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Abstract: This paper demonstrates the process of invariance testing in diagnostic classification models
in the presence of attribute hierarchies via an extension of the log-linear cognitive diagnosis model
(LCDM). This extension allows researchers to test for measurement (item) invariance as well as
attribute (structural) invariance simultaneously in a single analysis. The structural model of the
LCDM was parameterized as a Bayesian network, which allows attribute hierarchies to be modeled
and tested for attribute invariance via a series of latent regression models. We illustrate the steps
for carrying out the invariance analyses through an in-depth case study with an empirical dataset
and provide JAGS code for carrying out the analysis within the Bayesian framework. The analysis
revealed that a subset of the items exhibit partial invariance, and evidence of full invariance was
found at the structural level.
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1. Introduction

The process of classifying individuals based on responses obtained from a diagnostic
assessment is an invaluable aspect of research in the social, behavioral, and educational
sciences. Information obtained from diagnostic assessments can be used to make a variety
of inferences; in psychological settings, for instance, diagnostic assessments can aid in the
measurement and identification of psychological disorders (e.g., [1–3]). In educational con-
texts, diagnostic assessments are routinely used to provide teachers with a detailed account
of their students’ overall performance along with a comprehensive profile that outlines the
student’s strengths and weaknesses, as well as recommendations for improvement in areas
of deficiency [4,5].

An implicit assumption underlying the use of diagnostic assessments with different
populations or groups is that the assessment is invariant, or unaffected by, factors unrelated
to the constructs being measured. When a qualitative difference between groups exists (e.g.,
native language), it is imperative to take measures that ensure that the assessment does not
systematically (dis)advantage any one group, so long as the characteristic in question is
not relevant to the construct of interest [6]. This is especially important in psychological
and educational assessment contexts, as invariance can be framed as a validity, equity, and
fairness issue (e.g., [7]). For instance, a student’s socioeconomic status (SES) should not
play a role in the students performance on a diagnostic assessment, provided that the SES
is not meaningfully related to the construct being measured [8].

The American Educational Research Association (AERA), American Psychological
Association (APA), and National Council on Measurement in Education (NCME) have
jointly highlighted the importance of invariance, fairness, and equity in the most recent
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edition of the Standards for Educational and Psychological Testing [9]. In particular, Standard
3.2 of the Standards states that:

Test developers are responsible for developing tests that measure the intended construct
and for minimizing the potential for tests being affected by construct-irrelevant char-
acteristics, such as linguistic, communicative, cognitive, cultural, physical, or other
characteristics. (p. 64)

This particular standard is directly related to invariance as it emphasizes the need for
assessments to (1) not measure anything other than the construct of interest, (2) be free
from biases that may systematically advantage or disadvantage certain populations, and
(3) limit the barriers that could hinder a subject’s performance (e.g., providing appropriate
accommodations).

The notion of invariance has a rich statistical literature, particularly under the factor
analytic (FA) and item response theory (IRT) frameworks (e.g., [10–14]). A taxonomy of
invariance procedures has been proposed for these frameworks and many robust methods
for empirically testing for invariance are available (e.g., [6]). Despite the extensive invari-
ance literature in these areas, measurement invariance methods for diagnostic classification
models is a relatively new area of research.

Diagnostic classification models (DCMs; [15]) are latent variable models that classify
respondents into latent classes or categories by specifying a functional relationship between
a set of observed manifest variables to a (smaller) set of latent binary variables, called
attributes, that are hypothesized to underlie the manifest variables [16]. Unlike alternative
psychometric frameworks (e.g., IRT), which generally require post hoc analyses for classifi-
cation, DCMs perform classification directly as part of the model estimation process. DCMs
are also highly flexible in that the attributes are allowed to form complex and intricate
structures—called attribute hierarchies—that capture a researcher’s conceptualization of
how the attributes influence and interact with each other. Conceptually, attribute hierar-
chies are akin to a structural equation model that consists exclusively of categorical latent
variables that influence other latent (and manifest) variables via direct, indirect, and mod-
erating effects. As we later show, attribute hierarchies can be parameterized as Bayesian
networks, a powerful technique for decomposing complex dependency structures into a
series of tractable marginal and conditional probability distributions [17]. In particular, the
Bayesian network parameterization makes it possible to conduct invariance testing at the
attribute level in a straightforward manner.

The purpose of this paper is to demonstrate how to conduct multiple-group invariance
testing for DCMs with attribute hierarchies within the Bayesian framework. We show how
to conduct the invariance analysis within the popular Bayesian inference program JAGS [18]
as implemented in R [19]. JAGS is highly flexible in that it allows user to specify models via
a syntax-based language; this feature makes it easy to specify the DCM measurement model
(which links the attributes to the observed indicators) as well as the Bayesian network
parameterization of the DCM structural model (which links the attributes to each other).

The remainder of the paper is structured as follows. The next section introduces
the log-linear cognitive diagnosis model (LCDM), a highly flexible DCM that subsumes
many reduced DCMs as special cases. We then show how the set of attributes can be
conceptualized, parameterized, and modeled as a Bayesian network. Following this, we
extend the LCDM and Bayesian network structural model for invariance testing at the
item and attribute levels, respectively. We provide a high-level treatment of these topics
and provide a practical implementation of these ideas in JAGS by means of an empirical
example with the Diagnosing Teacher’s Multiplicative Reasoning dataset (DTMR; [20]).
Throughout the paper, we also provide and describe the JAGS syntax used to estimate the
models to facilitate their use in other applied settings.
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2. Diagnostic Classification Models
2.1. Q-Matrix and Attribute Profiles

Two key features that characterize DCMs include the Q-matrix and the attribute
profile. The Q-matrix is a loading structure that links the latent attributes to the manifest
variables [21]. Suppose that there are I manifest variables (i.e., items) and A latent variables
(with I > A). The Q-matrix is an I × A indicator matrix where entry qia = 1 if item i is
hypothesized to measure (or provides information about) attribute a and qia = 0 otherwise.
Each row of the Q-matrix describes the set of attributes that load onto item i. Construction
of the Q-matrix is generally informed by theory or by domain experts (e.g., [22]). In this
paper, we assumed that the entries in the Q-matrix are known; however, see, for instance,
Refs. [23–26] for data-driven approaches for learning the structure of the Q-matrix.

The second key feature of DCMs is the attribute profile, the set of categorical latent
variables denoted by α = (α1, . . . , αa, . . . , αA), where αa = 1 if an individual possesses the
ath attribute and αa = 0 otherwise. In general, it is possible for an attribute to take on
more than two states; however in this paper we restrict our discussion to binary attributes.
Terms such as mastery or non-mastery or possesses attribute/does not possess attribute
are common for describing the states of αa and the usage of a particular term will generally
depend on the context of the analysis. For A dichotomous attributes, the collection of
all possible states of α results in 2A attribute profiles. An equivalent perspective is to
conceptualize each attribute profile as a latent class in which each individual is a member
of exactly one latent class.

2.2. The Log-linear Cognitive Diagnosis Model

A variety of DCMs have been proposed in the literature, each with particular char-
acteristics such as model specification, parameterization, and estimation procedures [15].
Popular DCMs include the deterministic input noisy or gate model (DINO; [1]), deter-
ministic input noisy and gate model (DINA; [27]), noisy inputs deterministic and gate
model (NIDA; [27]), and the compensatory-reparameterized unified model ([28] C-RUM;).
Ref. [29] unified these models under a single framework and showed that they are special
cases of a general DCM, called the log-linear diagnostic classification model (LCDM).

2.2.1. LCDM Measurement Model

Let Xri denote a random variable representing the observed response given by indi-
vidual r (r = 1, . . . , R) to item i (i = 1, . . . , I), with Xri = 1 indicating item endorsement
(e.g., correct, agree) and Xri = 0 otherwise (e.g., incorrect, disagree). The measurement
model links the individual’s observed responses to their latent attribute profile α via a
response function that describes the probability of item endorsement. To illustrate with
a concrete example, consider an item i that loads onto two attributes a and b. The LCDM
measurement model for this item is given by

P(Xri = 1 | αra, αrb) =
exp{λi,0 + λi,1,(a)αra + λi,1,(b)αrb + λi,2,(a,b)αraαrb}

1 + exp{λi,0 + λi,1,(a)αra + λi,1,(b)αrb + λi,2,(a,b)αraαrb}
. (1)

Features of the LCDM for this item are more easily seen if we algebraically rearrange
and express Equation (1) as

log
(

P(Xri = 1 | αra, αrb)

1− P(Xri = 1 | αra, αrb)

)
= λi,0 + λi,1,(a)αra + λi,1,(b)αrb + λi,2,(a,b)αraαrb. (2)

From Equation (2), the parameters of the model can be interpreted as follows. First,
λi,0 is the intercept, representing the baseline log-odds of endorsing item i for an individual
who does not possess attribute αa nor attribute αb, i.e., αa = αb = 0. The conditional main
effect parameter λi,1,(?) represents the change in the log-odds of item endorsement for
a individual who possesses attribute ? (substitute for a or b) but not the other attribute.
Parameter λi,2,(a,b) is a latent interaction effect that represents the additional change in log-
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odds for individuals who possess both attributes above and beyond that of the conditional
main effects. Once values for the λ terms are obtained (i.e., estimated), Equation (2) can be
transformed back to (1) to express the probability of item endorsement. The LCDM param-
eters are estimated under a set of monotonicity constraints that note that the probability of
endorsing an indicator increases monotonically with the number of attributes possessed.

