified version of the delete-1
jackknife, which differs from the commonly used delete-1 jackknife in that ¯̂θ (i.e., the
average across the estimates from the subsamples) is used in place of the estimate from the
complete dataset, which makes the modified version more similar to Zitzmann’s jackknife
and identical to Zitzmann’s jackknife in situations where only one group is omitted.

All four methods were implemented in R [31].

3.1.3. Evaluation Criteria

For each type of standard error, two indicators of accuracy were computed from the
simulated datasets per simulation condition. The percentage of bias of the standard error
was estimated as

% bias = 100%×
(

S

∑
s=1

ŜEs/S− SE∗
)/

SE∗ (17)

where ŜEs is the standard error obtained from the sth data set, and SE∗ is a proxy for the
true standard error and computed as the empirical standard deviation across the parameter
estimates from the datasets. The standard error ratio was computed as

SE ratio =
S

∑
s=1

ŜEr/SE∗ (18)

Note that whereas the exact number of datasets used for computing the percentage of bias
and the standard error ratio per condition was less than 1000 because datasets for which
ML estimation yielded outliers (i.e., values beyond Q3 plus 1.5 times the interquartile range,
in analogy to boxplot conventions) were discarded, all 1000 datasets were used to compute
the proxy for the true standard error.
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We expected that the two resampling techniques would outperform the robust stan-
dard error in rather small samples with high levels of heteroscedasticity because the resam-
pling techniques inherently account for heteroscedasticity, whereas the robust standard
error does not.

In our evaluations, we focused on the group-level parameter in the model, which is
the variance between groups (Var

(
u0j
)
). The findings from this study are the subject of the

next section.

3.2. Results

Table 1 gives an overview of the sources of variation in the bias of the standard error.
Main effects and interactions that explained a substantial amount of variability (i.e., an eta-
squared η2 greater than 0.01) are printed in bold type. Only these substantial eta-squared
values will be interpreted next. Table 2 shows the detailed results for the percentage of bias
for all three methods as a function of the simulation condition.

As can be seen from Table 1, all factors except the number of groups showed sub-
stantial eta-squared values. Among the main effects of these factors, the main effect of
the method factor showed the largest eta-squared, meaning that this factor influenced the
percentage of bias most. The differences between methods were most pronounced between
the resampling techniques and the robust standard error. A look into Table 2 reveals that
the differences between Zitzmann’s jackknife and the two delete-1 jackknifes were gener-
ally small, with Zitzmann’s jackknife tending to provide somewhat less biased standard
errors. Overall, Zitzmanns’ jackknife provided on average a bias of 4.8% (averaged over
simulation conditions), which can be considered acceptable [32]. The average bias of the
commonly used delete-1 jackknife was 15.1% and thus somewhat larger. The average bias
of the robust standard error was 94.1% and thus clearly unacceptably high, and the average
bias of the modified delete-1 jackknife was 13.2% and thus very similar to the bias of the
commonly used delete-1 jackknife. The factor with the second largest eta-squared value
was the group size (see Table 1). With an increasing group size, the percentage of bias
reduced (see Table 2). What is more important for the present investigation, the level of
heteroscedasticity also explained a substantial amount of variance, although its eta-squared
was only small. The more the within-group standard standard deviation varied between
groups, the more biased was the standard error.

Four of the two-way interaction effects showed substantial eta-squared values. These
were the three interactions involving the method factor, with the two sample size×method
interactions being the ones with the largest eta-squared values. When the sample size
increased, the differences between the methods decreased. Specifically, whereas the sample
size did not affect the performance of the resampling techniques much, it reduced the bias
for the robust standard error considerably, and thus, the differences between the resampling
techniques and the robust standard error decreased as well. More important, the level of
heteroscedasticity × method interaction showed a substantial but small eta-squared. A
larger variance in the within-group standard deviation between groups tended to lead to
larger differences between methods, particularly between the resampling techniques and
the robust standard error. There was also a number of groups × level of heteroscedasticity
interaction, indicating that the impact of heteroscedasticity on the bias depended on the
sample size. However, the impact was not consistent across methods, as indicated by the
number of groups × level of heteroscedasticity ×method interaction.

