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Abstract: In this study, we present a package for R that is intended as a professional tool for the
management and analysis of data from educational tests and useful both in high-stakes assessment
programs and survey research. Focused on psychometric models based on the sum score as the
scoring rule and having sufficient statistics for their parameters, DEXTER fully exploits the many
theoretical and practical advantages of this choice: lack of unnecessary assumptions, stable and
fast estimation, and powerful and sensible diagnostic techniques. It includes an easy to use data
management system tailored to the structure of test data and compatible with the current paradigm
of tidy data. Companion packages currently include a graphical user interface and support for
multi-stage testing.
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1. Introduction

DEXTER is an R [1] package for the management and analysis of data from educational
tests first published on CRAN in 2017. At that time, all its four authors, Gunter Maris,
Timo Bechger, Ivailo Partchev, and Jesse Koops, were employed at Cito, one of the largest
and oldest test companies in Europe. Robert Zwitser and Maarten Marsman, whose
contributions are often cited in this paper, were doctoral students of Gunter Maris at Cito
and the University of Amsterdam. Last but not least, DEXTER is inspired in many ways by
OPLM [2], a model and a software developed 30 years ago at Cito by Norman D. Verhelst
and colleagues.

The package is easy to use and scales well, from small problems to large scale (in-
ter)national projects. However, it was designed primarily for the larger projects found in
high stakes exams and in educational surveys. Consequently, it has some features not found
in other packages (rigorous data management, advanced diagnostic tools) while it lacks
features readily found elsewhere (notably, any psychometric models without sufficient
statistics for the item and person parameters). Both the inclusions and the omissions are
important seeing that they are based on extensive practical experience and some rather
definite ideas of what matters most in high stakes exams.

DEXTER and its companion packages, dextergui and dexterMST, are freely available
from CRAN. There is a GitHub package page, which includes a blog. The blog contains,
along with release notes and some fun entries, many articles on specific features or technical
details of DEXTER.

An anonymous reviewer has asked for a more detailed comparison between DEXTER

and alternative programs. This is not very easy, especially as there are so many of them.
DEXTER is one of those packages that offer comprehensive support for practical assessment
and survey projects, which makes it most similar, most likely, to TAM [3]. It differs
considerably in purpose from, say, mirt [4], which supports a very large number of IRT
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models, an invaluable feature in academic projects. However, we know that not all testing
companies in the world have been eager to embrace IRT, let alone its most advanced models,
and that very many tests are still scored with the sum score and then equated with some of
the methods in [5] (the recent proliferation of books on classical equating techniques [5–8]
is an indirect proof that the professional community remains rather conservative.). We try
to improve on this reality while remaining compatible with it. There is a limited range of
IRT models in DEXTER, and they all retain a sound relation with the sum score.

Most modern testing projects incorporate incomplete designs, such that different
subsets of items (traditionally called booklets) are administered to different subsets of
examinees. Given such a design, we may distinguish between calibration models and
evaluation models. The calibration model is applied to all booklets simultaneously; this
effectively translates the sum scores gained on different booklets onto a common psycho-
metric scale. Evaluation models (a non-standard term we have coined for the occasion) can
be applied within booklets to estimate the quality of the items, reliability and, as we shall
see, goodness of fit. DEXTER provides several evaluation models and one calibration model:
a particular adaptation of the nominal response model [9] called the extended nominal
response model (ENORM). This will be discussed in detail in the paper; the hurried user
will not be very wrong to think of it as a model that defaults to the Rasch model [10] for the
dichotomous items, and to the partial credit model [11] for the polytomous items.

Is this too restrictive? For research purposes, most likely, but high stakes tests are not
scientific research. Nobody has expressed the dilemma better than Paul W. Holland when
he spoke of tests as a measurement problem (for psychometricians) and a contest (for the
examinees) [12]. In high-stakes situations, the natural desire to perfect our methods of
measurement is held in check by the need for clear and transparent rules that are known in
advance and perceived as fair by the stakeholders. Looking at sport contests, we observe
an enormous effort to cover any foreseeable situation with such rules. Thus, we might
read that ‘[A]thletes may compete barefoot or with footwear on one or both feet.’ Four
subsequent pages specify what constitutes acceptable footwear—thus, all shoe models that
have not been on the market for a certain time are excluded as a potential source of unfair
advantage [13]. The speed of wind is measured and its influence on whether the results
will be “scored” as a world record or just a gold medal carefully determined, and so on.

Similar rules exist for high stakes exams as well, covering the test administration in
considerable detail—there are clear protocols on how to detect and treat copying, for exam-
ple. However, if we score the exams with one of the more complicated models expected to
achieve better model fit, even the relatively simple 2PL model (two-parameter logistic, [14]),
the scoring rule for the individual item is determined after the contest and based on the
data. Even worse, this rule is not transparent: we cannot explain to the examinees why one
particular item should bring much more credit than another, especially as we do not know
ourselves—all we can do is explain general principles and offer tentative explanations. Nei-
ther can we recognize a highly discriminating item from a less discriminating one by just
looking at its content, the way we can do with easy and difficult items, let alone write items
with a predetermined discrimination. We are not sure that many sports associations would
be prepared to consider such scoring rules. In large-scale assessment projects, which are
more research and measurement than testing, there is also discussion about the usefulness
of models with multiple item parameters [15].

It is largely for these reasons that we have given preference to models that originate
from the scoring rule (the sum score) over models where the scoring rule originates from
the model. Conveniently, the sum score happens to be a sufficient statistic for the ability
that we are searching to characterize, which opens the way for a number of important
theoretical and practical advantages. We mention but three:

• Conditional maximum likelihood (CML) estimation is very fast and stable, and does
not need any distributional assumptions about the trait being measured;
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• We have access to powerful diagnostic tools of item fit based on observable data; this
avoids the circularity of judgement that may arise if we test the fit of a model based
on ability estimates from the model;

• Multi-stage tests with routing rules based on sum scores can be estimated with CML as
in the companion package, dexterMST, with no or very little item exposure prior to the
actual testing; this makes it possible to introduce adaptivity in high stakes situations.

One final remark related to what can or cannot be done with DEXTER: CML estimation
is only applicable to tests with a connected design. Connected designs can be constructed
by including either anchor items or groups of examinees taking two booklets. DEXTER

will check whether the design is connected, and dextergui will visualize it with a bipartite
graph. It follows that DEXTER cannot be used to analyze tests with unconnected designs,
and is not appropriate for data from conventional computerized adaptive tests.

2. Using the Package

The package can be used either in R programming or over the GUI provided by
dextergui. Graphical interfaces are generally thought to be easier but the truth is that
DEXTER is easy to use in both modes. The GUI is particularly handy for interactive
exploration of item functioning: all tables are sortable on every column, the graphs are
arranged in carousels (HTML widgets that make browsing really easy), and clicking on the
appropriate table cells will show the corresponding graphs. Programming mode may be
more convenient when starting new projects, preparing the data, and for more advanced
work. It is also easier to explain in a paper, which is why we prefer it here.

The help screen for the package lists about 60 items but, discounting the service
functions, the generic plot, coef, and print functions, and the data examples, the user will
mostly deal with about 12 functions. For a package of this size, this is quite a modest
number. All functions have been designed to output objects that can be passed right away
to other functions, and typically accept ‘predicates’ to subset the data on any combination
of person and/or item properties. The data is supposed to come from a DEXTER data base
channel, but any object containing admissible data will be accepted. Admittedly, it takes
some practice to learn what data is admissible in a given situation, and going over all the
steps in creating a DEXTER project (i.e., data base) and populating it with data is time well
spent, as it will help a lot against involuntary mistakes and data issues. Many functions
either produce plots or are equipped with generic plot functions, as we put much value in
visual control and evaluation.