Equation (2) highlights the following characteristics associated with the LCDM. First,
the LCDM is linear in the logit and can be viewed as a multi-way generalized analysis of
variance (ANOVA) model where attributes αa and αb are treated as reference-coded factors,
with the caveat being that these factors are latent [22]. Furthermore, the states of each
attribute are analogous to the levels of those factors [15].

The connection between the LCDM and ANOVA frameworks provides a basis for
testing specific effects to evaluate if their inclusion in the model is necessary (e.g., Wald
tests within a frequentist framework; see [22]). Moreover, the general form of the LCDM
makes it possible to derive reduced DCMs by modifying the response function through
constraints on the factor loadings. For instance, the DINA model is a highly restricted
version of the LCDM that assumes that all effects but the highest interaction are zero [30].
In its most general form, the LCDM allows items to have their own unique measurement
structure (e.g., item i might load onto a single attribute while item i′ may load onto two
attributes with a possible interaction between the two). The general form of the LCDM
model, expressed in the logit form, is given by

log
(

P(Xri = 1 | αr)

1− P(Xri = 1 | αr)

)
= λi,0 +

A

∑
a=1

λi,1,(a)αraqia +
A−1

∑
a=1

A

∑
a′=a+1

λi,2,(a,a′)αraαra′qiaqia′ + · · · , (3)

where the ellipses indicate that the sum continues over all higher order interactions. Hence,
in general, all A attributes can be modeled simultaneously; however, the structure of the Q-
matrix, computational resources, model identification issues, and theoretical considerations
typically limit the number of attributes that are actually modeled for a given item. In
practice, LCDMs have enjoyed success modeling assessments with 3 to 20 attributes [31].

2.2.2. LCDM Structural Model and Attribute Hierarchies

Whereas the LCDM measurement model links the attributes to the manifest variables,
the LCDM structural model describes how the attributes relate to each other. Within the
traditional LCDM framework, attributes are assumed to be unstructured in the sense that
directional or hierarchical relationships among attributes are not assumed nor specified [16].
However, as [15] notes, hierarchical structures naturally arise in psychological and educa-
tional contexts (e.g., [32–34]).

In general, directional arrangements among attributes imply that certain attribute
profiles are unlikely to exist in the population. For instance, in an analysis of a three-
attribute English proficiency assessment, [16] found evidence that the attributes formed an
attribute hierarchy such that an individual needed to posses attribute αa (i.e., lexical rules)
before possibly possessing attribute αb (i.e., cohesive rules), which, in turn, needed to be
possessed before possibly possessing attribute αc (i.e., morphosyntatic rules). The existence
of a hierarchy was supported as over 95% of individuals were classified into one of four
profiles associated with a hierarchy even though there were eight possible classes. To be
precise, the authors found evidence of a linear hierarchy (see Figure 1).

αa αb αc

Figure 1. Example of a linear attribute hierarchy.

From a statistical perspective, an attribute hierarchy implies the non-existence of
certain attribute profiles (or latent classes). If an attribute hierarchy truly exists in the
population, DCMs that do not account for the hierarchy are likely to misfit the data. If
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the number of attributes is large, the LCDM will attempt to estimate 2A attribute profiles,
including those that do not exist. This will likely result in incorrect or unstable parameter
estimates and attribute profile misclassifications (e.g., [16,35–37]). Ref. [16] addressed
this concern by modifying the LCDM to statistically model and test hypotheses about
the existence of attribute hierarchies. Their model, called the hierarchical diagnostic
classification model (HDCM), was obtained by placing constraints on the structural (and
measurement) model to reflect the hypothesis that certain attribute profiles are implausible.
Thus, the HDCM models a subset of attribute profiles instead of all possible profiles. Under
the linear hierarchy depicted in Figure 1, for instance, the HDCM models A+ 1 = 3+ 1 = 4
attribute profiles instead of 2A = 23 = 8 profiles.

The HDCM has been found to be a suitable alternative for modeling DCMs when an
attribute hierarchy exists; however, a limitation of this model is that attribute profiles that
do not follow the structure of the attribute hierarchy are assumed to have zero probability
of existing in the population, inducing what we call a strict hierarchy. Recent research
by [35,37], among others, has explored alternative methods for modeling attribute struc-
tures; however, their methods also impose the requirement of a strict hierarchical structure.
The approach presented in this paper differs from these works as we relaxed the assump-
tion of a strict attribute hierarchy by allowing unlikely attribute profiles to have a non-zero
probability of existing in the population (i.e., a “malleable” hierarchy) by parameterizing
the structural model as a Bayesian network.

3. Parameterization of the LCDM Structural Model as a Bayesian Network

Ref. [36] showed that the unstructured DCM structural model can be parameterized as
a Bayesian network (BN), which they called the saturated BN, and that attribute hierarchies
can be derived from and are nested within the saturated BN via a factorization of the joint
distribution of the attributes P(α). A major advantage of the BN approach is that it relaxes
the overly strict assumption that certain attribute profiles are impossible by permitting
unlikely attribute profiles to have a non-zero probability in the population. Relaxing the
assumption of a strict attribute hierarchy more closely aligns with empirical findings that it
is possible for individuals to possess an attribute that is higher in the hierarchy without
first possessing an attribute that is lower in the hierarchy (e.g., an individual possessing
attribute αb and αc without necessarily possessing attribute αa in the example of the linear
hierarchy in Figure 1).

Several excellent in-depth treatments of BNs can be found in [38–40], among oth-
ers. For our purposes, it suffices to know that a BN consists of two components: (1) a
graph—specifically a directed acyclic graph (DAG)—where the elements of the graph con-
sist of nodes (representing random variables) and directed edges (arrows) connecting the
nodes and (2) the specification of a joint probability distribution over the DAG. The power
of the BN lies in its ability to decompose the joint distribution of the random variables in
the DAG as a product of conditional and marginal distributions according to the structure
imposed by the directed edges. Importantly, the resulting distributions will have tractable
forms that make them easier to work with.

Illustrative Example with a Diamond Attribute Hierarchy

To illustrate, consider the DAG depicted in Figure 2, which represents a diamond
attribute hierarchy. This is the attribute structure that we investigated in the case study
described later in this paper. Because we have assumed that α is a latent variable, it will
possess a distribution, namely the joint distribution P(α) = P(αa, αb, αc, αd). We can recover
the diamond attribute structure via the following product factorization:

P(α) = P(αa, αb, αc, αd) = P(αa)P(αb | αa)P(αc | αa)P(αd | αb, αc). (4)

This decomposition follows directly from the product rule of probability [41]. Mathe-
matically, any product decomposition of P(αa, αb, αc, αd) is valid; hence, for instance, the
product P(αb)P(αa | αb)P(αc | αb)P(αd | αa, αc) could have been used instead of the de-
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composition in Equation (4). However, the former is a more useful representation as it
matches the diamond structure in Figure 1 whereas the latter implies a slightly different
diamond structure. Using terminology from the BN literature, αa is called a parent of αb
and αc (alternatively, the latter are also called children of αa), αb and αc are parents of αd,
and αa is an ancestor of αd (alternatively, αd is a descendant of αa).

αb

αa αd

αc

Figure 2. Example of a diamond attribute hierarchy.