An identical picture emerged with regard to the standard error ratio. Zitzmanns’
jackknife exhibited an average standard error ratio of 1.05 across all conditions, whereas the
average standard error ratio of the commonly used delete-1 jackknife was 1.15, the average
standard error ratio of the robust standard error was 1.94, and the average standard error
ratio of the modified delete-1 jackknife was 1.13. For the detailed results, see Tables 1 and 2.
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Table 1. Simulation study results: sources of variation.

η2

Percentage of Bias

Main effects
No. of Groups 0.00
Group Size 0.04
Level of Heteroscedasticity 0.01
Method 0.54

Two-Way Interaction Effects
No. of Groups × Group Size 0.00
No. of Groups × Level of Heteroscedasticity 0.01
Group Size × Level of Heteroscedasticity 0.00
No. of Groups ×Method 0.25
Group Size ×Method 0.07
Level of Heteroscedasticity ×Method 0.01

Three-Way Interaction Effects
No. of Groups × Group Size × Level of Heteroscedasticity 0.01
No. of Groups × Group Size ×Method 0.00
No. of Groups × Level of Heteroscedasticity ×Method 0.01
Group Size × Level of Heteroscedasticity ×Method 0.00

Four-Way Interaction Effects
No. of Groups × Group Size × Level of Heteroscedasticity ×Method 0.00

Standard Error Ratio

Main effects
No. of Groups 0.00
Group Size 0.04
Level of Heteroscedasticity 0.01
Method 0.54

Two-Way Interaction Effects
No. of Groups × Group Size 0.00
No. of Groups × Level of Heteroscedasticity 0.01
Group Size × Level of Heteroscedasticity 0.00
No. of Groups ×Method 0.25
Group Size ×Method 0.07
Level of Heteroscedasticity ×Method 0.01

Three-Way Interaction Effects
No. of Groups × Group Size × Level of Heteroscedasticity 0.01
No. of Groups × Group Size ×Method 0.00
No. of Groups × Level of Heteroscedasticity ×Method 0.01
Group Size × Level of Heteroscedasticity ×Method 0.00

Four-Way Interaction Effects
No. of Groups × Group Size × Level of Heteroscedasticity ×Method 0.00

Note. Substantial eta-squared values are indicated in bold.
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Table 2. Simulation study results: percentage of bias and standard error ratio.

Percentage of Bias Standard Error Ratio

Commonly Commonly
Used Robust Modified Used Robust Modified

Level of Zitzmann’s Delete-1 Standard Delete-1 Zitzmann’s Delete-1 Standard Delete-1
No. of Groups Group Size Heteroscedasticity Jackknife Jackknife Error Jackknife Jackknife Jackknife Error Jackknife

20 Small Moderate −5.5 −2.6 174.3 −5.5 0.95 0.97 2.74 0.95
High −10.8 −7.6 205.9 −10.8 0.89 0.92 3.06 0.89
Very High −13.4 −10.8 174.0 −13.4 0.87 0.89 2.74 0.87

Medium Moderate −4.5 −0.5 148.5 −4.5 0.96 1.00 2.49 0.96
High −9.0 −5.9 164.7 −9.0 0.91 0.94 2.65 0.91
Very High −14.3 −11.4 143.0 −14.3 0.86 0.89 2.43 0.86

Large Moderate −6.3 −3.6 90.7 −6.3 0.94 0.96 1.91 0.94
High −13.0 −10.7 95.6 −13.0 0.87 0.89 1.96 0.87
Very High −8.9 −6.7 147.9 −8.9 0.91 0.93 2.48 0.91

40 Small Moderate 3.8 16.4 158.2 11.3 1.04 1.16 2.58 1.11
High −4.8 5.9 167.7 2.0 0.95 1.06 2.68 1.02
Very High −4.2 7.5 167.8 2.7 0.96 1.08 2.68 1.03

Medium Moderate −4.0 3.5 98.7 0.0 0.96 1.03 1.99 1.00
High 2.6 14.3 136.8 10.7 1.03 1.14 2.37 1.11
Very High −8.9 1.5 155.1 −2.8 0.91 1.02 2.55 0.97