The functions can be grouped loosely in seven categories:

• Functions to start, open, or close a DEXTER project, input data, define person and item
properties, or get information on booklets, items, persons, test design, scoring rules,
etc;

• Functions to evaluate item quality and test reliability. These are typically applied per
booklet and include tia_tables, distractor_plot, fit_inter, and fit_domains;

• A single function, fit_enorm, to ‘calibrate’ the test, i.e., estimate item parameters for
the test as a whole;

• Functions to estimate person proficiency. These fall into two groups: functions such as
ability and ability_tables will be more useful when dealing with high stakes tests,
while functions such as plausible_values and plausible_scores are more adapted
for (large scale) survey research. Function individual_differences, which provides
a formal test against the hypothesis that all persons have the same latent ability, also
belongs in this group;

• Functions that deal with interactions between person and/or item properties, e.g., DIF,
profiles, latent_cor;

• A variety of functions grouped under the name ‘functions of theta’ compute expected
scores (expected_score) or test and item information functions (information), simu-
late responses (r_score), and so on;

• All other functions, for example those providing support for standard setting.
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The following short example should provide an idea of the workflow and highlight
some of the more interesting features.

2.1. Data Entry

DEXTER can be used in a casual way, but to benefit from all data controls and di-
agnostic tools, it is best to start by creating a data base. This is done with the function
start_new_project, which requires the user to provide an exhaustive list of all items in
the test, all admissible responses, and the score that will be assigned to each response.
This is simply a data frame with three columns: item_id, response, and item_score (as in
several other functions, the column names matter but the order is arbitrary). Creating it
can be boring when the test is large, but the information will usually be available in some
form and can be reshaped as necessary.

All scores must be integers, and the minimum score for each item must be 0. They need
not be consecutive numbers. DEXTER will check that every item has at least two distinct
scores, that the minimum score is 0, and that there are no duplicate score definitions. Should
the data contain a response not specified in the rules, there are two options. The default
behavior is to exit with an error message; as an alternative, all unknown responses will be
treated as missing value indicators, added to the known rules, and automatically assigned
zero scores. Obviously, the latter is not good practice. Getting explicit with the score rule
definitions pays off in many ways. For example, it is possible to implement some forms of
formula scoring, e.g., score non-response as 1, a wrong response as 0, and a correct response
as 4. In addition, it is possible to define different indicators for ‘omitted’ and ‘not reached’,
score the former as 0 (or something else) and omit the latter with an appropriate predicate
in the functions that will calibrate the model and estimate person parameters. The thing to
remember is that, whenever DEXTER knows that an item is supposed to be administered to a
person by design, it expects to see a response; if that is coded as missing or actually missing
(possible when the data is in long format), the default behavior is to assign automatically a
score of 0, unless a different score is specified explicitly in the scoring rules.

Items that are scored by human raters can be handled with trivial scoring rules where
the score is the same as the response. DEXTER saves only the original responses and the
scoring rules, while scores are assigned on the fly; this makes it easy to correct wrong keys
by just editing the scoring rule with function touch_rules.

As a small example, we use a small data set from another R package, irtoys [16].
The Unscored matrix contains the original responses to 18 multiple choice items from
472 persons. To create a new database, we will turn the matrix into a data frame, apply the
keys_to_rules helper function to generate the scoring rules table, and pass that to function
start_new_project. The R function sprintf is useful in creating sortable variable names.
The data base will be saved to memory, which is specified with the special syntax :memory:;
for permanent storage, provide a file name instead. Once the project has been created,
simply add the data with function add_booklet, where ’one’ is an arbitrary booklet ID
that can be referenced in later function calls.

data = as.data.frame(irtoys::Unscored)
names(data) = sprintf(’item%02d’,1:ncol(data))

keys = data.frame(
item_id=names(data),
noptions=4,
key=c(2,3,1,1,4,1,2,1,2,3,3,4,3,4,2,2,4,3))

rules = dexter::keys_to_rules(keys, TRUE)

db = dexter::start_new_project(rules, ’:memory:’)
dexter::add_booklet(db, data, ’one’)
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Our data set only contains the responses. DEXTER will assign unique person IDs
automatically. It is possible to supply person properties, including user-defined IDs,
but they must be declared with the start_new_project function; any variables in the
data frame that are not known items or declared person properties will be ignored quietly.
Person properties can also be added later with the add_person_properties function (an
occasion where the user’s own person IDs might be handy), and there is a similar function
to add item properties.

More booklets can be added by calling add_booklet repeatedly. DEXTER will deduce
the test design, and functions get_design and design_info will provide information about
it. In particular, the latter function will check whether the design is connected. In today’s
practice, and especially with computer-based testing, the data may contain a large number
of distinct booklets or already be in long shape; function add_response_data (see below)
will be more convenient in such cases.

2.2. Tidy Data Structures, Querying, and Subsetting Data

DEXTER is fully compatible with the data structures and general philosophy that
became more popular thanks to the ‘opinionated collection of R packages’, tidyverse [17].
Test data is represented essentially as person-item-score triples while person properties,
item properties, test design, etc., are kept in appropriately indexed separate tables.

Users who already have the test data in long format can input it directly, but they will
need to specify the test design. To save typing, we will cheat a bit, using objects that we
already have: we will query the design with the get_design function, show how it looks,
pivot the original data to long shape with the appropriate function from the tidyr package,
and input the result into a new project.

ds = dexter::get_design(db)
head(ds)
# booklet_id item_id item_position
# 1 one item01 1
# 2 one item02 2
# 3 one item03~3

data$person_id = 1:nrow(data) # must have person IDs for pivoting
data = tidyr::pivot_longer(data, cols=1:18,

names_to=’item_id’, values_to=’response’)
data$booklet_id = ’one’
head(dat)
# A tibble: 6 x 4
# person_id item_id response booklet_id
# <int> <chr> <int> <chr>
# 1 1 item01 2 one
# 2 1 item02 3 one
# 3 1 item03 1~one

db = dexter::start_new_project(rules, ’:memory:’)
dexter::add_response_data(db, data, design=ds, auto=TRUE)

A bunch of functions with names starting in get_ return information about the book-
lets, the items and their properties (if any have been supplied), the persons and their
properties, the scoring rules, or simply query the data base for responses or test scores.
Of particular interest is the function get_variables, which returns the list of all variables
available for analysis, whether technical, item properties, or person properties. A great
advantage of having the proper (tidy) data structures is that all variables, whether on the
person or on the item side, are treated on equal basis and can be freely combined.
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Most of the functions in DEXTER accept predicates as a parameter: any logical expres-
sion, possibly rather complicated, of any of the available variables. This allows the user
to extract subsets of the data in a very flexible way. As subsetting can be applied to the
functions independently, we can, e.g., estimate a model on one subset of examinees and
then use the item parameters to generate plausible values for a different subset of persons.

2.3. Item and Test Diagnostics

There are several useful tools used to examine the quality of test items. Function
tia_tables returns a list of data frames containing the well-known classical test theory
(CTT) statistics at item and booklet level; these can be easily prettified with packages
such as huxtable [18] or used in programming. We highly value visual tools to explore
how items ‘behave’ and how well the calibration model fits the data. Basically, there
are two of them: the distractor plot, which can be produced with the distractor_plot
function, and the item-total regressions obtained by applying the generic plot function to the
output of function fit_inter. This is a phase of analysis where the companion package,
dextergui, can be very handy because it combines tabular and graphical output into an
easy-to-navigate whole.