The factorization above shows that the joint distribution P(α) is the product of the
marginal distribution of αa, the conditional distribution of αb given αa, the conditional
distribution of αc given αa, and the conditional distribution of αd given (αb, αc). Because
each attribute is assumed to be binary, it follows that

αa ∼ Bernoulli(ρa),

αb | αa ∼ Bernoulli(ρb),

αc | αa ∼ Bernoulli(ρc),

αd | αb, αc ∼ Bernoulli(ρd),

(5)

where ρz = P(αz = 1 | P(αz)) is the probability that attribute z is a possessed conditional
on P(αz). The term P(αz) is called the parent set of αz and, conceptually, it represents all
the variables in the DAG that have an arrow pointing to αz. For the diamond hierarchy, we
see that P(αa) is empty since there are no nodes (variables) in the DAG that point to αa,
P(αb) = {αa}, P(αc) = {αa}, and P(αd) = {αb, αc}.

We can model the joint distribution P(α) via the probabilities ρa, ρb, ρc, and ρd, which
can be accomplished through the latent regression models:

ρa =
exp(β0)

1 + exp(β0)
, ρb =

exp(γ0 + γ1αa)

1 + exp(γ0 + γ1αa)
,

ρc =
exp(δ0 + δ1αa)

1 + exp(δ0 + δ1αa)
, ρd =

exp(κ0 + κ1αb + κ2αc + κ12αbαc)

1 + exp(κ0 + κ1αb + κ2αc + κ12αbαc)
,

(6)

where (β0, γ0, δ0, κ0) are intercept parameters, (γ1, δ1, κ1, κ2) are main effect (slope) param-
eters, and κ12 is a latent interaction effect.

An examination of Equation (6) provides insights into the structure of the attribute
hierarchy. First, note that any probability of interest with respect to P(α) can be computed
directly from the four probabilities in (6). For instance, consider the probability that an
individual in the population has attribute profile α? = (0, 0, 0, 1), which corresponds to
possessing attribute αd but not αa, αb, nor αc. Under the BN, this probability is computed as
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P(α?) = P(αa = 0, αb = 0, αc = 0, αd = 1)

= P(αa = 0)P(αb = 0 | αa = 0)P(αc = 0 | αa = 0)P(αd = 1 | αb = 0, αc = 0)

= (1− ρa)(1− ρb)(1− ρc)ρd

=

(
1

1 + exp(β0)

)(
1

1 + exp(γ0)

)(
1

1 + exp(δ0)

)(
exp(κ0)

1 + exp(κ0)

)
.

(7)

In general, this quantity will be non-zero, which allows for the possibility an indi-
vidual with attribute profile α? to exist in the population even if the diamond hierarchy
is correct. By contrast, methods that assume a strict hierarchy will assume that such an
individual cannot exist and will therefore fail to accurately identify that individual’s true
attribute profile.

A second observation from (6) is that αa directly influences αb and αc through the
probabilities ρb and ρc, respectively. Hence, αa can be thought of as a direct effect to both
αb and αc. Similarly, αb and αc can be thought of as direct effects to αd. Lastly, note that αa
affects αd indirectly through the mediating probabilities ρb and ρc, showing that the effect
of αa on αd is mediated by αb and αc, respectively.

Although the example above corresponds specifically to the diamond attribute hier-
archy, the BN approach is general and can be extended to include many more attributes
and can also accommodate different types of variables, both observed or latent. This
extension is the basis for extending the LCDM structural model for invariance testing in
subsequent sections.

4. Measurement Invariance in DCMs

As mentioned in the introduction, measurement invariance (MI) refers to the idea that
an assessment should retain all desirable psychometric characteristics when administered
across different populations. Within the DCM framework, invariance analyses seek to
determine the extent to which the probability of item endorsement for individuals with a given
attribute profile α, but whom belong to qualitatively different groups, remains the same.
The condition of invariance is said to be satisfied if, conditional on attribute profile α and
group membership, the probability of a item endorsement is the same irrespective of group
membership [6,42].

Measurement invariance in the context of DCMs is a relatively new area of study;
however, several methodological advances have been made in recent years. One line
of DCM invariance research investigates invariance with special cases of general DCMs.
The majority of research in this area has focused on measurement invariance with the
highly restricted DINA model [42–50] and many of the listed references have focused on
adapting IRT-based measurement invariance (called differential item functioning in the
IRT literature) techniques for use in DCMs. The second line of invariance research has
examined measurement invariance with general DCMs (e.g., [51–54]); however, this area
appears to be much less studied than the former. Moreover, to the best of our knowledge,
with the exception of [50], none of the existing DCM invariance literature has considered
attribute-level invariance testing and none has considered invariance testing in the presence
of attribute hierarchies.

5. Modifying the LCDM for Invariance Testing

In this section, we modify the LCDM measurement model and BN structural model to
allow for invariance testing in the presence of attribute hierarchies. We start by extending
the LCDM measurement model, followed by the BN structural model.

5.1. Specification of the MI-LCDM Measurement Model

The LCDM can be modified to allow for invariance testing in a straightforward way.
For convenience, we call the modified LCDM the MI-LCDM. Throughout the remainder
of this paper, we consider the case in which there are two groups under investigation;
however, we note that the model can be extended to allow for more groups. To start, we
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introduce the indicator variable G, which takes on a value of 1 if an individual is a member
of the focal group and 0 otherwise (i.e., reference group). For concreteness, consider the
LCDM for item i as given earlier in (1). In the logit representation, the MI-LCDM for this
item is of the form

log
(

P(Xri = 1 | αr, Gr)

1− P(Xri = 1 | αr, Gr)

)
= λi,0 + λi,1,(a)αra + λi,1,(b)αrb + λi,2,(a,b)αraαrb

+ Gr

(
λ?

i,0 + λ?
i,1,(a)αra + λ?

i,1,(b)αrb + λ?
i,2,(a,b)αraαrb

)
,

(8)

where parameters with the ? superscript are called item invariance parameters and repre-
sent modifications to their respective counterparts that apply specifically to individuals
who are members of the focal group. To illustrate, the parameter λi,0 now represents the
expected log-odds of item endorsement for members of the reference group who do not possess
αa nor αb. The invariance parameter λ?

i,0 represents an adjustment to λi,0 that applies specif-
ically to members of the focal group who also do not possess αa nor αb. In other words, the
intercept for the reference group is λi,0 while the intercept for the focal group is λi,0 + λ?

i,0.
Similarly, λi,0 + λi,1,(a) represents the expected log-odds of item endorsement for mem-

bers of the reference group who possess αa but not αb, and (λi,0 + λ?
i,0) + (λi,1,(a) + λ?

i,1,(a))

represents the expected log-odds of item endorsement for members of the focal group who
possess αa but not αb. The interpretation of the remaining parameters follows a similar logic.
In general, the focal group is favored over the reference group (i.e., a higher probability
of item endorsement) when the invariance parameter λ

(g)
i,• > 0 and the reference group is

favored when λ
(g)
i,• < 0, keeping all other parameters constant, where • represents the effect

under consideration and (g) denotes the focal group index (here, (g) = ? since we only
consider two groups). The goal of invariance analyses in this context is to investigate the
extent to which λ

(g)
i,• results in a meaningful departure from λi,•.

Note that, because attributes are assumed to take on a finite number of states (in our
case, two), the scale of the latent attributes is fixed. Importantly, this means that there is no
need to identify an anchor item since the scale of the latent variables is completely deter-
mined, i.e., a respondent either does/does not possess the attribute under investigation;
see [55]. This is in contrast to measurement invariance approaches for factor analysis and
item response theory, which require that the latent variables be placed on the same scale
for invariance analyses and group comparisons to be meaningful (see [56] for an in-depth
discussion of this issue).

With the specification of the MI-LCDM measurement model complete, we now turn
our attention to the specification of the modified BN structural model. As previously
described, the role of the structural model is to capture and describe the relationships
among the attributes. The BN parameterization of the structural model introduced earlier
allows for saturated and hierarchical attribute structures to be specified as a series of latent
regression models. We now extend these models to allow for invariance testing at the
attribute level.

5.2. Specification of the MI-BN Structural Model

For invariance testing at the structural level, the group membership indicator variable
G is appended to the structural model as an observed parent node to all attributes, which
yields a modified joint distribution. For A attributes, the joint distribution factorizes as

P(α, G) = P(G)
A

∏
a=1

P(αa | P(αa), G), (9)

where P(G) is the proportion of respondents in the focal group and the product reflects the
hierarchical attribute structure of interest.
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Returning to the diamond attribute hierarchy example, the factorized joint distribution
for the modified hierarchy is

P(α, G) = P(αa, αb, αc, αd, G)

= P(G)P(αa | G)P(αb | αa, G)P(αc | αa, G)P(αd | αb, αc, G).
(10)

Hence, the conditional distributions for the attributes are

αa | G ∼ Bernoulli(ρ̃a), αb | αa, G ∼ Bernoulli(ρ̃b),

αc | αa, G ∼ Bernoulli(ρ̃c), αd | αb, αc, G ∼ Bernoulli(ρ̃d),
(11)

where ρ̃z is the modified probability that attribute z is possessed and is conditional on
both P(αz) and G. For this example, the parent sets are P(αa) = {G}, P(αb) = {αa, G},
P(αc) = {αa, G}, and P(αd) = {αb, αc, G}. Figure 3 displays the DAG associated with the
modified diamond attribute hierarchy. Note that, because G is an observed variable, it is
represented in the DAG as a rectangle instead of a circle.

