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bmtest: A Jamovi Module for Brunner–Munzel’s Test—
A Robust Alternative to Wilcoxon–Mann–Whitney’s Test
Julian D. Karch

Methodology and Statistics Department, Institute of Psychology, Leiden University, P.O. Box 9555,
2300 RB Leiden, The Netherlands; j.d.karch@fsw.leidenuniv.nl

Abstract: In psychological research, comparisons between two groups are frequently made to demon-
strate that one group exhibits higher values. Although Welch’s unequal variances t-test has be-
come the preferred parametric test for this purpose, surpassing Student’s equal variances t-test, the
Wilcoxon–Mann–Whitney test remains the predominant nonparametric approach despite sharing
similar limitations with Student’s t-test. Specifically, the Wilcoxon–Mann–Whitney test is associated
with strong, unrealistic assumptions and lacks robustness when these assumptions are violated. The
Brunner–Munzel test overcomes these limitations, featuring fewer assumptions, akin to Welch’s t-test
in the parametric domain, and has thus been recommended over the Wilcoxon–Mann–Whitney test.
However, the Brunner–Munzel test is currently unavailable in user-friendly statistical software, such
as SPSS, making it inaccessible to many researchers. In this paper, I introduce the bmtest module for
jamovi, a freely available user-friendly software. By making the Brunner–Munzel test accessible to a
wide range of researchers, the bmtest module has the potential to improve nonparametric statistical
analysis in psychology and other disciplines.
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1. Introduction

Researchers in psychology and other fields often compare two independent groups.
Typically, the goal is to demonstrate that a particular group tends to exhibit greater values,
for example, to verify that a new therapy method leads to better outcomes. In line with
Ref. [1], I call this goal “establishing direction”. The standard approaches for establishing
direction between two groups are Student’s and Welch’s t-tests, as well as the Wilcoxon–
Mann–Whitney test (alternatively known as Mann–Whitney U, Mann–Whitney–Wilcoxon,
or Wilcoxon rank-sum test) and their associated confidence intervals.

While the t-tests are used most often, nonparametric tests should be preferred over the
parametric t-tests in some situations. The WMW test is almost always recommended and
used for nonparametrically comparing two groups [2]. The main advantage of the WMW
test compared to the t-tests is that it does not assume interval or normally distributed data.
Thus, it can be beneficial when one or both of these assumptions are not met.

Unfortunately, the Wilcoxon–Mann–Whitney test is often wrongly used in psychology.
The primary issue is that its corresponding null and alternative hypotheses, as well as asso-
ciated assumptions, are frequently misinterpreted. The WMW test is typically presented as
either a test of equality of population medians [3] or equality of the two populations in all
aspects, which is referred to as equality of distributions [4]. If paired with the appropriate
assumptions, these hypotheses are correct in the sense that the WMW test is valid (correct
Type I error rate) and consistent (power approaches 1 with increasing sample size) [5].
However, the assumptions associated with these hypotheses are not realistic in psychology,
and if they are not met, the WMW test can have severely inflated Type I error rates and
almost 0 power, even in large samples [2].
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The most general perspective on the WMW test, in that all other (correct) perspectives
are a special case of it with stricter assumptions, is the Mann–Whitney functional perspec-
tive [5]. The null hypothesis is equality of distributions, and the alternative hypothesis
is that the relative effect p is unequal to 0.5. Another reason to consider p 6= 0.5 as the
alternative hypothesis of the WMW test is computational: The WMW test essentially uses a
standardized sample estimate of the relative effect p as its test statistic (see Section 2).

To explain the relative effect p, it is temporarily assumed that tied values never occur.
Then, the relative effect p is the probability that a random observation from the first group
is less than a random observation from the second. If p = 0.5, it is equally likely that a
random observation from the first group is larger than a random observation from the
second group as it is that a random observation from the first group is smaller than one
from the second group. In this case, the two groups are referred to as (stochastically)
comparable [6]. p 6= 0.5 is consequently labeled not comparable.