The distractor plot shows a non-parametric regression of the relative frequency of each
response alternative, including non-response, on the sum score for the booklet. A separate
plot is produced for each booklet that contains the item. The distractor plot for the first item
in our small example is shown on Figure 1. The title of the plot shows the item ID, in what
booklet the item is featured, and in what position. At the bottom, we see the basic CTT
statistics: proportion correct (Pval), item-total correlation (Rit), and item-rest correlation
(Rir); the strange acronyms come from practice, including the irritating habit of calling the
proportion of correct responses ‘p-value’. The legend shows the responses and the scores
that they are assigned—in our example, 2 is the correct response earning an item score of 1,
while all other responses are scored 0.

In a well-constructed multiple choice item, the line for the correct response is expected
to be monotone increasing (more or less, since it is produced by density estimation of
real data). The lines for the wrong responses (the ‘distractors’) should be decreasing,
preferably monotone decreasing. The distractor plot makes it easy to spot items with wrong
keys, an error that can be corrected easily and without data loss with the touch_rules
function. Furthermore, we expect all distractors to ‘work’, i.e., have some plausibility for
examinees who do not know the correct response. The item on Figure 1 is badly written,
because responses 3 and 4 are too obviously wrong for all examinees, effectively turning
the item into a toss-a-coin affair for those of low ability.

The light gray areas, which we call curtains, cover the bottom and the top 5% of the
observed data, helping the eye concentrate on the central 90% (there is a parameter to
change the 5% to a user-specified value).
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Figure 1. Distractor plot for an example item.

Unlike the distractor plot, the item-total regression plot is model-based. An example
using the same Item 1 is shown on Figure 2. To produce such plots, we apply the fit_inter
to the data for a specific booklet, and then we pass its output to the generic plot function.
The plot compares three item-total regressions. The observed one, shown with light pink
dots, is merely the proportion of correct responses to the item among persons with a
given total score on the booklet. The thin black line represents the regression predicted
by the ENORM–the model that will be used to estimate the item parameters for the test as
a whole, but here applied locally to just the data for the specific booklet. The thick gray
line depicts a similar regression predicted by Haberman’s interaction model [19]. The two
models are discussed in some mathematical detail in Section 3; here we provide a brief and
intuitive description.
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Figure 2. Item-total regression plot for an example item.

The calibration model in DEXTER is the extended nominal response model (ENORM).
This is a nominal response model [9] with known integer score parameters. From the
user’s perspective, ENORM is not much different from the Rasch model (RM) for the di-
chotomous items, and the partial credit model (PCM) otherwise. There are some important
improvements under the hood, the most visible of which is that we can have partial credit
items whose categories are not necessarily coded with adjacent integers. Tests of language
proficiency, for example, are abound in such items, and there are situations in longitudinal
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or comparative surveys when some response categories are not observed in some waves
but observed in others. ENORM provides an elegant solution to producing consistent (in
the general sense) estimates of the item parameters in such situations.

In the original formulation by Haberman, the interaction model (IM) is essentially a
Rasch model with the assumption of conditional independence relaxed. When the Rasch
model does not fit the data well, there are two options: preserve conditional independence
but give up the sufficiency of the sum score (the 2PL model), or give up conditional
independence but preserve sufficiency (the IM). The IM is thus a parametric, exponential
family model that reproduces the item difficulties, the correlations of the item scores with
the total scores on the test, and the total score distribution. In other words, it captures all
aspects of the data that are psychometrically relevant, leaving out mostly random noise.
It is intuitively clear that the comparison between the two model-based regressions can
help us concentrate on systematic differences; in Section 3, we relate it to a long tradition in
assessing the goodness of fit in Rasch models.

Note that both axes in Figure 2 refer to observable quantities. In addition, all regres-
sions are pegged to the lower left and upper right corners because all persons with a test
score of zero must have an item score of 0, and similar logic applies to the perfect test score.
One consequence of this is that the curve for the IM resembles a cubic polynomial when it
is flatter in the middle compared to the ENORM curve. In our long practice, we have not
seen a plot where the pink dots did not cluster around the IM curve: as the sample size
increases, the observed regressions get estimated more precisely and the dots get closer
and closer to the IM line.

Our example item is dichotomous. We have generalized the IM to polytomous items.
The default behavior in that case is to plot the item score in place of the proportion correct,
but there is an option to show regressions for the category probabilities instead.

2.4. IRT Analysis: Estimating the Calibration Model

This is easy: fit_enorm(db), Enter , done. Additional flexibility can be achieved
by using a predicate. We have already mentioned one possible use: to exclude items not
reached from the calibration, but one can think of many others. By popular demand, there
is the possibility to fix the parameters for some items to prespecified values. Last but not
least, there is a choice between two estimation models: CML [20] or Bayesian estimation
through a Gibbs sampler [21]. The function returns an object that is best passed directly
and as a whole to other functions, notably the ones that estimate person parameters. Its
structure depends slightly on the choice of estimation technique. When CML estimation is
used, there is a single set of parameter estimates; if the user chooses Bayesian estimation
instead, there will be a set of samples from the posterior distribution of the item parameters.
Applied to the output object, the generic coef function will show the parameter estimates
and their standard errors; in the case of Bayesian estimation, the output contains the
posterior means, the posterior standard deviations, and the 95% highest posterior density
intervals. Other statistics can be produced easily: for example, the posterior medians and
the medians of absolute deviation (MAD) can be computed as:

m = dexter::fit_enorm(db, method="Bayes")
pmed = coef(m, what=’posterior’) |> apply(2, median)
pmad = coef(m, what=’posterior’) |> apply(2, mad)

The generic function plot will produce familiar-looking plots of item fit with the latent
variable on the horizontal axis.

2.5. IRT Analysis: Estimating Student Ability

Arguably, IRT has two main practical advantages, and they both relate to the ulti-
mate purpose of educational tests: personal assessment. One is an optimal, theoretically
grounded method used to equate the scores gained on similar but distinct test forms, and it
is of crucial importance to high-stakes summative assessment. The other is the ability
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to obtain random samples from a person’s true distribution of (latent) ability given their
responses and the item parameter estimates; known as plausible values, these play a vital
role in large scale educational surveys [22]. Although related, the two approaches do not
mix very well: plausible values are not appropriate in assessment because of the random
variability they contain, while the traditional ability estimates are suboptimal in the study
of student (sub)populations.

DEXTER tries to be useful in both situations. For assessment, there are the ability
and the ability_tables functions, and for research one can use the plausible_values
and plausible_scores function. However, before looking at them, why not ask the
more basic question: what if there are no true individual differences in ability? This is
similar to an IRT-based test as the reliability is zero, which can be performed with function
individual_differences:

dexter::individual_differences(db)

# Chi-Square Test for the hypothesis that all respondents
# have the same ability:

# Chi-squared test for given probabilities with simulated p-value
# (based on 2000 replicates)

# X-squared = 328433, df = NA, p-value = 0.0004998

Function ability takes as minimum arguments a data source and a set of item
parameters, and returns a data frame of four variables: the booklet ID, the person ID,
the sum score, and the ability estimate. The default estimation method is MLE; the other
choices are EAP (expected a posteriori) [23] or Warm’s weighted maximum likelihood
estimator (WLE) [24].