The latent regression models associated with each ρ̃z are given by

ρ̃a =
exp(β0 + Gβ?

0)

1 + exp(β0 + Gβ?
0)

,

ρ̃b =
exp(γ0 + γ1αa + G(γ?

0 + γ?
1 αa))

1 + exp(γ0 + γ1αa + G(γ?
0 + γ?

1 αa))
,

ρ̃c =
exp(δ0 + δ1αa + G(δ?0 + δ?1 αa))

1 + exp(δ0 + δ1αa + G(δ?0 + δ?1 αa))
,

ρ̃d =
exp(κ0 + κ1αb + κ2αc + κ12αbαc + G(κ?0 + κ?1 αb + κ?2 αc + κ?12αbαc))

1 + exp(κ0 + κ1αb + κ2αc + κ12αbαc + G(κ?0 + κ?1 αb + κ?2 αc + κ?12αbαc))
.

(12)

Similar to the MI-LCDM measurement model, parameters in the MI-BN model with a ?
superscript represent attribute invariance parameters. In this formulation, (β0, γ0, δ0, κ0) are
the intercept parameters for each respective αz-submodel. These parameters are interpreted
as the log-odds of possessing attribute αz conditional on membership in the reference group
and when all other elements in P(αz) are zero. Hence, for instance, in the αb-submodel,
γ0 is the log-odds of possessing attribute αb for members of the reference group who do
not posses the prerequisite attribute αa. The parameters (β?

0, γ?
0 , δ?0 , κ?0) are adjustments

made to the respective counterparts for respondents in the focal group. Thus, for the
αb-submodel, γ?

0 is the expected change to the log-odds of possessing αb for respondents in
the focal group who do not posses αa. The other parameters are interpreted accordingly.
Similar to invariance testing at the measurement level, the goal of invariance analyses at
the structural level is to evaluate the extent to which the attribute invariance parameters
result in a meaningful departure from their respective counterparts.
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Figure 3. Modified linear attribute hierarchy with indicator variable G.

6. Case Study: Diagnosing Teachers’ Multiplicative Reasoning Skills

The diagnosing teachers’ multiplicative reasoning (DTMR) assessment is a diagnostic
assessment developed by [20] to assess teachers’ understanding of the components needed
to reason about fraction arithmetic. The assessment was primarily designed for teachers
who teach grades 5–7, as these grades are formative for teaching students the fundamentals
of arithmetic. The goal of the DTMR is to provide teachers with diagnostic feedback with
respect to the attributes measured by the assessment, with the hope that the feedback will
help teachers to identify components of reasoning about fraction arithmetic that they have
or have not fully mastered.

The assessment consists of 27 dichotomously scored items and measures four attributes
that emphasize the components needed for making sense of fraction arithmetic. The first
attribute, referent units (RUs), measures the ability to identify the whole to which fractions
refer. The second attribute, partitioning and iterating (PI), measures the ability to partition
a quantity into equal components and create larger fractions by combining unit fractions.
The third attribute, appropriateness (AP), measures the ability to identify an appropriate
operation or mathematical expression for a given problem situation based on the text of
the problem. The fourth attribute, multiplicative comparison (MC), measures the ability
to make comparisons with respect to two quantities and identify the relative proportions
between the two. Nineteen items measure a single attribute and eight items measure two
attributes. The attributes RU, PI, AP, and MC were each measured by 15, 10, 5, and 5 items,
respectively. The Q-matrix for this assessment is given in Table 1.

Table 1. DTMR Q-matrix.

Item Referent Units, αRU Partitioning and Iterating, αPI Appropriateness, αAP Multiplicative Comparisons, αMC

1 1 0 0 0
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0
5 1 0 0 0
6 0 1 0 0
7 1 0 0 0
8 0 0 1 0
9 0 0 1 0
10 0 0 1 0
11 0 0 1 0
12 1 0 0 0
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Table 1. Cont.
Item Referent Units, αRU Partitioning and Iterating, αPI Appropriateness, αAP Multiplicative Comparisons, αMC

13 0 0 0 1
14 1 0 0 1
15 1 0 0 1
16 1 0 0 0
17 1 0 0 0
18 0 1 0 1
19 1 1 0 0
20 0 1 0 1
21 0 1 0 0
22 0 1 0 0
23 1 0 0 0
24 1 1 0 0
25 1 1 0 0
26 1 0 0 0
27 1 1 0 0

The dataset analyzed here was collected from a representative sample of 990 in-service
middle school mathematics teachers. In the original analysis by [20], the response data were
fit with the LCDM with an unstructured attribute pattern; however, [36] found that the
patterns of the attribute structure were consistent with that of a diamond attribute hierarchy
in which AP (αa) is a prerequisite of MC (αb) and PI (αc), both of which are prerequisites of
RU (αd). Figure 4 shows the complete path diagram of the hypothesized DTMR model.

αAP

αMC

αPI

αRU
Cred

Status
Cred

Status
Cred

Status

Cred
Status

Cred
Status

X18 X20 X13 X14 X15

X1

X4

X5

X7

X12

X16

X17

X23

X26

X19

X24

X25

X27

X2

X8

X9

X10

X11

X3 X6 X21 X22

X1

X4

X5

X7

X12

X16

X17

X23

X26

X19

X24

X25

X27

Figure 4. DTMR path diagram. Note: The dashed lines represent the structural model
and the solid lines represent the measurement model. The solid circles indicate a complex
loading structure among the attributes that point to them. For instance, the measurement
model for variable X18 includes the main effects of αMC and αPI, as well as their latent
interaction.



Psych 2023, 5 699

In addition to the response data obtained from the assessment, additional teacher
information was collected. Of interest to this analysis is the variable MCred, an indicator
variable that described the teachers’ credential status. Credentialed teachers were full-
time instructors with several years of experience while non-credentialed teachers mainly
consisted of early childhood and education majors who were working in the school system
as part of their undergraduate training (i.e., teachers-in-training). In this analysis, teacher
credential status served as the group covariate, with Mcred = 1 for credentialed teachers
and Mcred = 0 otherwise. Approximately 67% (n = 653) of teachers were credentialed at
the time of their participation in the study.

7. Bayesian Estimation in JAGS

Given the complexity of the MI-LCDM measurement model and the MI-BN structural
model, we implemented a fully Bayesian approach to estimate the DTMR model parameters.
More specifically, a Markov Chain Monte Carlo (MCMC) algorithm employing Gibbs
sampling was used. The algorithm is implemented in the Bayesian inference software
program JAGS (version 4.3.0; [18]) via R. JAGS, which is short for Just Another Gibbs
Sampler, simulates a Markov chain for each model parameter by repeatedly sampling from
its full conditional distribution over a large number of iterations. JAGS has been widely
used for the estimation of psychometric models (e.g., [57,58]) and is known for being a
reliable tool for estimating complex models within the Bayesian framework.

In this analysis, we specified two chains, each with a warm-up phase of 5000 iterations
followed by 30,000 post warm-up iterations. To reduce the autocorrelation from sequential
samples, a thinning period of 3 was specified (e.g., every third sample was kept). Chain
convergence was assessed by inspecting the Gelman–Rubin potential scale reduction factor
(PSRF, denoted R̂) for each estimated parameter [59]. We used the criterion R̂ ≤ 1.1 as
evidence that the chains converged to the proper posterior distribution. We also visually
inspected the traceplots of the post warm-up samples for further evidence of convergence
and to assess the mixing of the chains. If the chains did not converge after the specified
number of iterations, additional samples were drawn until convergence.

7.1. Posterior Inference for Teachers with Missing Credential Status

The main objective of this analysis was to investigate the invariance parameters; how-
ever, the Bayesian framework can also be used to make inferences about other quantities
that may be of interest to researchers. With respect to the DTMR dataset, there were several
teachers for which credential status information was not available (n = 16). Rather than
removing these cases from the analysis, we treated credential status for these cases as
Bernoulli random variables. In doing so, the Gibbs sampling algorithm will construct
a credential status posterior distribution by drawing a value from its full conditional
distribution at each iteration of the Markov chain. The mean of the resulting posterior
distribution quantifies the probability that a given teacher possesses their credential given
their responses on the assessment.