Large Moderate −2.0 6.3 57.1 2.7 0.98 1.06 1.57 1.03
High −3.1 4.6 80.1 1.3 0.97 1.05 1.80 1.01
Very High −1.8 6.8 98.9 3.4 0.98 1.07 1.99 1.03

100 Small Moderate 11.0 31.0 101.2 28.2 1.11 1.31 2.01 1.28
High 12.9 32.1 122.3 28.7 1.13 1.32 2.22 1.29
Very High 11.5 31.6 144.9 28.4 1.12 1.32 2.45 1.28

Medium Moderate 9.2 20.8 62.5 20.0 1.09 1.21 1.62 1.20
High 13.5 34.2 75.2 29.9 1.14 1.34 1.75 1.30
Very High 14.0 40.2 100.7 35.0 1.14 1.40 2.01 1.35

Large Moderate 3.1 11.9 19.3 11.2 1.03 1.12 1.19 1.11
High 8.1 26.1 38.2 23.7 1.08 1.26 1.38 1.24
Very High 3.7 17.8 50.5 15.3 1.04 1.18 1.50 1.15

400 Small Moderate 28.3 27.8 49.5 28.4 1.28 1.28 1.49 1.28
High 34.7 40.7 60.0 42.6 1.35 1.41 1.60 1.43
Very High 40.3 49.2 75.2 52.5 1.40 1.49 1.75 1.53

Medium Moderate 7.7 7.7 5.8 7.9 1.08 1.08 1.06 1.08
High 23.6 34.5 17.6 36.0 1.24 1.35 1.18 1.36
Very High 29.5 44.9 29.1 49.4 1.30 1.45 1.29 1.49

Large Moderate 4.6 2.2 −9.3 1.9 1.05 1.02 0.91 1.02
High 13.4 61.9 −10.7 63.8 1.13 1.62 0.89 1.64
Very High 11.4 22.8 −8.3 24.8 1.11 1.23 0.92 1.25
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4. Real Data Example

To further illustrate the different methods for obtaining standard errors, we applied
them to real data. The data belong to the Dutch PISA 2006 study and were already used
by Fox [33], who provided a link to download them (see also the BIFIEsurvey package,
where they are called “data.pisaNLD”). They contain achievement data of J = 154 classes
with the class size ranging from nj = 13 to 30. Importantly, there is some variation in the
within-class variance, as indicated by a scatter of the within-class standard deviations of
9.35, which means that homoscedasticity does not hold.

Like in the simulation, we fit a homoscedastic two-level random intercept model using
Mplus and focused on the variance between groups. The maximum likelihood estimate of
this parameter was 5421.94. Zitzmann’s jackknife yielded a standard error of 613.26, the
commonly used delete-1 jackknife a standard error of 506.26, the robust standard error was
520.58, and the modified delete-1 jackknife resulted in a standard error of 506.29. As is
evident from these values, the different methods differed, with Zitzmann’s jackknife clearly
standing out, which could have been anticipated based on the findings from the simulation.
Given that in the simulation, Zitzmann’s jackknife performed best, we tend to prefer the
standard error from this method in order to quantify the uncertainty in the estimate of the
variance between groups.

5. Summary and Discussion

Standard multilevel modeling requires that the variances within groups be homoscedas-
tic. However, in research, this assumption may be violated, leading to biased standard
errors of group-level parameters and incorrect inferences. We described Zitzmann’s jack-
knife, a resampling technique for obtaining standard errors, and conducted a simulation
study to compare the technique with the commonly used delete-1 jackknife, the robust
standard error in Mplus, and a modified delete-1 jackknife. In line with our expectation, all
three resampling techniques outperformed the robust standard error regarding percentage
of bias and standard error ratio in rather small samples with high levels of heteroscedastic-
ity. Somewhat surprisingly, Zitzmann’s jackknife tended to exhibit a better performance
than the different versions of the delete-1 jackknife, although the differences between these
methods were small. Note that we implemented Zitzmann’s jackknife with 20 subsamples,
whereas the delete-1 jackknifes used as many subsamples as there were groups. There-
fore, similar standard errors and thus similar performances could have been expected in
conditions with 20 groups but not necessarily in conditions with more groups.