Function ability_tables returns a data frame with the booklet ID, the (unequated)
booklet sum score, the corresponding (equated) ability estimate, and the standard error
of the latter. If grade reporting is done on equated scores, the correspondence can be
established easily from the table.

Before proceeding to plausible values and scores and thus to the world of surveys,
let us discuss briefly two other functions related to equating and standard setting. Given
a reference test with a specified threshold score to pass, function probability_to_pass
estimates the equivalent score in a target test, based on ideas from ROC analysis [25,26]. Use
the generic coef method to extract the probability to pass for each booklet and score, and the
generic plot function to display plots of the probabilities, sensitivity and specificity, and the
ROC. This is another method unique to DEXTER and of interest beyond psychometrics
because it extends the popular ROC analysis to situations where a large part of the data is
missing by design.

The data driven direct consensus (3DC) method of standard setting was invented
by Gunter Maris for the First European Survey of Language Competencies [27]; see also
Ref. [28]. The method can be applied traditionally using paper forms, or (preferably) the
standard setting sessions may be computerized, in which case the we advise to use the free
digital 3DC application available from the Cito website. DEXTER has functions to support
both paper-based and computerized standard setting.

In research or survey settings, the preferred way to approach ability is through plausi-
ble values. In spite of the great popularity resulting from their ubiquitous use in large scale
assessment projects, it would be wrong to think that plausible values can be computed in
one single (and well documented) way. To understand how surveys such as PISA or TIMSS
produce them, it is best to go back to the original description [29]. With the parameters of
the IRT model (common across countries), the test responses, and the persons’ background
variables all being constant, the only factor that makes the plausible values for a given per-
son different is apparently a random sampling from the (multivariate normal) distribution
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of the regression coefficients of ability on the background variables. This makes it easier to
understand why background variables play such an important role in the methodology of
these surveys.

DEXTER takes a different approach to generating plausible values: it uses a highly
efficient Gibbs sampler based on composition and rejection algorithms [30]. It does not
place so much emphasis on background variables because theory shows that the algorithm
will converge to the true distribution of the latent trait—but more efficiently if we can
start with a prior that is a reasonably good guess. The package vignette on plausible
values discusses an example in which the true distribution of ability is grotesquely bimodal.
The sampler will converge to the true distribution with a shorter test if it starts with an
appropriate prior; however, with a test of sufficient length the true distribution will be
reproduced even if we use a standard normal prior. Currently, DEXTER offers three kinds
of priors:

• A common normal prior for all persons;
• A mixture of two normal distributions not related to any background variable but

expected to accommodate many situations (asymmetry, heavy tails, etc.) more flexibly
than a normal prior;

• A hierarchical normal prior with a group for each category of one or more nominal
background variables.

Similar to ability and ability_tables, the plausible_values function can take the
object returned by fit_enorm as one of the parameters. If item parameters have been
estimated by CML, the single set of estimates are held constant. A special feature in DEXTER

that, to the best of our knowledge, is not available in any other package, is the ability to
condition each draw from the posterior distribution of ability (i.e., each PV) on a different
draw from the posterior distribution of item parameters. We believe that this approach
better captures all sources of uncertainty inherent to the measurement.

There is also a plausible_scores function. In a design with planned missingness, it
produces plausible scores for all items: the person’s actual scores on the administered items
are retained, and scores for the ones not administered are predicted based on plausible
values. Ref. [31] showed how plausible scores can be used to relax the IRT model in
international surveys by applying the market basket approach.

2.6. Measurement Invariance

DEXTER has two functions to investigate for measurement invariance: DIF is more
exploratory and useful when there are known groups (defined by a categorical person
property) but no a priori hypotheses on the item side, while profile_plot is applicable
when both a person property (groups) and an item property (domains) are known in
advance and of interest. Both functions are rather different from the techniques found in
other packages, so we need to describe them in some detail.

Arguably, the original problem of differential item functioning (DIF) has subsided
over time as item writers have gotten better and better at producing culturally neutral
items. However, there are new challenges. On the substantive side, large-scale assessment
projects have wider coverage than ever, aiming to compare the output of widely different
educational systems. In such a situation, it may be more rewarding to study measurement
invariance than merely try to overcome it. On the methodological size, conceptualizing
DIF has proved to be more challenging than expected, such that there is still active work on
the topic [32].

One of the issues with many techniques used to detect DIF is that they are not invariant
to the choice of identification constraints in the IRT model. Imagine a plot of item difficulties
estimated in two groups; say boys and girls. The plot will reveal some structure and
that structure will not change if we set the difficulty of one or another item to zero for
identification purposes. The problem is that the conclusion about which items have DIF
can depend dramatically on that arbitrary and fully admissible choice. To avoid this pitfall,
Bechger and Maris [33] proposed to concentrate on the structure of DIF rather than the
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individual item. The idea is to consider, instead of the inter-group differences in item
difficulties, the inter-group differences between the matrices of inter-item differences—
thus, to turn the study of differential item functioning into a study of differential item pair
functioning. Such an approach not only eliminates the impact of the arbitrary identification
constraints but also offers additional insight into the structure of DIF by identifying groups
of items that ‘behave’ in a similar way.

We will illustrate with a well-known data set on verbal aggression [34], which is
available in many R packages, including DEXTER. A total of 243 women and 73 men
answered on a 3-point scale (‘yes’, ‘perhaps’, or ‘no’) how likely they are to become verbally
aggressive in 4 different frustrating situations. Further facets include whether the situation
was caused by others or by themselves, the intensity of the verbal reaction (curse, scold,
or shout); finally, the variable mode indicates whether the verbal behavior would actually
be activated or just desired.

The syntax to compute the DIF statistics is shown below. Note that gender is declared
as a person property when the project is created. gender="unknown" defines a default value
that will be overwritten by the actual values. The output is an object that contains an overall
DIF statistic and two square, skew-symmetric matrices, Delta_R and DIF_pair. Delta_R
is computed as the difference between the two square matrices of pairwise differences
between the item difficulties, as estimated for men and women separately. DIF_pair is
obtained by dividing each element of Delta_R by its estimated variance; thus, it is the
matrix of standardized differences, or effect sizes.

dich = dexter::verbAggrRules # provided with the package
dich$item_score[dich$item_score==2] = 1 # dichotomize the items
db = dexter::start_new_project(dich, ":memory:",

person_properties=list(gender="unknown"))
dexter::add_booklet(db, verbAggrData, "agg")
d = dexter::DIF(db, ’gender’)
str(d)

# List of 5
# $ DIF_overall :List of 3
# ..$ stat: num 68.8
# ..$ df : num 23
# ..$ p : num 1.86e-06
# $ DIF_pair : num [1:24, 1:24] 0 -0.819 1.005 1.43 1.347 ...
# $ Delta_R : num [1:24, 1:24] 0 -0.391 0.484 0.688 0.632 ...
# $ $ group_labels: chr [1:2] "Female" "Male"
# $ items :’data.frame’: 24 obs. of 2 variables:
# ..$ item_id : chr [1:24] "S1DoCurse" "S1DoScold" ...
# ..$ item_score: int [1:24] 1 1 1 1 1 1 1 1 1 1 ...
# - attr(*, "class")= chr [1:2] "DIF_stats" "list"

The easiest way to understand these matrices is by plotting them as heatmaps. For ex-
ample, Figure 3 displays a heatmap of the unstandardized differences (Delta_R) produced
with the code below. The default clustering of rows and columns readily reveals two groups
of items defined primarily by the mode of behavior: ‘Do’ vs. ‘Want’. The relative difficulty
of Do and Want items is different for men and women.

rownames(d$Delta_R) = colnames(d$Delta_R) = d$items$item_id
library(pheatmap)
pheatmap::pheatmap(d$Delta_R)
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Figure 3. A clustered heatmap of the matrix of the inter-group differences in the pairwise differences
in difficulty between items.