7.2. Priors for the Item and Structural Model Parameters

In this analysis, we specified (relatively) non-informative priors to allow the data to
contribute the most information in describing the posterior distribution of the parameters.
The following priors were placed on the measurement model parameters of the MI-LCDM:
λi,0 ∼ N(−1.096, 0.25), λi,1,a ∼ N(0, 0.25)1(· > 0), and λi,2,(a,a′) ∼ N(0, 0.25)1(· > 0),
where N(µ, τ) is the normal distribution with mean µ and precision τ (i.e., the inverse of
the variance). The prior for the intercept is centered at -1.096 so that the corresponding
probability of item endorsement is around 0.25 when the respondent does not possess any
of the attributes measured by the item. The prior for each main effect is centered at 0 and
we imposed a constraint where the proposed sample must be greater than 0 to satisfy the
monotonicity constraints described by [29]. These constraints ensure that the probability of
item endorsement does not decrease for teachers who possess the attribute(s) measured
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by the item. The prior for the two-way interaction effect between attribute a and a′ was
also centered around 0 and non-negativity constraints were placed so that the probability
of item endorsement when a and a′ were possessed was greater than if only one of the
two attributes was possessed. Strictly speaking, the two-way interaction effect is allowed
to be negative so long as it is greater than or equal to the negative of min(λi,1,(a), λi,1,(a′));
however, to facilitate the use of the general coding scheme introduced in Listing 1, we
opted to impose non-negativity constraints instead.

A similar strategy was used to specify the prior distributions for the parameters associated
with the MI-BN model; in particular, the intercept parameters (β0, γ0, δ0, κ0) ∼ N(0, 0.25);
the main effects (β1, γ1, δ1, κ1, κ2) ∼ N(0, 0.25)1(· > 0); and the latent interaction effect
κ12 ∼ N(0, 0.25)1(· > 0). Constraints were placed on the main effect and interaction terms
to ensure that the probability of possessing a child attribute did not decrease if the parent
attribute was possessed. The priors for the item and attribute invariance parameters will be
discussed after showing the JAGS code.

7.3. JAGS Syntax for the MI-LCDM Measurement Model

Listing 1 provides a segment of the JAGS code, specifically the portion corresponding
to the MI-LCDM measurement model (the complete JAGS syntax can be found in the
Supplemental Materials). The label lambdaAM[i] refers to the name of the effect, where the
index A = 0 refers to the intercept, A ∈ {1, 2, 3, 4} refers to the main effect associated with
the RU, PI, AP, and MC attribute, respectively (following the order of the columns in the
Q-matrix), and A values with two digits refer to interaction effects between the attributes
associated with the digits. The component [i] refers to the ith item and labels ending with
G refer to invariance parameters. Thus, for instance, lambda24[18] refers to the interaction
effect between attributes PI and MC on item 18 (λ18,2,(2,4)) and lambda24G[18] refers to the
invariance effect of the corresponding interaction that applies specifically to credentialed
teachers (λ?

18,2,(2,4)).

The label w[person, item, att] is an augmented variable that corresponds to the value α
qia
ra

and returns αra if qia = 1 and 1 otherwise. The value of these components are determined
based on the structure of the Q-matrix. This labeling scheme allows us to use the same
syntax for all items without having to define a measurement model for each item individu-
ally. Line 8 defines the intercept component of the model, where G[person] is the value on
the credential status variable that is passed to JAGS as observed data (see supplemental
materials for more details). Lines 10–19 define the main effects and lines 21–34 define the
interaction effects. Lines 36–38 combine the intercept, main effects, and interaction effects
to define the logit of item endorsement. Finally, line 40 specifies the conditional distribution
of the item response (i.e., Bernoulli).

Listing 1. JAGS syntax for the MI-LCDM measurement model.
1 # MI-LCDM MEASUREMENT MODEL
2 for (person 1: nPerson){
3 for (item in 1: nItems){
4 for (att in 1: nAttributes){
5 w[person , item , att] <- pow(alpha[person , att], Q[item , att])
6 }
7

8 Intercept[person , item] <- lambda0[item] + lambda0G[item]*G[person]
9

10 MainEffect[person , item] <-
11 lambda1[item]*w[person , item , 1] +
12 lambda2[item]*w[person , item , 2] +
13 lambda3[item]*w[person , item , 3] +
14 lambda4[item]*w[person , item , 4] +
15 ( lambda1G[item]*w[person , item , 1]*G[person] +
16 lambda2G[item]*w[person , item , 2]*G[person] +
17 lambda3G[item]*w[person , item , 3]*G[person] +
18 lambda4G[item]*w[person , item , 4]*G[person]
19 )
20

21 Interaction[person , item] <-
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22 lambda12[item]*w[person , item , 1]*w[person , item , 2] +
23 lambda13[item]*w[person , item , 1]*w[person , item , 3] +
24 lambda14[item]*w[person , item , 1]*w[person , item , 4] +
25 lambda23[item]*w[person , item , 2]*w[person , item , 3] +
26 lambda24[item]*w[person , item , 2]*w[person , item , 4] +
27 lambda34[item]*w[person , item , 3]*w[person , item , 4] +
28 ( lambda12G[item]*w[person , item , 1]*w[person , item , 2]*G[person] +
29 lambda13G[item]*w[person , item , 1]*w[person , item , 3]*G[person] +
30 lambda14G[item]*w[person , item , 1]*w[person , item , 4]*G[person] +
31 lambda23G[item]*w[person , item , 2]*w[person , item , 3]*G[person] +
32 lambda24G[item]*w[person , item , 2]*w[person , item , 4]*G[person] +
33 lambda34G[item]*w[person , item , 3]*w[person , item , 4]*G[person]
34 )
35

36 logit(p[person , item]) <- Intercept[person , item] +
37 MainEffect[person , item] +
38 Interaction[person , item]
39

40 X[person , item] ~ dbern(p[person , item])
41 }
42 }

7.4. JAGS Syntax for the MI-BN Structural Model

Listing 2 provides the JAGS syntax corresponding to the MI-BN model. Line 4 defines
the αAP-submodel, lines 6–11 define the αPI-submodel, lines 13–18 define the αMC-submodel,
and lines 20–29 define the αRU-submodel. These are equivalent to the logit-transformed
versions of ρ̃a, ρ̃b, ρ̃c, and ρ̃d in Equation (12), respectively. The labels delta1AP, etc. corre-
spond to the coefficients of each submodel model, where the attribute labels that the effect
applies to have been included for increased readability. Lines 31–34 express the models in
the probability metric as the models were originally defined on the logit scale. Finally, the
distribution of the attribute parameters is specified on line 36.

Listing 2. JAGS syntax for the MI-BN structural model
1 # STRUCTURAL MODEL (BAYESIAN NETWORK)
2 for(person in 1: person){
3

4 logit(rhoAP[person ]) <- beta0 + beta0G*G[person]
5

6 logit(rhoPI[person ]) <-
7 gamma0 +
8 gamma1AP*alpha[person , 3] +
9 ( gamma0G*G[person] +

10 gamma1APG*alpha[person , 3]*G[person]
11 )
12

13 logit(rhoMC[person ]) <-
14 delta0 +
15 delta1AP*alpha[person , 3] +
16 ( delta0G*G[person] +
17 delta1APG*alpha[person , 3]*G[person]
18 )
19

20 logit(rhoRU[person ]) <-
21 kappa0 +
22 kappa1PI*alpha[person , 2] +
23 kappa2MC*alpha[person , 4] +
24 kappa12MCPI*alpha[person , 2]*alpha[person , 4] +
25 ( kappa0G*G[person] +
26 kappa1PIG*G[person]*alpha[person , 2] +
27 kappa2MCG*G[person]*alpha[person , 4] +
28 kappa12MCPIG*G[person]*alpha[person , 2]*alpha[person , 4]
29 )
30

31 rho.alpha[person , 1] <- rhoRU[person]
32 rho.alpha[person , 2] <- rhoPI[person]
33 rho.alpha[person , 3] <- rhoAP[person]
34 rho.alpha[person , 4] <- rhoMC[person]
35
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36 for(att in 1: nAttributes){ alpha[person , att] ~ dbern(rho.alpha[person ,
att]) }

37 }

8. Approximate Invariance Testing of the Invariance Parameters

Invariance analyses in the Bayesian framework differ slightly from traditional ap-
proaches based on the frequentist framework. A key difference between the two approaches
is that the latter tests for ‘strict’ invariance whereas the former tests for approximate invari-
ance (e.g., [60,61]). Briefly, ‘strict’ invariance procedures test whether invariance parameters
are exactly zero in the population and inferences are based on asymptotic arguments. By
contrast, the approximate invariance approach allows the invariance parameter to live in a
neighborhood around zero and the associated effect can still be considered invariant. This
assumption is more realistic as parameters across groups are rarely ever exactly equivalent.
We refer the reader to [60] for more information on the approximate invariance approach.