Even under the Mann–Whitney functional perspective, the WMW test is associated
with unrealistic assumptions. As Ref. [5] note, it is hard to imagine a situation in which it is
scientifically justified to assume that the distributions are either equal or not comparable
(p 6= 0.5). The perspective emerges more as a description of situations under which the
WMW test is correct. A modification of this perspective, making it more realistic, is to
replace the null hypothesis of equal distributions with the null hypothesis of the groups
not being comparable: H0 : p = 0.5 [2,5], (Chapter 8.8 of Ref. [7]). In line with Ref. [6],
I refer to this as the stochastic comparability perspective (in the statistical literature, this
problem is famously known as the nonparametric Behrens–Fisher problem).

Multiple issues can emerge when using the WMW test under the more realistic stochas-
tic comparability perspective. If groups differ, for example, due to unequal variances,
under general circumstances, the wrong standard errors are used. This, in turn, leads to
inflated Type I error rates, poor power, and unsatisfactory confidence intervals, particularly
when sample sizes are different [2], (Chapter 8.8 of Ref. [7]). Thus, the WMW test is
associated with shortcomings similar to those of Student’s t-test [8]. Indeed, computation-
ally, it is essentially the nonparametric analog to Student’s t-test (see Section 2). Much
like Welch’s t-test in the parametric realm, the Brunner–Munzel (BM) test addresses these
shortcomings [2,6,9]. Indeed, the BM test is essentially the nonparametric analog of Welch’s
t-test (see Section 2). Consequently, in line with the recommendation to use Welch’s t-test
instead of Student’s t-test by default [8], the Brunner–Munzel test has been recommended
for use by default [2,9].

However, many researchers may be unable to use the BM test. While the BM test
is available in multiple R packages, including lawstat [10], brunnermunzel [11], npar-
comp [12], and an SAS macro [6], it is not available in any user-friendly graphical user
interface (GUI)-based software, such as SPSS. Thus, researchers who rely exclusively on
user-friendly GUI-based software do not have access to it.

To address this, I introduce the bmtest module for jamovi [13]. Like jamovi, the bmtest
module is freely available and open source, setting it apart from almost all other user-
friendly statistical software programs, including SPSS, SAS, and Stata, which are proprietary
and require payment. As a side product, the bmtest jamovi module is also available as
the R package bmtest. Its unique advantage over existing R packages is that it offers all
commonly used versions of the BM test.

The remainder of this paper is organized as follows. First, I will provide a brief
introduction to the BM test. Next, I will offer a step-by-step tutorial on how to use the
jamovi module. Finally, I will provide a brief overview of the R package.

2. Brunner–Munzel Test

I will explain the BM test using a fictitious example introduced in a popular statistics
book [14] for explaining the WMW test. The example concerns two groups of clubbers: one
group was given an ecstasy tablet to take on Saturday night, and another drank alcohol.
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Levels of depression were measured using the Beck Depression Inventory on the day after
(Sunday) and midweek (Wednesday).

2.1. Relative Effect

I will start by describing the relative effect in more detail. Applied to the example,
the relative effect p represents the probability that a randomly selected ecstasy consumer
will report less severe depressive feelings than a randomly selected alcohol drinker. To for-
mally define the relative effect, I introduce the (random) variables X1 and X2, which
represent random observations from the first and second groups, respectively. Excluding
ties, the relative effect is calculated as p = P(X1 < X2). To allow for ties, the probability of
a tie is assigned with equal weight to both possibilities (X1 smaller, and X2 smaller) and
thus with weight 1

2 to the relative effect. The resulting relative effect allowing for ties is
given by the equation:

p = P(X1 < X2) +
1
2

P(X1 = X2).

If the relative effect is p = 0.5, groups 1 and 2 are deemed (stochastically) comparable,
which is the null hypothesis of the BM test. For two-sided testing, the alternative hypothesis
is that HA : p 6= 0.5, indicating that the groups are not comparable. For one-sided testing,
the alternative hypothesis can be either HA : p > 0.5, indicating that X1 tends to take smaller
values, or HA : p < 0.5, indicating that X1 tends to take greater values.