The generic plot function produces a somewhat different display as shown on Figure 4.
This is based on the absolute values of the effect sizes (the skew-symmetric matrix becomes
symmetric), and the color scheme is calibrated such that values between 0 and 1.96 are
shown in shades of blue while those exceeding the critical value progress from yellow to
red (the critical value can be changed with parameter alpha). The plot is not clustered but
it can be rearranged by passing the item IDs in any desired order: alphabetically, by some
item property, sorted by cluster analysis etc.
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Figure 4. A DIF plot.

The generic print function prints the overall DIF statistic, which is highly significant
for this example:
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print(d)
# Test for DIF: Chi-square = 68.798, df = 23, p = < 0.0006

These plots are exploratory with respect to the item grouping while the person groups
are assumed known. When there are predefined groups of persons and items, a more useful
tool is provided by the profiles and profile_plot functions. These follow the logic of
profile analysis as proposed by Verhelst [35] although we do not compute all the statistics
therein. Profile analysis is an intuitive and robust diagnostic test, and it can be very helpful
when the test is not perfectly unidimensional. For example, if we have items on algebra,
geometry, and probability, it is our choice (and responsibility) whether to produce three
unidimensional tests, a multidimensional test, or at least perform profile analysis as a kind
of residuals analysis within the univariate test covering the three domains. Conditional
on the overall sum score gained by the person, profile analysis estimates expected domain
scores, which can be compared with the observed domain scores. The vector of observed
domain scores is called the observed profile, the vector of expected domain scores is called
the expected profile, and the vector of their differences is called the deviation profile. If the
profiles are purely individual, the deviations can be expected to cancel when aggregating
over teachers, schools, or countries; otherwise, they can provide useful information on
systematic effects due to differences in teaching quality or policy.

Continuing with the verbal aggression example, we add the item property, mode,
to the data base, and we compute the profiles as follows:

dexter::add_item_properties(db, verbAggrProperties)
f = dexter::fit_enorm(db)
p = dexter::profiles(db, f, ’behavior’)

The output is a data frame with the person ID, booklet ID, test score, item property,
and observed and expected domain score. Verhelst’s original software, PROFILE-G, will
aggregate individual profiles over groups and provide a covariance matrix. We have not
implemented all these features, but profiles can be summarized and analyzed easily in R,
for example:

dexter::profiles(db, f, ’mode’) |>
dplyr::inner_join(get_persons(db)) |>
dplyr::group_by(gender,mode) |>
dplyr::summarize(os=mean(domain_score),

es=mean(expected_domain_score),dv=os-es) |>
tidyr::pivot_wider(id_cols=’gender’,names_from=’mode’,values_from=’dv’)

# gender Do Want
# <chr> <dbl> <dbl>
# 1 Female -0.191 0.191
# 2 Male 0.635 -0.635

When the item property has two categories (or has been dichotomized in a sensible
way), we can use the profile_plot function to build a profile plot similar to the one shown
on Figure 5. The two axes show the two domain scores while the gray lines join the points
where the two domain scores add up to the same sum scores. For each person group,
there is a stairlike line joining the modal (most frequent) combination of domain scores
for the person group at each test score. This may sound convoluted, but a single glance at
our example plot immediately reveals that, at any overall level of verbal aggressiveness,
women “do” less than they “want” as compared to men.
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Figure 5. A profile plot.

3. Theory and Implementation
3.1. The Extended Normal Response Model (ENORM)

As mentioned in the previous sections, DEXTER concentrates on a purposefully lim-
ited range of IRT models. The main model, used to calibrate multi-booklet tests, is the
Extended NOminal Response Model (ENORM); another model, valuable in evaluating item
functioning within a test booklet, is Haberman’s interaction model [19].

Building on the work of Maris, Bechger, and San Martin [21] and Cressie and Hol-
land [36], the ENORM is a version of the Nominal Response Model (NRM) [9], where the
scoring parameters for the response categories of an item are known integers, and for which
the manifest probabilities can be determined in closed form.

The NRM is a generalization of the PCM in which every response category in a
polytomous item gets its own score. In the original version of the NRM, the score is a
parameter that is estimated (similar to item discrimination in the 2PL). The ENORM model
implemented in DEXTER assumes that every response category gets its own integer valued
score. Thus, the model differs from the One-Parameter Logistic Model (OPLM, [37]) in
the sense that the scores for different categories in a polytomous item need not be equally
spaced (i.e., one can have 0, 1, 2, 4 for a 4 category item). This is very convenient in
longitudinal or comparative surveys involving items with many categories (typical of
language proficiency tests) where some response category may not be observed in a given
year or country. The NRM makes it possible to treat the item in a conditional sense, i.e., if
we have a PCM with category scores 0, 1, 2, 3, 4, for which category 3 is never observed,
we can estimate the model using a conditional PCM (p(response|response not equal to 3)),
which is a NRM with a scoring rule 0, 1, 2, 4. In this way parameters with observations in
two administrations remain comparable. The Rasch model, the PCM, and the OPLM are all
special cases of the ENORM.

Let xpij be the dummy-coded response in category j of item i by person p. When possi-
ble without causing confusion we will not explicitly distinguish between random variables
and their realization. Boldface is used for vectors and matrices, whereas non-boldface
variables are scalars. Also, we tend to drop indices in formulae to improve readability,
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typically the index p when discussing the responses of a generic person. The probabilities
for a marginal (with respect to some ability distribution f (t)) NRM are:

p(x|b, f , a) =
∫ ∞

0
∏

i
p(xi|bi, t) f (t)dt =

∫ ∞

0
∏

i

∏j(bijt
aij)xij

1 + ∑j bijt
aij

f (t)dt

=

(
∏

i
∏

j
b

xij
ij

) ∫ ∞

0
t∑i ∑j aijxij

f (t)

∏i

(
1 + ∑j bijt

aij
)dt

=

(
∏

i
∏

j
b

xij
ij

)
E
(

T∑i ∑j aijxij |X = 0
)

p(0|b, f , a)

=

(
∏i ∏j b

xij
ij

)
λ∑i ∑j aijxij

∑s γs(b)λs

= p(x|b, λ, a)

(1)

where E() denotes an expected value. For notational convenience we will refer to ∑i ∑j aijxij
as x++ henceforth (note that this is simply the sum score). Observe that the aij are not
parameters but known integer scores: if item i is answered in category j, then the item score
is aij. For every category observed for an item, bij relates to the number of students scoring
in category j of item i, similar to the item difficulty parameter in the simple Rasch model.

Note that whereas the first three lines of the equation are simple mathematical equiv-
alences, the fourth, similar to the formulation of the extended Rasch model in Ref. [21],
involves an extension of the model. Specifically, only if

λs = E(Ts|X = 0)

are the third and the fourth lines equivalent. We will refer to the manifest probabilities in
the fourth line as the extended NRM (ENORM). The advantages of considering the extended
model are that the estimation of item category parameters is robust against violation of the
postulated population distribution of ability, and the common assumption that students
are a simple random sample without multilevel structure.