It is interesting to note that Zitzmann’s jackknife was much faster than the delete-1
jackknifes because, except in conditions with 20 groups, the delete-1 jackknifes required
that many more subsamples be generated and analyzed. For example, in conditions with
100 groups, 100 subsamples had to be analyzed. In this case, Zitzmann’s jackknife reduced
the computing time by a factor of about five! That is, Zitzmann’s jackknife was about
five times faster than the delete-1 jackknifes, which shows that Zitzmann’s jackknife is
computationally more efficient (while performing similarly). Such an efficient resampling
technique is particularly beneficial in situations in which a complicated model is fit to a
large dataset, as is the case in international large-scale assessment studies ([34], but see [35]
for one promising approach for reducing the run-time of multilevel models).

In the simulation study and the real data example, Zitzmann’s jackknife was used
with only 20 subsamples. Therefore, it might be speculated that the scatter of the standard
error estimate would generally be larger for Zitzmann’s jackknife compared to the delete-1
jackknifes, as the number of subsamples involved in this jackknife is smaller. However, this
did not show up in the simulation, where Zitzmann’s jackknife tended to scatter even less
than the delete-1 jackknifes (see Table A1 in Appendix A).

Although it has repeatedly been found in relatively simple multilevel models and
consequently argued that Zitzmann’s jackknife can yield correct standard errors with
20 subsamples [20,22], a larger number might nevertheless be required in more advanced
multilevel models. It would be interesting to investigate the number of subsamples that is
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required in models involving multiple indicators, e.g., [36–38], or (latent) moderation and
nonlinear effects, e.g., [39].

Often, samples are not proportional to the population (i.e., sampling weights are
available). Future research could extend Zitzmann’s jackknife in such a way that the
technique can also be applied to this type of sample.

To sum up, we showed that Zitzmann’s jackknife can be an attractive choice when
homoscedasticity is violated, especially when other methods are computationally not very
efficient or not readily available in standard software.
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authors have read and agreed to the published version of the manuscript.
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Appendix A. Further Results

The following table shows an overview of the mean and the range of the values
obtained by each standard error method.
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Table A1. Additional simulation study results: mean and range (in brackets) of standard errors.

Commonly
Used Robust Modified

Level of Zitzmann’s Delete-1 Standard Delete-1
No. of Groups Group Size Heteroscedasticity Jackknife Jackknife Error Jackknife

20 Small Moderate 7.94 [0.24, 25.04] 8.20 [0.24, 27.00] 43.60 [0.11, 5483.15] 7.94 [0.24, 25.04]
High 8.95 [0.38, 34.49] 9.29 [0.39, 38.24] 80.27 [0.54, 13,619.31] 8.95 [0.38, 34.49]
Very High 10.64 [0.44, 43.39] 10.94 [0.45, 43.49] 97.68 [0.02, 11,262.94] 10.64 [0.44, 43.39]

Medium Moderate 6.26 [0.32, 23.06] 6.52 [0.36, 23.21] 31.14 [0.39, 2914.86] 6.26 [0.32, 23.06]
High 6.99 [0.26, 26.09] 7.25 [0.33, 26.22] 80.67 [0.99, 32,518.31] 6.99 [0.26, 26.09]
Very High 7.97 [0.30, 27.06] 8.24 [0.35, 27.35] 55.10 [1.05, 9190.37] 7.97 [0.30, 27.06]

Large Moderate 5.39 [0.15, 16.42] 5.54 [0.19, 16.47] 20.29 [0.28, 1989.66] 5.39 [0.15, 16.42]
High 6.07 [0.21, 21.12] 6.22 [0.26, 21.13] 30.06 [0.13, 3480.56] 6.07 [0.21, 21.12]
Very High 6.78 [0.26, 24.38] 6.95 [0.32, 26.08] 41.92 [2.67, 5184.94] 6.78 [0.26, 24.38]

40 Small Moderate 7.09 [0.44, 19.82] 8.17 [0.42, 31.19] 25.39 [3.22, 856.23] 7.61 [0.39, 24.63]
High 8.21 [0.55, 28.54] 9.38 [0.49, 52.29] 31.41 [1.05, 1220.91] 8.77 [0.46, 29.82]
Very High 9.73 [0.36, 33.66] 10.99 [0.42, 43.88] 39.13 [4.00, 1769.04] 10.39 [0.37, 32.50]