To further illustrate the relative effect, consider two binary random variables X1 and
X2 with potential values of 0 and 1 with P(X1 = 0) = 0.7 and P(X2 = 0) = 0.1. Thus, X1
tends to take smaller values. This is reflected in the relative effect as follows: given that
X1 = 0, there is a probability of 90% that X2 is bigger and a probability of 10% that it is
equal. Thus, the relative effect given X1 = 0 is (0.9 + 1

2 × 0.1) = 0.95. Similarly, given
that X1 = 1, there is a probability of 0% that X2 is bigger and a probability of 90% that
it is equal, and thus the relative effect given X1 = 1 is 0 + 1

2 × 0.9 = 0.45. Consequently,
considering that P(X1 = 0) = 0.7 and P(X1 = 1) = 0.3, the (unconditional) relative effect
is p = 0.7× 0.95 + 0.3× 0.45 = 0.8.

2.2. Test Statistic

The test statistic for the BM test is based on the sample relative effect, which is an
unbiased and consistent (approaches the true value with increasing sample size) estimator
of the relative effect. First, consider that the observations for the two groups of size n1, n2
are X11, . . . , X1n1 , and X21, . . . , X2n2 . The sample relative effect is then defined as follows:

p̂ =
1

n1n2

n1

∑
i=1

n2

∑
j=1

S(X1i, X2j).

Here, S(x1, x2) = 1 if x1 < x2, S(x1, x2)= 1
2 if x1 = x2, and otherwise S(x1, x2) = 0.

The sample relative effect thus considers all possible pairs of observations (X1i, X2j). For a
pair for which X1i is smaller than X2j, one is added to a count. For X1i being equal to X2j,
1
2 is added, otherwise nothing is added. The sample relative effect is the count divided
by the number of pairs (n1n2). The sample relative effect thus essentially summarizes the
outcome of a competition between all observations from both groups [3]. For every match
a group wins, 1 is awarded to it, and for ties, 1

2 . The sample relative effect is the proportion
of points won by the second group (X2).

Computing the sample relative effect in this manner is inefficient and not imple-
mented in software programs, as all n1n2 pairs need to be considered. Instead, the relative
effect can be computed based on ranked data, which also reveals that the BM test is
rank-based. To achieve this, the rank Rik of observation Xik among the pooled sample
X11, . . . , X1n1 , X21, . . . , X2n2 is calculated. For tied values, the mid-rank is assigned, which
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is the average of the ranks among the tied values. Let R̄i be the average rank of the
observations in group i. Then, the sample relative effect can be computed as follows:

p̂ =
1
N
(R̄2 − R̄1) +

1
2

,

where N = n1 + n2.
The BM test standardizes the sample relative effect p̂ such that it approximately has a

standard normal distribution under the null hypothesis of p = 0.5; that is, it approaches a
normal distribution with increasing sample size. The WMW test can be defined equivalently.
To achieve this, both tests subtract the expected value under the null (0.5) and divide by an
estimated standard error denoted by se. This leads to the following equivalent test statistics,
which are named U and W; as in the case of the WMW test, they are essentially equivalent
to Mann–Whitney’s U and Wilcoxon’s W.

U =
p̂− 0.5
se( p̂)

or equivalently W =
R̄2 − R̄1

se(R̄2 − R̄1)

The crucial difference between the BM and the WMW tests lies in the employed
estimate of the standard error. The estimate employed by the WMW test is only valid under
the restrictive assumption of the location shift model [5,9], which, for example, excludes
unequal variances between the groups. In contrast, the standard error employed by the
BM test is valid without these restrictive assumptions. Indeed, the test statistic of the BM
test is approximately standard normally distributed and thus leads to approximately valid
tests under very general assumptions [6].

The formulas of standard errors and the resulting test statistics for the WMW and the
BM test are as follows.

WMW =
R̄2 − R̄1√

S2
R(1/n1 + 1/n2)

BM =
R̄2 − R̄1

N
√

S2
1R/n1 + S2

2R/n2

. (1)

Here, S2
R is a pooled variance estimator of the ranked data, and S2

iR is closely related to a
variance estimator of the ranked data in group i (see Ref. [9] for the formulas). Equation (1)
reveals that the WMW test is essentially the rank-based version of Student’s t-test and
the BM test, the rank-based version of Welch’s t-test (compare Equation (1) to the t-test
formulas given, for example, in Ref. [9], Equation (2.2)). This provides further insight
into why the BM test provides accurate results under less restrictive assumptions than the
WMW test.