The functions γs play an important role in what follows, and are defined as:

γx++(b) = ∑
x→x++

∏
i

∏
j

b
xij
ij

where x→ x++ means summation over all response vectors x resulting in a sum score of
x++. These are a direct extension of the elementary symmetric functions [38] we encounter
for the special case of a Rasch model, and we share with these a simple recursive property:

γs(b) = γs(b(i)) + ∑
j

γt−aij(b(i))bij

where b(i) denotes the item parameters bar the parameters belonging to item i, and we
adopt the convention that γs = 0 whenever s is not a possible value of x++. This recursion
is important for two reasons. First, it allows for computing the γ functions efficiently,
without having to sum over all possible response patterns. Second, it shows that the γ
function is linear in each of the threshold parameters bij.

To deal with missing data and incomplete designs, consider a design matrix, D,
with elements dpij = 1 whenever person p has responded to item i, and zero otherwise:

p(x|b, λ, a, D) =
∏i ∏j b

x+ij
ij ∏k ∏s λ

nks
ks

∏k
(
∑s γs(b(k))λks

)nk+
(2)
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where x+ij = ∑p aijxpijdpij, nks denotes the number of students with score s on test form
k, and nk+ = ∑s nks is the total number of students that responded to test form k, with s
running over scores on test-form k.

3.2. Estimation

As with the extended Rasch model, we introduce the following reparameterization of
the ENORM

πks =
γs(b(k))λks

∑t γt(b(k))λkt

in terms of which we obtain the following manifest probabilities:

p(x|b, λ, a, D) =
∏i ∏j b

x+ij
ij

∏k ∏s γs(b(k))nks
∏

k
∏

s
π

nks
ks (3)

from which we see that the score distribution on test form k, nk, follows the multinomial
distribution with parameter πk. Conditional maximum likelihood (CML) entails finding
the values of the item-category parameters that maximize the first factor, which is the
likelihood conditional on the observed sum scores.

Before moving on, we shortly address the issue of parameter identifiability. From
Equation (3) it follows directly that the parameters π are identifiable. Regarding the item
category threshold parameters, b, they obey the following property:

∏i ∏j b
x+ij
ij

∏k ∏s γs(b(k))nks
=

∏i ∏j(cb)
x+ij
ij

∏k ∏s csγs(cb(k))nks

which is resolved, for example, by fixing one of the bij to a particular value.
To estimate the parameters of the ENORM DEXTER offers the choice between CML or an

adaptation of the Gibbs sampler for the extended Rasch model in Ref. [21]. CML has been
around for 50 years and is well documented, so here we concentrate on the latter. Adopting
a Gamma prior for every parameter, we obtain the following posterior distribution:

f (b, λ|x, a, D) ∝
∏i ∏j b

x+ij
ij ∏k ∏s λ

nks
ks

∏k
(
∑s λs(b(k))λks

)nk+
(likelihood)

×∏
i

∏
j

b
ηij−1
ij exp(−ρijbij)∏

k
∏

s
λ

νks−1
ks exp(−σksλks) (prior) (4)

where ηij, ρij, νks, and σks are the parameters for the prior for bij and λks, respectively.
A problem with applying the approach for complete data in Ref. [21] with this

posterior distribution is that the denominator of the manifest probabilities is, in contrast
to complete data, a product, such that we do not immediately obtain full conditional
distributions that are tractable. Koops, Bechger, and Maris [39] consider an alternative, data
augmentation approach (DA, Tanner and Wong, 1987, Tanner, 1991). The key insight is in
the following well known (gamma) integral equation:

Γ(n)
λn =

∫ ∞

0
yn−1 exp(−λy)dy (5)
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Using this integral equation for every factor in the denominator of our posterior
distribution gives the following:

f (b, λ|x, a, D) ∝∫
RK

+

exp(σksλks)∏
i

∏
j

b
x+ij+ηij−1
ij exp(−ρijbij)∏

k
∏

s
λ

nksνks−1
ks exp(−σksλks)

×∏
k

ynk
k exp

(
−
(

∑
s

γs(b(k))λks

)
yk

)
dy (6)

where K denotes the number of test forms. The expression inside of the integral is (pro-
portional to) a distribution as well (i.e., f (b, λ, y|x, a, D)). This distribution is extremely
simple to simulate by using a Gibbs sampler [40]. Remembering that the γ functions are
linear in each of their arguments, we see that, for every random variable (e.g., yk, bij, λks),
the full conditional distribution is a gamma distribution:

(Yk| . . .) ∼ Gamma(nk, ∑
s

γs(b(k))λks) (7)

(Λks| . . .) ∼ Gamma(nks + νks, γs(b(k))yk + σks) (8)

(Bij| . . .) ∼ Gamma(x+ij + ηij, ∑
k

∑
s

γs−aij(b
(k)
(i) )λksyk + ρij) (9)

where we use the shorthand notation . . . to refer to all other random variables in the
joint distribution. Note that this Gibbs sampler shares with CML the property that its
computational cost is independent of the number of respondents.

3.3. Goodness of Fit and the Interaction Model

There is a long tradition, going back at least to work by Erling B. Andersen, to eval-
uate model fit by comparing observed and expected item total regression functions [41].
Andersen’s approach is based on the observation that for the Rasch model, and in fact
for any exponential family measurement model, the item parameters can be estimated
consistently from responses of students with the same total score. If, with respect to the
same identifying constraint, the item parameters for a given item are all the same across all
total scores, then the model fits for this item. This original approach is mainly of theoretical
interest, as it requires large sample sizes and has many degrees of freedom (and hence
low power).

In DEXTER we follow Andersen’s general logic with two major differences: we prefer
visual checks to formal statistical tests, and we have found a more parsimonious model
against which to compare the observed item-total regressions and those predicted by the
calibration model: Haberman’s interaction model [19], which we have extended to items
having more than two categories. A basic assumption underlying most IRT models is that
the responses given by a person are conditionally independent given the latent ability level,
θ. For example, in the Rasch model (RM)

P(X = x|θ) = ∏
i

P(Xi = xi|θ, βi) ∝ exp(θx+ + ∑
i

βixi). (10)

Haberman [19] relaxes this assumption in the following way:

P(X = x|θ) ∝ exp

[
θx+ + ∑

i
βixi + ∑

i
∑
j>i

(ψi + ψj)xixj

]
(11)

where the additive parameter, ψi + ψj captures the strength of the interaction between
Xi and Xj; the Rasch model obtains a special case when all interaction parameters are
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zero. Thus, by giving-up on local independence, the Rasch model can be extended without
sacrificing the sufficiency of the sum score.

With some algebra, the interaction model (IM) can be rewritten as

P(X = x|θ) ∝ exp

[
θx+ + ∑

i
βixi + (x+ − 1)∑

i
ψixi

]
= exp(θx+ + ∑

i
βx+ixi) (12)

where βri = βi + (r− 1)ψi. Written in this way, the IM is similar to the RM except that the
item parameters depend linearly on the test sum score. Thus, the IM is not as general as
the completely relaxed model used by Andersen, where βx+i is a parameter for each score
and each item; on the other hand, it is not as restrictive as the RM where βx+i = βi, which
is equal for every score, and can even be shown to be more general than the 2PL model.
Over the years, we have found that a linear relation between item difficulty and sum score
is surprisingly common in large educational data sets, which is another way to say that the
IM fits the data. Plots for a couple of real life items are shown on Figure 6.