In this analysis, the priors for the item invariance parameters were specified as follows:
(λ?

i,0, λ?
i,1,a, λ?

i,2.(a,a′)) ∼ N(0, 0.25). No constraints were placed on any of the item invariance
parameters. The priors for the attribute invariance parameters were specified as follows:
(β?

0, γ?
0 , δ?0 , κ?0) ∼ N(0, 0.25), (β?

1, γ?
1 , δ?1 , κ?1 , κ?2) ∼ N(0, 0.25), and κ?12 ∼ N(0, 0.25). We

chose relatively non-informative priors to avoid influencing the parameters too much with
the prior distribution.

Following [50], we tested for invariance at the measurement and attribute level by
examining the 100(1− ζ)% highest posterior density interval (HDPI; [62]) of the posterior
distribution of the invariance parameters. We conclude that invariance holds with respect
to invariance parameter ξ? (where ξ? generically represents any parameter with a ? super-
script) if the HPDI of ξ? contains 0; otherwise, we conclude that the invariance parameter
is meaningfully different from 0 and the item or attribute exhibits non-invariance with
respect to that parameter. For this analysis, we set ζ = 0.05 so that the HDPI contains 95%
of the posterior mass.

For each invariance parameter, we also constructed a measure of effect size by com-
puting the odds ratio. More specifically, exp(ξ?) can be shown to be the odds ratio of
item endorsement for the focal group relative to the reference group. The value exp(ξ?)
implies that the odds of item endorsement for credentialed teachers is exp(ξ?) times that
of non-credentialed teachers. Thus, this value can be interpreted as a measure of effect
size, with a value of 1 indicating that the odds between the two groups are equal, a value
greater than 1 favoring the credentialed group, and a value less than 1 favoring the refer-
ence group. For each iteration of the Markov chain, exp(ξ?) was computed after ξ? was
sampled from its respective distribution in the Gibbs sampling algorithm. The resulting
distribution approximates the posterior distribution of the odds ratio, which can then be
used to construct a HDPI. The effect size of the invariance parameter ξ? is said to favor one
group over the other if the 95% HDPI of exp(ξ?) does not contain 1.

9. Results and Interpretation
9.1. Analysis of Markov Chains

Before analyzing the model parameters, the Markov chains were analyzed for evidence
of convergence. After eliminating the warm-up samples, R̂ values were less than 1.08 for
all parameters, indicating proper chain convergence. In addition, visual inspection of the
trace plots showed an adequate mixing of the chains and no abhorrent chain patterns
were detected. Thus, no additional samples were obtained beyond the original 30,000 post
warm-up samples. Based on these results, we conclude that the chains converged to the
posterior distribution and that the results can be meaningfully interpreted. In addition, the
effective sample sizes across all parameters ranged from 272.7 to 50,000 (mean = 33,120.6).
For item and attribute parameters specifically, these values ranged from 272.7 to 13,180.3
(mean = 2669.8). Overall, these values suggest that the posterior distributions contained
adequate resolution, providing evidence that the thinning procedure was effective at
mitigating autocorrelation issues associated with Gibbs sampling.
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9.2. Analysis of Credential Status

Out of the entire sample, there were n = 16 teachers for whom credential status
information was not available. A feature of the Bayesian analysis is the ability to leverage
information from the model to estimate the probability that a teacher possesses their
credential given their item responses and all other information contained in the model.
Three teachers had posterior probabilities greater than 0.60 (range: 0.78–0.83), providing
strong evidence that these teachers likely possessed teaching credentials. The posterior
probabilities were less than 0.40 for five teachers (range: 0.24–0.38), providing evidence
that these teachers likely did not possess teaching credentials (i.e., these teachers are likely
to have been student teachers). There was not enough information to confidently classify
the remaining eight teachers (range: 0.42–0.59) (see Figure 5).
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Figure 5. Posterior inference of teachers with missing credential status variable.

9.3. Analysis of Measurement Model (Item) Parameters

Figure 6 displays the posterior means and 95% HDPI for all item parameters. Item
parameter point estimates ranged from −4.18 to 4.09, with a mean value of 0.21. The point
estimates of the odds-ratios ranged from 0.02 to 76.43, with a mean value of 3.89. For all
items, the main effects were positive and none of the corresponding 95% HDPIs contained
0, providing evidence that non-credentialed teachers who mastered the attributes measured
by the item had a higher probability of providing a correct response than non-credentialed
teachers who were non-masters of the measured attributes. The interaction effects were
all positive; however, all 95% HDPIs contained 0, suggesting that mastering all attributes
measured by the respective items did not incur an additional increase in the probability of
correctly answering the item beyond that of mastering the two individual attributes.

Across the 27 items, a total of 6 items (22%) were found to be non-invariant with respect
to at least one effect. In particular, items 1, 7, 20, 23, and 26 were found to be non-invariant
with respect to the intercept while item 25 was found to be non-invariant with respect to
the main effect of attribute PI. The 95% HDPIs of the other invariance parameters contained
0, reflecting the item’s state of partial invariance, i.e., these items exhibit partial invariance
but not full invariance. The non-invariant intercept of items 1, 20, and 26 were positive
(posterior mean: 0.61, 1.35, 0.53, respectively) indicating that credentialed teachers who
were not masters of the measured attributes had a higher probability of correctly answering
the item than non-credentialed teachers with similar characteristics. The non-invariant
intercept of items 7 and 23 were negative (posterior mean: −0.41, −0.39, respectively),
indicating that non-credentialed teachers who did not master any of the required attributes
had a higher probability of correctly answering the item than credentialed teachers who
were also non-masters of the measured attributes. The invariance main effect of attribute
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PI on item 25 was 1.39, suggesting that credentialed teachers who possessed PI but not RU
had a probability of 0.66 of correctly answering the item while non-credentialed teachers
with the same characteristics only had a probability of 0.33 of correctly answering the item.

Figure 7 displays the odds ratio distributions for the item invariance parameters.
For item 1, the posterior means of the odds-ratio of the non-invariant intercept was 1.98,
meaning that the odds that a credentialed teacher who was a non-master of attribute RU
provided a correct response was nearly two times larger than that of a non-credentialed
teacher with similar mastery status on attribute RU. For item 7, the odds-ratio of the non-
invariant intercept was 0.68; for item 20, the odds-ratio of the non-invariant intercept was
4.68; for item 23, the odds-ratio of the non-invariant intercept was 0.69; and, for item 26,
the odds-ratio of the non-invariant intercept was 1.76. The odds-ratio of the non-invariant
effect of attribute PI for item 25 was 4.25, indicating that the odds that a credentialed
teacher who mastered PI provided a correct response was over four times greater than that
of non-credentialed teachers.

9.4. Analysis of Structural Model Parameters

Table 2 contains summaries of the posterior distribution for the parameters in the
MI-BN structural model. Posterior mean estimates ranged from −3.75 to 2.72, with an
average value of 0.22. Posterior mean estimates for the odds ratio—which we computed
only for the invariance parameters—ranged from 0.71 to 6.90, with an average value of
1.98. The mean of the intercept for the AP submodel was 0.47, which translates to a
model-implied probability of 0.62 of possessing the AP attribute for teachers who were not
credentialed. The posterior mean of the invariance intercept parameter was 0.16; however,
the 95% HDPI contained 0, providing evidence that the log-odds (and, hence, probability)
of mastering the AP attribute does not differ meaningfully from that of non-credentialed
teachers. The posterior means and 95% HDPIs of the main effect of AP for the PI and MC
submodels were both positive and did not contain 0, suggesting that non-credentialed
teachers who possessed AP were much more likely to possess PI and MC compared to
non-credentialed teachers who did not possess AP. The 95% HDPI for the invariance main
effect of AP for the PI and MC submodels both contained 0, suggesting that credentialed
teachers who possessed AP did not have an advantage or disadvantage relative to non-
credentialed teachers who also possessed AP. The invariance intercept terms for the PI and
MC submodels also contained 0, suggesting that credentialed and non-credentialed teachers
who did not possess AP did not differ from each other. A similar trend was observed for
the invariance parameters in the RU submodel. In particular, the invariance intercept
term, invariance main effect terms of PI and MC, and the invariance interaction effect of
PI and MC all contained 0 in their respective HDPIs, suggesting no difference between
credentialed and non-credentialed teachers with respect to each of the effects. Because all
invariance parameters in the structural model were found to not be meaningfully different
from 0, we conclude that there is evidence of full structural (attribute) invariance.
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Figure 6. Posterior means and 95% HDPI for item parameters. Note: to avoid overlap, the
points and lines have been slightly dodged.
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Figure 7. Posterior odd ratio means and 95% HDPI for item invariance parameters