The BM statistic can consequently be interpreted equivalently to the t statistic for
Welch’s t-test. Large positive values indicate that the first group tends to take smaller
values, whereas large negative values indicate that the first group tends to take greater
values. With increasing sample size, the BM statistic is approximately standard normally
distributed. Thus, when testing two-sided with a significance level of α = 0.05 and
reasonably large sample sizes for both groups, a |BM| > 1.96 indicates a significant result.

2.3. From Test Statistic to p-Value

There are different approaches for converting the BM statistic into a p-value, leading
to different versions of the BM test: as for Welch’s t-test, the normal approximation is
not accurate enough in smaller samples. To remedy this, a more accurate approximation
based on the t distribution has been proposed [15]. This approach is called the asymptotic
approach and is recommended instead of the normal approximation. The asymptotic ap-
proach has been shown to perform satisfactorily for sample sizes as small as n1, n2 ≥ 10 [15].
The degrees of freedom of the t distribution are estimated based on the rank data similar to
Welch’s method. For the precise formula, see (Ref. [7] Section 7.8.6) and for the derivation
(Ref. [6] Section 3.5.2).
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An alternative approach is the permutation testing method [16]. This method permutes
the assignments to the groups and saves the resulting test statistic BMi for each permutation
i. This procedure is repeated for every possible permutation to estimate a permutation
sampling distribution under the null hypothesis of no difference between the groups. The p-
value is obtained by counting the proportion of permutations for which the observed test
statistic BM without permutation is more extreme than the permutation test statistics BMi.
The permutation method is the most accurate approach and shows reasonable performance
for group sizes as low as n1, n2 = 7 [17]. The disadvantage of the permutation approach
is that it is computationally unfeasible for moderate sample sizes because the number of
possible permutations grows rapidly with sample size [2].

A variant of the permutation approach addressing the computational issue is random
permutation testing. Instead of considering all permutations, only a small random subset
of permutations is used. This enables permutation testing for all sample sizes at the cost of
a decrease in accuracy.

While it is clear that the full permutation approach will provide the most accurate
p-value, depending on the circumstances, either the asymptotic or random permutation
approach will be more accurate. However, recently, it has been shown that the random
permutation approach is more robust in terms of Type I error rates and power compared
to the asymptotic approach in many situations as they commonly occur in psychology [9].
Thus, the three approaches to obtain a p-value can be interpreted as different trade-offs
between computational complexity and accuracy. The difference between the approaches
vanishes with increasing sample size as they all converge to the correct value.

In practice, my advice is as follows. Due to the computational complexity of the full
permutation approach, it can only be used in very small samples. At the moment, this
is essentially restricted to cases where n1, n2 are both not substantially larger than 10 [2].
In such small samples, its increased accuracy is meaningful, and thus it should be used.
In all other cases, in principle, I recommend the random permutation approach, following
the results and advice given in Ref. [9] with 10,000 random permutations. In case this also
takes too much time, which should generally only be the case for quite large samples, one
can fall back to the asymptotic approach, which can be expected to be accurate enough in
such large samples.

2.4. Confidence Intervals

All three versions of the BM test (even the permutation versions) can be inverted to
construct confidence intervals for the relative effect p [18]. The procedure is the same for all
versions and also the same as used for other tests, such as the t-tests. Exemplarily, the 95%
confidence interval contains all those values a for which the corresponding null hypothesis
H0 : p = a with associated test statistic p̂−a

se( p̂) and significance level α = 0.05 cannot be
rejected. This approach is valid if the true relative effect p is not close to 0 or 1 and the
sample size is large enough, which should be the case for most applications in psychology
with moderate sample size since a relative effect of 0 or 1 implies that all observations in
one group are smaller than all observations of the other group, which is rare in psychology.
If these conditions are not met, Ref. [2] provides guidance on alternative approaches that
can still provide valid confidence intervals, which, however, are only implemented in other
R packages, most prominently, the nparcomp package [12].