Rewriting the IM once more, this time as an extended marginal model over the
observed frequency distribution of the sum scores, further reveals the useful properties of
the model:

∏
p

P
(
xp
)
= ∏

p

λxp+ ∏i b
xpi
xp+i

∑s γs(bs)λs

∝ exp

(
∑

i
β∗i x+i + ∑

i
ψi ∑

p
xp+xpi + ∑

s
ns ln λs

) (13)

where β∗i = βi − ψi. The extended IM is thus seen to be an exponential family model that
reproduces the CTT item facilities (proportions correct, irritatingly called p-values by the
profession), the item-sum correlations, and the observed score distribution. Since these are
the main quantities of interest in classical test and item analysis, it seems fair to say that the
extended IM is the model that fits classical test theory.

Figure 6. If we estimate item difficulties in groups of respondents with the same test scores, we
commonly observe a linear relationship between item difficulty and test score. The left panel shows a
Rasch item whose difficulty is independent of the sum score. The panel on the right shows an item
conforming to the interaction model.

Furthermore, because the RM and the IM are both exponential family models, it is easy
to obtain useful diagnostic displays such as the item-total regressions shown on Figure 2.
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The observed regressions (proportion of correct responses to the item at each distinct test
score) are compared to the regressions predicted by the RM and the IM. In the dichotomous
case, these are:

p(Xi = 1|x+) =
γx+−1(b(i))bi

γx+ (b) (RM)

=
γx+−1(b(i)cx+ )bic

x+
i

γx+ (bcx+ )
(IM)

(14)

where bi = exp(−βi), ci = exp(ψi), and b(i) denote the item parameters without bi.
For polytomous items, DEXTER offers the choice between regression plots for the item
score or regression plots for the probability of each response category. Note that all three
regressions involve observable quantities on both axes and avoid circular arguments in
assessing the goodness of fit. Comparing the RM to a more relaxed model is consistent
with the logic in Ref. [41]; however, while a chi-squared test would give more weight to the
least frequent scores, we use the “curtains” on the graph as a reminder that these are areas
involving few persons and less precise estimation.

3.4. Ability Estimation

DEXTER provides the usual estimates of student ability, which are well-known and
need not be discussed in detail here (see the previous section for some detail). Staying
within the realm of exponential family models makes it easy to provide all the conversion
tables needed to equate test forms in practice.

Plausible values (PV [42]) deserve more attention, both for their great theoretical and
practical value and because there is considerable variation in the literature and in practical
implementations [29]. Marsman et al. [22] enumerate four possible approaches to estimate
the distribution of a latent variable, f (Θ). The PV approach is to use a convenient prior
distribution to generate random samples from the posterior distribution given the data
and the (estimated) item parameters. Ref. [22] prove that the marginal distribution of these
variables, called PV, is a consistent estimator of f (Θ); they discuss numerous theoretical
and practical implications, including the factors influencing the speed of convergence,
or what happens if the prior distribution is poorly chosen or an important background
variable is not taken into account.

DEXTER offers a choice between three prior distributions: a standard normal distribu-
tion, common for all examinees; separate standard normal distributions for each category
of a discrete background variable; or a mixture of two standard normal distributions.
The latter option is intended not only for obviously bimodal distribution but should also
be able to handle asymmetry, heavy tails, etc. Because we are dealing with models with
sufficient statistics for the person and item parameters, it is easy to implement a simple
rejection sampler, which boils down to the following idea:

repeat
draw an ability θ∗ from the prior distribution
simulate a response pattern y for someone with ability θ∗

until y+ = x+
return θ∗

As it stands, the algorithm proved to be efficient enough to support the First European
Survey of Language Competencies [27]. Further gains in efficiency are possible by stashing
the rejected draws for use with candidates with the appropriate total score [43]. In the
course of the computations, the priors get updated. In the simplest case of a common
normal prior, updating the means (mu) and the standard deviation (sigma) could be done
in the following way:

pvv = var(pv)
sigma = sqrt(1/rgamma(1, shape=(m-1)/2, rate=((m-1)/2)*pvv))
pvm = mean(pv)
mu = rnorm(1, pvm, sigma/sqrt(length(m))
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where pv is the latest set of m PV generated. In practice, we update the priors following
the multilevel approach in Ref. [44], Chapter 18 (see also the code p. 399f.). Updating the
mixture prior follows the logic as explained, e.g., in chapter 6 of [45].

3.5. Other Features and Innovations

The purpose of this section is to explain the theoretical and algorithmic fundamentals
of DEXTER. There are many more features, often of an innovative nature, that we cannot
cover in detail:

• Our specific approach to DIF, which focuses on item pairs rather than individual items,
was introduced in Ref. [33]. We have illustrated it in some detail in the preceding
section, so we direct the reader to the original paper for a more formal discussion;

• The use of plausible scores to relax the reliance on common IRT models in comparative
research is discussed in Ref. [31] and demonstrated in the next section;

• There is a formal test of individual differences against the null hypothesis that all
persons have the same latent ability; it is explained in a package vignette (see the
previous section for an example);

• For tests with a defined pass-fail score, there is a novel equating method based on
ROC analysis [25]; again, there is a detailed vignette;

• Function latent_cor estimates correlations between latent traits within a DEXTER

project; use an item property to specify the items belonging to each scale;
• A particularly promising application of the models in DEXTER concerns multi-stage

tests with predefined routing rules on observed scores. The theoretical foundations
are discussed by Zwitser and Maris [46], and the implementation is in the companion
package, dexterMST [47], which also contains a detailed vignette. The major advantage
of this approach to adaptivity is that it circumvents many inherent properties of
computerized adaptive testing (CAT) that are less attractive in high stakes situations—
in particular, unwanted item exposure in both pre-calibration and administration.
In contrast, the multi-stage tests implemented in dexterMST are calibrated similar to
linear tests, requiring minimal pre-testing.

4. A More Extensive Example

As a larger example of DEXTER in action, we analyze the cognitive data from the test
of mathematics, PISA 2012. We download and parse the data, create a DEXTER data base,
estimate the IRT model, compute five plausible values per examinee, and apply the market
basket approach described in Ref. [31].

Note that this is not a tour of DEXTER or a demonstration of the complete workflow:
for example, we omit the test and item diagnostics, which have been discussed already,
and which would be the starting point in practice. The purpose is to show DEXTER in
action on a larger project, and to follow up the possible consequences of adopting a
different approach to the generation of plausible values or allowing the IRT model to differ
across countries.