9.5. Model Comparisons

To provide a point of comparison, we compared the relative model fit of the original
invariance model (Model 1) to three simpler models via the deviance information criterion
(DIC; [63]), where smaller values are generally considered to be indicators of a better model
fit. The simpler models impose constraints on the measurement and/or attribute invariance
parameters (i.e., parameters with a ? superscript). The simpler models were: a model that
assumes attribute invariance but not measurement invariance (i.e., the group covariate
is removed from the structural model but kept in the measurement model; Model 2), a
model that assumes measurement invariance but not structural invariance (i.e., the group
covariate is removed from the measurement model but kept in the structural model; Model
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3), and a model that assumes both measurement and structural invariance (i.e., the group
covariate is removed from both the measurement and structural models; Model 4). Model 2
results in a reduction of nine parameters relative to Model 1, Model 3 results in a reduction
of half the number of parameters in the measurement model relative to Model 1, and
Model 4 results in a reduction of half the number of parameters in both the measurement
and structural models relative to Model 1. Model 3 deviates from traditional invariance
models as invariance testing usually begins at the measurement level and moves up to
the structural level; however, we include Model 3 here for the sake of symmetry and
completeness. Note that Model 4 is identical to the one previously estimated by [36] and
is the most restrictive model as it assumes complete invariance at the measurement and
structural levels. Models 2–4 were estimated using the same specifications as those of the
original model.

The DIC values for Models 1–4 were 30,636.66, 30,636.66, 30,767.46, and 30,371.10,
respectively. In particular, Models 1 and 2 had identical DIC values, suggesting that
omitting the group covariate from the structural model had no impact on the model fit.
This finding is consistent with the finding above in which we found evidence of full
invariance at the attribute level. Model 3 had the largest DIC value, suggesting a worse
model fit when the group covariate is omitted from the measurement model. This result also
corroborates with the findings above as some invariance parameters at the measurement
level were found to differ meaningfully from 0. Model 4 was found to have the smallest
DIC value; however, this could be partially attributed to the fact that Model 4 contains half
or just under half as many parameters as Models 1–3. Overall, the results from relative
model fit comparisons suggest that the original invariance model exhibits a reasonable
model fit relative to the simpler invariance models. As a result, we continue to interpret
the results from the original invariance model in subsequent sections.

9.6. Intermediate Summary of Results

The analysis of item parameters revealed that 6 out of the 27 items on the DTMR
exhibited partial measurement invariance. Five of the six partially invariant items were
non-invariant with respect to the intercept and one item was non-invariant with respect
to the effect of the PI attribute. With respect to the latter, non-credentialed teachers who
did not possess the measured attributes were statistically less likely to provide a correct
response to the item than credentialed teachers with similar characteristics. The effect of
the former favored the credentialed teachers, meaning that, among teachers who possessed
attribute PI, those with credentials were more likely to provide a correct response than
those without credentials. All other items of the assessments were found to exhibit full
measurement invariance. There is also evidence of full structural invariance, suggesting
that the attribute hierarchy holds equally for teachers with different credential status. These
findings were corroborated by the relative model fit comparisons. As a result, the analysis
of attribute profiles presented in the next section combine the two groups.

9.7. Analysis of Attribute Profiles
9.7.1. Prevalence of Individual Attributes

Figure 8 contains histograms of the attribute mastery proportions for each attribute
across the sample. Attribute RU had the lowest mastery rates, with 28% of teachers
possessing this attribute. This was by followed by attributes PI, MC, and AP, with mastery
rates of 56%, 63%, and 66%, respectively. This is consistent with previous findings by [20],
who observed similar rates under an unstructured attribute configuration. The attribute
mastery rates reinforce the plausibility of the hierarchical attribute structure as teachers
were more likely to possess attributes higher in the hierarchy compared to those lower in
the hierarchy.

Because the DTMR measures four attributes, there are 16 theoretical attribute profiles,
[αRU, αPI, αAP, αMC]. However, because of the hypothesized attribute hierarchy, the number
of observed attribute profiles was expected to be much smaller. Indeed, the results indicate
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that this is the case. In particular, zero teachers had profile [1, 0, 0, 0] or [1, 0, 1, 0]. This
finding makes sense as the attribute hierarchy assumes that it is very unlikely for a teacher
to possess RU if they do not possess PI, MC, and AP. It is also unlikely for teachers to
possess RU and AP without possessing PI and MC given that, under the hypothesized
hierarchy, the latter are descendants of AP and prerequisites for RU.

Table 2. Bayesian network structural model posterior summaries.
Odds Ratio

Submodel Effect Notation Mean (SD) 95% HDPI Mean
(SD) 95% HDPI

AP
Intercept β0 0.47 (0.23) (0.04, 0.93)

β?0 0.16 (0.27) (−0.38, 0.69) 1.22 (0.34) (0.68, 2.00)

PI

Intercept γ0 −1.37 (0.50) (−2.47, −0.53)
γ?

0 −0.07 (0.59) (−1.16, 1.14) 1.12 (0.89) (0.31, 3.11)
AP Main

Effect γ1 2.54 (0.54) (1.59, 3.69)

γ?
1 0.21 (0.63) (−1.06, 1.43) 1.51 (1.04) (0.35, 4.18)

MC

Intercept δ0 −1.31 (0.47) (−2.31, −0.46)
δ?0 0.43 (0.54) (−0.57, 1.52) 1.79 (1.18) (0.57, 4.59)

AP Main
Effect δ1 2.72 (0.53) (1.77, 3.80)

δ?1 −0.11 (0.61) (−1.33, 1.04) 1.08 (0.69) (0.26, 2.83)

RU

Intercept κ0 −3.75 (0.75) (−5.35, −2.46)
κ?0 −0.87 (1.06) (−3.03, 1.14) 0.71 (0.91) (0.05, 3.13)

PI Main
Effect κ1 2.08 (0.87) (0.41, 3.85)

κ?1 −0.13 (1.20) (−2.59, 2.14) 1.76 (3.22) (0.07, 8.47)
MC Main

Effect κ2 0.97 (0.62) (0.06, 2.33)

κ?2 1.31 (1.10) (−0.85, 3.52) 6.90 (11.66) (0.43,
33.88)

PI ×MC
Interaction κ12 1.07 (0.83) (−0.54, 2.73)

κ?12 −0.33 (1.26) (−2.74, 2.24) 1.80 (6.79) (0.06, 9.42)
Note: Terms with a ? superscript are attribute invariance parameters and represent modifications to the their
non-? counterparts.
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Figure 8. Prevalence of individual attributes.
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9.7.2. Prevalence of Attribute Profiles

Figure 9 displays the proportion of teachers who fell into each of the theoretical
attribute profiles under each model. As can be seen, the most prevalent attribute profile
was [1, 1, 1, 1], with 25% of teachers falling into this class, followed by attribute profiles
[0, 0, 0, 0], [0, 1, 1, 1], and [0, 0, 1, 1], with 24%, 19%, and 12% of teachers possessing these
profiles, respectively. Together, these four attribute profiles made up over 80% of the
observed profiles. Moreover, 4% of teachers mastered attribute PI only, 3% mastered
attribute AP only, 5% mastered attributes AP and PI, and 4% mastered attribute MC only.
Less than 1% of teachers had any of the remaining profiles.
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Figure 9. Prevalence of attribute profiles.

