
Article

An Evaluation of DIF Tests in Multistage Tests for
Continuous Covariates

Rudolf Debelak 1,2,* and Dries Debeer 3

����������
�������

Citation: Debelak, R.; Debeer, D. An

Evaluation of DIF Tests in Multistage

Tests for Continuous Covariates.

Psych 2021, 3, 618–638. https://

doi.org/10.3390/psych3040040

Academic Editor: Alexander

Robitzsch

Received: 30 August 2021

Accepted: 10 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Psychology, University of Zurich, Binzmuehlestrasse 14/27, 8050 Zurich, Switzerland
2 Institute of Psychology, University of Leipzig, Neumarkt 9, 04109 Leipzig, Germany
3 Itec-Imec Research Group at KU Leuven, Etienne Sabbelaan 53-Box 7654, 8500 Kortrijk, Belgium;

dries.debeer@kuleuven.be
* Correspondence: rudolf.debelak@psychologie.uzh.ch

Abstract: Multistage tests are a widely used and efficient type of test presentation that aims to
provide accurate ability estimates while keeping the test relatively short. Multistage tests typically
rely on the psychometric framework of item response theory. Violations of item response models and
other assumptions underlying a multistage test, such as differential item functioning, can lead to
inaccurate ability estimates and unfair measurements. There is a practical need for methods to detect
problematic model violations to avoid these issues. This study compares and evaluates three methods
for the detection of differential item functioning with regard to continuous person covariates in data
from multistage tests: a linear logistic regression test and two adaptations of a recently proposed
score-based DIF test. While all tests show a satisfactory Type I error rate, the score-based tests show
greater power against three types of DIF effects.

Keywords: item response theory; differential item functioning; multistage testing

1. Introduction

Psychological and educational assessments typically use models of item response
theory (IRT) to statistically describe respondent-test item interactions. From a practical
perspective, the IRT framework allows the application of sophisticated statistical techniques
to verify important characteristics of these tests, such as aspects of the reliability and
validity of the test scores [1–4]. The IRT framework further allows the application of
advanced methods of test presentation, such as computerized adaptive testing (CAT) and
multistage testing (MST). The principal aim of CAT and MST is to provide an economical
assessment of the abilities of the individual respondents by making the presented items
dependent on the respondent’s performance on previous test items. They are widely used
in educational and psychological testing, for instance, in the Programme for International
Student Assessment [5]. Although we will explain the key concepts underlying MST and
its relation to CAT below, see [6–8] for more technical introductions.

The practical usefulness of the IRT framework depends on whether the chosen IRT
model provides a sufficiently accurate description of the interaction of the respondents
and the test items. Serious model misfit can lead to severe practical consequences, for
instance, the systematic over- or underestimation of the abilities of respondents. There are
multiple violations for IRT models that can be relevant in practical applications, and many
of them can be interpreted as a misspecification of the IRT model used. Examples include
the presence of local dependence between specific items or the over- or underestimation of
the test’s dimensionality. For a discussion of these model violations in the context of MST,
see, for instance, [6,9]. In this paper, we focus on differential item functioning (DIF) [10],
which is related to the fairness of a test [11]. In the context of ability assessments, a test is
defined to show this type of model violation when respondents of equal ability that differ
with regard to a specific person covariate do not show the same probability of giving a
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correct response on a given item, e.g., [12]. The absence of DIF is typically regarded as a
desirable characteristic of psychological and educational tests, cf. [13]. DIF implies that
the probability of giving a correct response not only depends on item characteristics and
the latent ability of the respondent, but also on some characteristic of the respondent (i.e.,
a person covariate) that can be categorical (e.g., gender), ordinal (e.g., educational level)
or continuous (e.g., age). Traditionally two mutually exclusive types of DIF are discerned
that can be related to these three types of covariates: Ackerman [14] defines a DIF effect
to be uniform if ICCs for different values of the covariate are parallel and thus only differ
by a horizontal translation. Alternatively, non-uniform DIF implies that the ICCs are not
parallel, and that the change in ICCs depends on the ability. In practical assessments, the
presence of such effects usually leads to unfair disadvantages for specific respondents. It is
therefore necessary to check for DIF effects in practical assessments, which also include
multistage tests that are based on an IRT framework. Therefore, there is a need for statistical
tests that allow the detection of DIF effects in multistage tests.

We will review some of the tests proposed for this purpose in this paper. As will
be shown, most of these tests focus only on the detection of DIF effects that are related
to categorical covariates, that is, effects that advantage specific groups of respondents.
Although some tests for the detection of DIF effects with regard to continuous covariates
have been proposed in the literature for multistage tests, they have thus far not been
systematically evaluated or compared.

In this paper, we aim to fill this gap in the literature by providing a systematic compar-
ison and evaluation of several statistical procedures that were proposed for detecting this
model violation by means of several simulation studies. This article expands on previous
overviews of methods for DIF detection in the context of MST and CAT, for instance, [15,16].
In contrast to these earlier studies, we also discuss the topic of anchor selection in this
context and point to an implementation of these methods in the R framework for statistical
computing [17].

The remainder of this paper is structured as follows: In the next section, we provide
an overview of MST. In the third section, we review statistical tests that were proposed for
the detection of DIF in multistage tests. We then evaluate three tests for the detection of
DIF effects regarding continuous covariates in a simulation study, which focuses on the
detection of uniform DIF effects. We conclude our paper with a discussion of the principal
findings of our study.