Analyzing more recent waves of PISA or TIMSS is possible but more tedious because
of an unfortunate decision to make the data available in the form of huge binary files for
SPSS or SAS; these contain the original and the scored responses, response times, other
variables and, of course, an enormous amount of missing data indicators. 2012 is the last
year when data was available as ASCII files and syntax files for SPSS and SAS. We use the
SAScii package [48] to parse and interpret the SAS syntax; this makes reading the data into
R quite easy.

library(dexter)
library(dplyr)
library(tidyr)
library(readr)
library(SAScii)
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oecd = "http://www.oecd.org/pisa/pisaproducts/"
url1 = paste0(oecd, "INT_COG12_S_DEC03.zip")
url2 = paste0(oecd, "PISA2012_SAS_scored_cognitive_item.sas")

zipfile = tempfile(fileext=’.zip’)
utils::download.file(url1, zipfile)
fname = utils::unzip(zipfile, list=TRUE)$Name[1]
utils::unzip(zipfile, files = fname, overwrite=TRUE)
unlink(zipfile) # erase from~disk

dict_scored = SAScii::parse.SAScii(sas_ri = url2)

All mathematics items have variable names starting with PM, so it is easy to select
them. We change the codes for missing values (7 for N/A and 8 for ‘not reached’) to
NA, because distinguishing between them is beyond the scope of this example. The same
applies to the careful diagnostic analysis of the responses with CTT and other tools, which
is always necessary in practice, and for which DEXTER is well equipped.

data_scored = readr::read_fwf(
file = fname,
col_positions = fwf_widths(dict_scored$width,

col_names = dict_scored$varname)) |>
dplyr::select(CNT, SCHOOLID, STIDSTD, BOOKID, starts_with(’PM’))

unlink(fname) # erase from~disk

data_scored$BOOKID = sprintf(’B%02d’, data_scored$BOOKID)
data_scored[data_scored==7] = NA
data_scored[data_scored==8] = NA

Now, start a new DEXTER project and add the data. First we need to declare all items
and their admissible scores in a rules object, which is passed to the start_new_project
function.

rules = tidyr::gather(data_scored, key=’item_id’, value=’response’,
starts_with(’PM’)) |>

dplyr::distinct(item_id, response) |>
dplyr::mutate(item_score = ifelse(is.na(response), 0, response))

db = dexter::start_new_project(rules, "pisa2012.db",
person_properties=list(

cnt = ’<unknown country>’,
schoolid = ’<unknown country>’,
stidstd = ’<unknown student>’

)
)

Add the data for the 21 booklets in a loop. Conveniently, this will deduce the test
design automatically:

for(bkdata in split(data_scored, data_scored$BOOKID))
{

# remove columns that only have NA values
bkrsp = bkdata[,apply(bkdata,2,function(x) !all(is.na(x)))]
dexter::add_booklet(db, bkrsp, booklet_id = bkdata$BOOKID[1])
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}
rm(data_scored)

For later use, we compute a binary item property that indicates whether an item has
been asked in all participating countries, and we add it to the data base:

item_by_cnt = dexter::get_responses(db, columns=c(’item_id’, ’cnt’)) |>
dplyr::distinct()

market_basket = Reduce(intersect, split(item_by_cnt$item_id,
item_by_cnt$cnt))

dexter::add_item_properties(db,
dplyr::tibble(item_id = market_basket, in_basket = 1),

default_values = list(in_basket = 0L))

When programmed properly, CML estimation tends to be fast—about 10 s on a rather
unpretentious laptop, with most of the time used to fetch the data:

system.time({item_parms = dexter::fit_enorm(db)})

# user system elapsed
# 10.80 0.63 11.07

Generating the plausible values is also fast: less than 12 s for almost half a million cases:

system.time({pv = dexter::plausible_values(db, parms=item_parms, nPV=5)})
dim(pv)

# user system elapsed
# 11.44 0.50 11.93

# [1] 485490 8

Comparing against PISA is more work. We need to download a very large data file
that contains all the background variables from the student questionnaire, the plausible
values, and the sampling and replicate weights necessary to compute the estimates and
their standard errors. This necessitated to adjust the timeout option, without which the
download may time out. From the large file, we retain only the country identifier and the
plausible values.

url3 = paste0(oecd, ’INT_STU12_DEC03.zip’)
url4 = paste0(oecd, ’PISA2012_SAS_student.sas’)

zipfile = tempfile(fileext=’.zip’)
options(timeout = max(300, getOption("timeout")))
utils::download.file(url3, zipfile)
fname = utils::unzip(zipfile, list=TRUE)$Name[1]
utils::unzip(zipfile, files = fname, overwrite=TRUE)

dict_quest = SAScii::parse.SAScii(sas_ri = url4)

dict_quest = SAScii::parse.SAScii(sas_ri = url4) |>
dplyr::mutate(end = cumsum(width), beg = end - width + 1) |>
dplyr::filter(grepl(’CNT|PV.MATH’, varname))



Psych 2023, 5 372

data_quest = readr::read_fwf(file = fname,
fwf_positions(dict_quest$beg, dict_quest$end, dict_quest$varname))

unlink(zipfile)
unlink(fname)

Figure 7 compares the country means of one set of plausible values as estimated by
PISA and by DEXTER. Given that PISA estimates item parameters by MML while DEXTER

uses CML, and that plausible values are computed by different methods (both of which
involve random numbers), the correspondence is more than decent.

The country means compared on the plot are calculated from plausible values ob-
tained from a common IRT model for all participating countries. Numerous studies
such as Refs. [49,50] have found evidence of DIF in large scale international assessments,
and some of them have been quite critical of the current practice, which typically in-
volves fitting country-specific IRT model, removing items with DIF exceeding some pre-
specified criteria, and then fitting a common model for further analysis and comparison.
Zwitser et al. [31] argue that DIF is a natural result from the national efforts to improve
education, and its study may be a more rewarding exploit than obtaining a completely
DIF-free comparison. They propose an approach using country-specific IRT models that is
easy to realize in DEXTER with the plausible_scores function. The following code selects
responses to items that have been asked in all participating countries, fits a different IRT
model in each country, and computes plausible scores (there are also some trivial adjust-
ments for items that did not have any correct responses in a few countries). As explained
in Section 1, plausible scores are sum scores over all items, where item scores for the items
actually asked to the person under the incomplete design are retained ‘as is’, while item
scores for the remaining items are simulated from plausible values.
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Figure 7. Country means of the first plausible value as estimated by PISA and by DEXTER.

basket = dexter::get_items(db) |>
dplyr::filter(in_basket == 1) |>
dplyr::pull(item_id)
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basket = setdiff(basket, c(’PM828Q01’,’PM909Q01’, ’PM985Q03’))

resp = dexter::get_responses(db,
predicate = item_id %in% basket,
columns=c(’person_id’, ’item_id’, ’item_score’, ’cnt’))

ps = resp |>
dplyr::filter (item_id %in% basket) |>
dplyr::group_by(cnt) |>
dplyr::do({dexter::plausible_scores(., dexter::fit_enorm(.), nPS=1)})

Figure 8 shows country means of a set of plausible scores produced with DEXTER

from country-specific IRT models against the country means of PISA’s first plausible value.
The correspondence is quite decent, so it seems that using 68 country-specific IRT models
instead of a common model does not make a huge difference. Of course, the items have
already been screened for DIF by PISA and their number has been cut in half by the
requirement to use only items that have been administered in all countries.
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Figure 8. Country means of the first plausible value as estimated by PISA and plausible scores as
estimated by DEXTER from country-specific IRT models.

5. Conclusions

An anonymous reviewer has pointed out that every paper needs a conclusion, and we
could not agree more—but what conclusions can we draw from presenting our own
package? Obviously, we like DEXTER. We think that its data management capabilities
make it unique in its class. An array of diagnostic tools, many of which not available
elsewhere, allow for quick identification of problematic items or other issues. The estimation
techniques are robust and extremely fast. There are clearly defined boundaries to what the
package will or will not do, and much of what it does do is innovative and the subject of
numerous original publications.

We were never assigned officially the task to develop software. The package grew
gradually—now to provide more efficient or non-standard solutions for projects such as
the ESLC, now as a playground for our own psychometric research, including several
doctoral dissertations. At some point, a loose collection of functions became shaped up
into a comprehensive and handy tool that we felt could be offered to a wider community.
However, of course, the final conclusion always belongs to the user.
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