9.7.3. Analysis of Five Randomly Selected Teachers

Figure 10 displays the marginal probabilities of attribute mastery for five randomly
selected teachers. The purpose of this analysis was to more closely examine the attribute
mastery posterior probabilities and corresponding classifications with a subset of the
sample. The figure provides a wealth of information as there was considerable variation in
the mastery rates across this subset of teachers. For instance, based on the analysis, we are
quite confident that teachers 1, 3, and 456 do not possess attribute RU; however, we are
very confident that teacher 258 possesses RU. On the other hand, there was not enough
information to unequivocally classify the RU status of teacher 135 based on their response
pattern, suggesting that more information with respect to this attribute is needed (e.g.,
more RU items).
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Figure 10. Attribute analysis for five randomly selected teachers.
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10. Discussion

Invariance testing is an important component of measurement, as researchers aim to
develop assessments that are unaffected by factors unrelated to the constructs of interest.
If an assessment is found to interact differentially according to group membership, then
measures need to be taken to remedy the situation, either by statistically accounting for
the non-invariance [e.g., partial invariance, 64] or by modifying the assessment by remov-
ing problematic items. Our goal in this paper was to provide an accessible overview of
invariance testing in the DCM framework, specifically when the attributes form attribute
hierarchies. To this end, we showed how the LCDM can be extended to allow differential
item effects based on group membership to be tested. In addition, we demonstrated how to
parameterize the LCDM structural model as a Bayesian network and how this parameteri-
zation allows for attribute-level invariance testing. These concepts were illustrated through
an in-depth case study with an empirical dataset. The addition of the JAGS code can serve
as a starting point for empirical researchers who wish to conduct DCM invariance analyses
with their own data.

To the best of our knowledge, the only software programs currently capable of con-
ducting invariance testing in DCMs are the GDINA [65] and CDM [66] packages, both
of which are freely available in R. However, the invariance detection methods available
in these packages are currently limited to two groups and cannot accommodate various
attribute structures or the testing of attribute invariance at the structural level. By contrast,
the JAGS code can be easily modified to accommodate more than two groups. For three
groups, for instance, this can be accomplished by defining two group covariates G1 and
G2, where G1 is an indicator variable that takes on a value of 1 for members of focal group
1 and 0 otherwise, and G2 is a second indicator variable that takes on a value of 1 for
members of focal group two and 0 otherwise. An example of the JAGS code for an LCDM
measurement model with three groups and four attributes is given in Listing 3. Moreover,
because reduced DCMs can be derived from the LCDM through model constraints, the
procedures described in this paper apply to reduced DCMs as well.

Listing 3. JAGS syntax for the MI-LCDM measurement model with three groups.
1 # MI-LCDM MEASUREMENT MODEL
2 for (person 1: nPerson){
3 for (item in 1: nItems){
4 for (att in 1: nAttributes){
5 w[person , item , att] <- pow(alpha[person , att], Q[item , att])
6 }
7

8 Intercept[person , item] <- lambda0[item] +
9 lambda0G1[item]*G1[person] + lambda0G2[item]*G2[person]

10

11 MainEffect[person , item] <-
12 lambda1[item]*w[person , item , 1] +
13 lambda2[item]*w[person , item , 2] +
14 lambda3[item]*w[person , item , 3] +
15 lambda4[item]*w[person , item , 4] +
16 ( lambda1G1[item]*w[person , item , 1]*G1[person] +
17 lambda2G1[item]*w[person , item , 2]*G1[person] +
18 lambda3G1[item]*w[person , item , 3]*G1[person] +
19 lambda4G1[item]*w[person , item , 4]*G1[person]
20 ) +
21 ( lambda1G2[item]*w[person , item , 1]*G2[person] +
22 lambda2G2[item]*w[person , item , 2]*G2[person] +
23 lambda3G2[item]*w[person , item , 3]*G2[person] +
24 lambda4G2[item]*w[person , item , 4]*G2[person]
25 )
26

27 Interaction[person , item] <-
28 lambda12[item]*w[person , item , 1]*w[person , item , 2] +
29 lambda13[item]*w[person , item , 1]*w[person , item , 3] +
30 lambda14[item]*w[person , item , 1]*w[person , item , 4] +
31 lambda23[item]*w[person , item , 2]*w[person , item , 3] +
32 lambda24[item]*w[person , item , 2]*w[person , item , 4] +
33 lambda34[item]*w[person , item , 3]*w[person , item , 4] +
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34 (lambda12G1[item]*w[person , item , 1]*w[person , item , 2]*G1[person] +
35 lambda13G1[item]*w[person , item , 1]*w[person , item , 3]*G1[person] +
36 lambda14G1[item]*w[person , item , 1]*w[person , item , 4]*G1[person] +
37 lambda23G1[item]*w[person , item , 2]*w[person , item , 3]*G1[person] +
38 lambda24G1[item]*w[person , item , 2]*w[person , item , 4]*G1[person] +
39 lambda34G1[item]*w[person , item , 3]*w[person , item , 4]*G1[person]
40 ) +
41 (lambda12G2[item]*w[person , item , 1]*w[person , item , 2]*G2[person] +
42 lambda13G2[item]*w[person , item , 1]*w[person , item , 3]*G2[person] +
43 lambda14G2[item]*w[person , item , 1]*w[person , item , 4]*G2[person] +
44 lambda23G2[item]*w[person , item , 2]*w[person , item , 3]*G2[person] +
45 lambda24G2[item]*w[person , item , 2]*w[person , item , 4]*G2[person] +
46 lambda34G2[item]*w[person , item , 3]*w[person , item , 4]*G2[person]
47 )
48

49 logit(p[person , item]) <- Intercept[person , item] +
50 MainEffect[person , item] +
51 Interaction[person , item]
52

53 X[person , item] ~ dbern(p[person , item])
54 }
55 }

We note that although we illustrated the invariance procedure specifically with the
diamond attribute structure, the method is very general and the JAGS code can be modified
to accommodate the researchers’ specific problem at hand. For instance, the JAGS syntax
for a three-attribute linear hierarchy like the one shown in Figure 1, as well as its two-group
extension, is provided in Listing 4. Moreover, because attribute hierarchies can be derived
from a saturated Bayesian network [36], the procedure and code can also be used for
invariance testing with unstructured attributes.

The focus of this paper was to provide an accessible introduction to invariance testing
in DCMs in the presence of attribute hierarchies. As a result, we opted to focus on the
DTMR as a case study for all analyses. An assumption made in the process was that of a
correctly specified diamond attribute hierarchy. Although this assumption was supported
by previous empirical research, the extent to which the results from the invariance analyses
hold will depend on issues that were not explored in this paper (e.g., parameter recovery,
robustness to model misspecifications, etc.). This highlights the need for simulation-based
research in this area. Such efforts are currently underway and should provide additional
insights above and beyond what this paper can provide (e.g., the impact of incorrectly
specifying an attribute hierarchy on invariance analyses).

Listing 4. JAGS syntax for a BN structural model with three-attribute linear hierarchy.
1 # BAYESIAN NETWORK MODELS FOR A THREE -ATTRIBUTE LINEAR HIERARCHY
2 for(person in 1: person){
3 logit(rhoA[person ]) <- beta0
4 logit(rhoB[person ]) <- gamma0 + gamma1A*alpha[person , 2]
5 logit(rhoC[person ]) <- delta0 + delta1B*alpha[person , 3]
6

7 rho.alpha[person , 1] <- rhoA[person]
8 rho.alpha[person , 2] <- rhoB[person]
9 rho.alpha[person , 3] <- rhoC[person]

10

11 for(att in 1: nAttributes){alpha[person , att] ~ dbern(rho.alpha[person ,
att])}

12 }
13

14 # SAME AS ABOVE BUT MODIFIED FOR TWO GROUPS
15 for(person in 1: person){
16 logit(rhoA[person ]) <- beta0 + beta0G*G[person]
17 logit(rhoB[person ]) <- gamma0 + gamma1A*alpha[person , 2] +
18 gamma0G*G[person] +
19 gamma1AG*alpha[person , 2]*G[person]
20 logit(rhoC[person ]) <- delta0 + delta1B*alpha[person , 3] +
21 delta0G*G[person] +
22 delta1BG*alpha[person , 3]*G[person]
23
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24 rho.alpha[person , 1] <- rhoA[person]
25 rho.alpha[person , 2] <- rhoB[person]
26 rho.alpha[person , 3] <- rhoC[person]
27

28 for(att in 1: nAttributes){alpha[person , att] ~ dbern(rho.alpha[person ,
att])}

29 }

In closing, we hope that this paper serves as a useful starting point and guide for
applied researchers wishing to conduct invariance analyses with their own data. From
our experience, JAGS appears to be well suited for this type of analysis, with the major
limitations being mainly computational (e.g., estimation time) as no major issues with
respect to the estimation routine itself were found (i.e., we found acceptable evidence of
chain convergence). The estimation of the MI-LCDM and MI-BN models took several
hours (approximately 7) on an Intel core I5 MacBook Pro with 8GB of RAM. Hence, in
addition to the practical contributions of this paper, we also hope that it sparks innovative
methodological research into estimation algorithms that can make the estimation of the
models more feasible and accessible to applied researchers.
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