3. bmtest Jamovi Module
3.1. Installation

The jamovi program can be downloaded from https://www.jamovi.org/download.
html (accessed on 15 March 2023) and is available for all commonly used operating sys-
tems. Alternatively, jamovi can also be used via the jamovi cloud. However, this is not
recommended, as it currently does not allow for the installation of the bmtest module.
Installation varies by operating system but is straightforward; therefore, it is not described
in detail. For this tutorial, I used version 2.3.21 for Windows.

https://www.jamovi.org/download.html
https://www.jamovi.org/download.html
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The next step is to install the bmtest module. Generally, there are two ways to install
jamovi modules: installing from the jamovi store or installing manually from a .jmo file.
At the time of writing, the bmtest module can only be installed manually. The latest .jmo file
can be obtained from https://github.com/karchjd/bmtest/releases/. For this paper, I used
version 0.1.0, which is the latest version at the time of writing. Note that the appropriate
jmo file for the operating system in use must be downloaded.

The module can be installed by clicking on “+ Modules”, “Jamovi Library”, “Sideload”,
and then the upward-facing arrow (see Figure 1). This opens a file manager window in
which the downloaded .jmo file should be opened, which will install the module. If you
read this at a later point, the latest version of the bmtest module should also be available in
the jamovi store and can be installed directly from the store.

Figure 1. Installing the bmtest Module.

3.2. Usage

The first step is to open a dataset. As mentioned in the previous section, the fictitious
example drug dataset contains data from two groups of clubbers: 30 individuals were
given an ecstasy tablet to take on Saturday night, and 30 individuals consumed alcohol.
Levels of depression were measured using the Beck Depression Inventory (BDI) on the day
after (Sunday) and midweek (Wednesday). The drug dataset can be downloaded via this
link: https://osf.io/download/nug79/ (accessed on 15 March 2023). The first step is to
open the dataset. As this process is straightforward, it will not be explained.

To access the BM test, click on the “BM Test” menu and select “Brunner-Munzel Test”.
This opens the BM test menu (see Figure 2). The first step is to select the “Dependent Vari-
ables” and the “Grouping Variable”. The variables “Sunday_BDI” and “Wednesday_BDI”
contain the reported frequency of depressive feelings and are thus selected as depen-
dent variables. Note that multiple dependent variables can be specified, and a BM test is
performed for each dependent variable separately. The variable “Drug” is the grouping
variable and is consequently selected as such. Selecting variables is done in the same
manner as always in jamovi and is essentially the same as in SPSS.

https://github.com/karchjd/bmtest/releases/
https://osf.io/download/nug79/
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Figure 2. bmtest Main Menu.

After the dependent and grouping variables have been selected, the results are auto-
matically computed and displayed. By default, only the asymptotic version of the test is
computed, as it is by far the fastest. The other two versions can be requested by activating
the respective checkboxes in the “Test Version” menu section. For the random permu-
tation version, the number of permutations can be chosen and is, by default, set to the
recommended value of 10,000. There is also a changeable time limit, as with large datasets,
the random permutation test might take too long. The computation will be stopped, and no
results will be displayed after this time limit has elapsed. Typically, it takes longer for the
program to stop than the specified time limit because the underlying R code has to reach a
state where it can interrupt the computation.

The full permutation version is only computed if it is computationally feasible (cur-
rently, if the number of permutations does not exceed 40,116,600, which for equal group
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sizes amounts to n1, n2 ≤ 14). If not, the respective row in the results table is left empty,
and an error message is displayed (see Figure 3).

Brunner-Munzel Test

Brunner-Munzel Test

95% Confidence
Interval

    Statistic df p P̂(Ecs < Alc) + ½P̂(Ecs =
Alc) Lower Upper

Sunday_BDI Asymptotic -0.111 54.4 0.912 0.492 0.341 0.643

  Random
Permutation -0.111   0.904 0.492 0.337 0.643

  Full Permutation NaN ᵃ          

Wednesday_BDI Asymptotic -4.068 42.7 < .001 0.238 0.109 0.368

  Random
Permutation -4.068   < .001 0.238 0.111 0.370

  Full Permutation NaN ᵃ          

Note. Hₐ P̂(Ecs < Alc) + ½P̂(Ecs = Alc) ≠ ½
ᵃ Number of needed permutations too large to be computationally feasible. Use one of the other two options.