Medium Moderate 5.55 [0.22, 16.65] 6.01 [0.25, 26.70] 15.13 [3.17, 291.09] 5.77 [0.22, 16.14]
High 6.70 [0.36, 23.57] 7.66 [0.26, 31.28] 20.36 [4.95, 456.23] 7.20 [0.23, 20.99]
Very High 7.20 [0.25, 22.30] 8.25 [0.25, 36.89] 31.87 [2.41, 1724.39] 7.67 [0.24, 23.67]

Large Moderate 4.82 [0.25, 12.11] 5.28 [0.24, 17.44] 10.33 [3.50, 307.89] 5.05 [0.23, 12.53]
High 5.53 [0.24, 18.03] 6.03 [0.27, 21.95] 13.05 [3.88, 125.25] 5.79 [0.24, 18.38]
Very High 6.24 [0.21, 18.01] 6.89 [0.21, 30.22] 20.27 [4.37, 3016.62] 6.58 [0.19, 18.45]

100 Small Moderate 6.11 [0.58, 18.35] 7.69 [0.52, 60.41] 12.02 [4.14, 98.06] 7.25 [0.52, 36.06]
High 7.50 [0.54, 21.06] 9.53 [0.68, 49.02] 16.50 [4.87, 201.95] 8.97 [0.67, 38.04]
Very High 8.52 [0.48, 22.50] 10.69 [0.34, 75.00] 22.12 [5.82, 667.85] 10.17 [0.33, 46.24]

Medium Moderate 4.84 [0.46, 12.21] 5.81 [0.48, 36.44] 8.12 [3.14, 101.48] 5.52 [0.48, 24.94]
High 6.12 [0.23, 14.36] 7.78 [0.33, 41.88] 10.96 [3.87, 153.51] 7.30 [0.31, 31.02]
Very High 6.88 [0.31, 20.27] 9.05 [0.35, 45.07] 13.70 [4.52, 175.57] 8.43 [0.34, 32.05]

Large Moderate 4.02 [0.29, 9.69] 4.70 [0.28, 25.80] 5.28 [2.49, 53.66] 4.51 [0.28, 20.42]
High 4.93 [0.38, 11.91] 6.33 [0.40, 38.68] 7.43 [3.01, 306.17] 5.90 [0.40, 24.25]
Very High 5.54 [0.30, 13.83] 6.76 [0.26, 34.78] 9.58 [3.50, 78.43] 6.43 [0.26, 25.71]

400 Small Moderate 5.18 [0.43, 12.16] 7.31 [0.54, 110.38] 6.65 [2.82, 106.79] 6.90 [0.53, 67.71]
High 6.71 [0.40, 13.97] 9.70 [0.49, 118.64] 10.03 [3.52, 186.19] 9.27 [0.49, 77.28]
Very High 7.75 [0.70, 17.71] 11.70 [0.74, 105.57] 14.22 [4.13, 1380.48] 11.04 [0.74, 79.20]

Medium Moderate 3.53 [0.84, 9.12] 4.27 [0.92, 59.38] 3.88 [2.06, 94.53] 4.12 [0.92, 42.63]
High 4.92 [0.52, 9.88] 6.81 [0.57, 77.77] 5.59 [1.67, 181.11] 6.48 [0.56, 53.01]
Very High 5.88 [0.48, 12.41] 8.57 [0.59, 73.78] 7.47 [2.81, 162.03] 8.10 [0.58, 59.99]

Large Moderate 2.52 [1.02, 6.16] 3.09 [1.05, 19.42] 2.28 [1.54, 11.35] 2.93 [1.04, 18.23]
High 3.65 [0.59, 7.87] 6.07 [0.88, 40.46] 3.25 [1.80, 36.95] 5.43 [0.88, 33.39]
Very High 4.32 [0.64, 8.77] 6.46 [0.68, 57.02] 4.44 [2.22, 62.80] 5.98 [0.68, 44.91]
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