 Figure 3. Results Table.

In the “Hypothesis” menu section, the user can specify whether a one- or two-sided
test should be performed. This only influences the obtained p-value. The confidence
intervals reported are always two-sided. This must be crucially taken into account when
interpreting confidence intervals. This choice was made to be consistent with most BM test
R packages, which also always report two-sided confidence intervals.

The “Missing Value” section allows specifying how missing values should be treated.
When selecting “Exclude cases analysis by analysis,” missing values are excluded separately
for each dependent variable. Otherwise, each row for which any of the involved variables
is missing (all dependent variables and the grouping variable) is removed. I recommend
choosing “Exclude cases analysis by analysis” as the default option, which is also the
default setting.

Activating the checkboxes for the relative effect and the confidence interval adds the
sample relative effect p̂, as well as a confidence interval for the true relative effect p to the
results. The desired confidence level can also be specified. For the full permutation version,
confidence intervals are not displayed, as they are currently not supported.

3.3. Interpreting and Reporting Results

The results are displayed in a dynamic table to the right of the menu, as is the default
in jamovi (see Figure 3). This table is automatically updated as the settings are changed.
The first two unnamed columns contain information about the dependent variables and
the test version, with the results for each combination of a dependent variable and test
version displayed in one row. The “Statistic” column contains the test statistic BM and is
thus the same for all test versions. The “df” column contains the degrees of freedom for
the asymptotic version and is thus empty for the permutation versions. The “p” column
contains the p-value. The next column contains the estimated relative effect p̂ and is thus
the same for all versions. The column name informs the reader which group is treated
as the first group (X1). In the example, this is the Ecstasy group. The confidence interval
columns contain corresponding confidence intervals.

The results can be interpreted and reported as follows. First, for the day after substance
consumption (Sunday_BDI), the null hypothesis of stochastic comparability could not be
rejected, as the p-value was higher than the significance level of 5% and the 95% confidence
interval contained a relative effect of p = 0.5. Considering the results from the, in this
case, recommended random permutation version, this can be reported as follows: The
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day after the drugs were taken, the data were in line with depression levels in ecstasy
users and alcohol users being comparable, BM = −0.11, p = 0.904. Splitting ties equally,
the probability that a random ecstasy user was less depressed than a random alcohol user
was p̂ = 0.49, 95% CI [0.34, 0.64].

The results for Wednesday (Wednesday_BDI) suggest that the ecstasy group tended
to greater values; that is, ecstasy consumers tended to feel more depressed than alcohol
drinkers. This can be reported as follows: By Wednesday, ecstasy users tended to feel more
depressed than alcohol users, BM = −4.07, p < 0.001. Splitting ties equally, the probability
that a random ecstasy user was less depressed than a random alcohol user was p̂ = 0.24,
95% CI [0.11, 0.37].

4. bmtest R Package

At the time of writing, the package is not yet available via CRAN. The following code
installs the package:

remotes::install_github("karchjd/bmtest")

The package contains only the bmtest function. The arguments of the function corre-
spond to the options in the BM test menu just discussed. The analysis conducted in the
previous section can be performed as follows:

library(bmtest)
drug_data <- haven::read_sav("Drug.sav")
drug_data$Drug <- forcats::as_factor(drug_data$Drug)
bmtest(data = drug_data, vars = c("Sunday_BDI", "Wednesday_BDI"),

group = "Drug", asym = TRUE, randomPerm = TRUE, fullPerm = TRUE,
miss = "perAnalysis", relEff = TRUE, ci = TRUE, ciWidth = 95)

This returns the table shown in Figure 3 as output. The help file (?bmtest) provides more
detailed guidance.

5. Concluding Remarks

This paper presented the jamovi module and R package bmtest, which implements all
versions of the Brunner–Munzel (BM) test. The BM test addresses the drawbacks of the
Wilcoxon–Mann–Whitney (WMW) test in a manner similar to how Welch’s t-test improves
upon Student’s t-test. The bmtest jamovi package makes the BM test available in user-
friendly GUI-based statistical software, thereby making it accessible to a broad audience
of researchers.
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