2. An Overview of Multistage Testing

This section introduces the principal ideas behind MST. For alternative overviews on
this topic, see, e.g., [6,8,9,16,18].

The items in multistage tests are grouped in modules or testlets [8], which are pre-
sented to respondents working on the test. This presentation of modules is the main
difference between multistage tests and computerized adaptive tests, where individual
items are selected for presentation. The items of a module can be based on similar con-
tent [19] and are typically of similar difficulty [9]. After respondents completed a module,
their performance is assessed, and the multistage test either ends or a suitable next module
is selected and administered.

The rationale used for selecting modules during MST is also referred to as rout-
ing [8]. In addition to the information contained in the responses, routing can also use
performance-related prior information [19] and consider content balancing and item ex-
posure [6]. Various approaches have been proposed for routing, including assessing the
test performance based on the number of correctly solved items [20] and the application of
machine learning algorithms such as regression trees [21,22].

Another common approach for routing is the assessment of a respondent’s perfor-
mance using an IRT model, such as the Rasch model [23] or the two-parametric logistic
(2PL) model [24] and the corresponding item response function, which allows a prediction
of the response behavior [6,20]. As an example, the response function of the 2PL model will
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be provided in the Materials and Methods section of this paper; extensive introductions to
IRT are provided in the literature, e.g., [1–4,25].

In the item response function, the psychometric characteristics of test items, such as
their difficulty, correspond to item parameters, whereas the ability levels of the respondents
correspond to person parameters. The application of MST within an IRT framework
assumes that the item parameters are sufficiently well known, for instance, based on an
earlier calibration study, and that the item response function describes the interaction of
the respondents and the items accurately.

After the presentation of the first module, which is also named the routing module [8,19],
a multistage test based on the IRT framework typically obtains a provisional estimation of
the person parameter, and the next module is selected for presentation using predefined
rules. These rules can aim at optimizing the accuracy of the person parameter estimation
but can also be related to controlling the exposure of individual items or item content.
This procedure of obtaining provisional ability estimates and selecting the next modules
is repeated until the end of the test, where a final ability estimate is returned. For a
overview on possible estimation methods for the person parameter, see [6], chapter 2.3.2.
These methods include, for instance, maximum likelihood (ML) estimation [26], weighted
maximum likelihood (WL) estimation [27], or Bayesian point estimates [24,28].

In this paper, we consider a scenario in which the assumed item parameters that are
used for item selection and ability estimation deviate from the true item parameters. It
follows from the previous outline that a misspecification of the item parameters can affect
the validity of the outcome of the test. In the next section, we provide an outline of methods
for detecting this model violation.

3. Methods for Detecting Differential Item Functioning

It is important to consider that the items investigated for DIF can be presented in
various scenarios (cf. [15]): First, one could test items that were already used as part of an
operational multistage test. Here, estimates for the item parameters are readily available,
and it is tested whether these estimates are stable for all respondents. This is the scenario
that we focus on in this paper. Second, one could evaluate items that are not yet used for
person ability estimation and are either presented scattered throughout a multistage test or
in a separate section before or after a multistage test. We do not focus on this scenario here
but will briefly review such a scenario at the end of this section.

Most of the methods proposed for the first scenario were designed for a setting in
which the item parameters are assumed to deviate between two (or more) predefined
groups of respondents. First, we will briefly describe these methods that can only be
applied for DIF detection with respect to categorical covariates. Thereafter, we discuss DIF
detection methods that can (also) be applied to continuous covariates. Finally, we briefly
address the scenario where there are no item parameter estimates for the investigated items,
and the problem of anchoring in the context of DIF detection in MST.

What all methods that are discussed below have in common is that they test the null
hypothesis that the item parameters of a specific item are invariant across all respondents.
As such, they can be expected to be sensitive to both uniform and non-uniform DIF effects.
Although some of the methods can also be applied to polytomous items, we assume that
the items of the test are dichotomous to describe the methods, that is, we assume that two
responses (1 and 0) are possible for each item.

3.1. Methods for Categorical Covariates

Zwick [15] provides an overview of the methods for DIF detection in computerized
adaptive tests with a focus on detecting parameter differences between a focal and a
reference group. This topic was also briefly addressed by Zwick and Bridgeman [29] for
multistage tests. Since the methods of test presentation in MST and CAT are comparable,
these methods can also be applied for DIF detection in multistage tests, although they
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have, to the knowledge of the authors, not yet been implemented in openly available
software packages.

3.1.1. Mantel–Haenszel Test

The Mantel–Haenszel test was originally proposed by Holland and Thayer [30] for
testing DIF in individual items in linear tests, that is, tests where all respondents work on
the same item set. Here, all respondents are assigned to one of K ability levels and one
of two groups, which are named the focal and reference groups; in linear tests, the ability
levels are usually defined based on the raw sum score (i.e., number correct scoring). If
we can observe a correct or incorrect response to the evaluated item, we can observe two
possible responses for each respondent, who in turn fall into one of 2× K possible groups
(focal or reference group combined with one of K ability levels). Therefore, each response to
this item is assigned to one of 2× 2× K cells in a contingency table. The Mantel–Haenszel
test now tests the null hypothesis that the ratio of correct and incorrect responses on each
ability level is the same for the focal and reference groups using a test statistic that is based
on a conditional odds-ratio statistic. For technical details, see [15].

Zwick [15] also describes the related standardization procedure of Dorans and
Kulick [31], which is also based on the contingency table that underlies the Mantel–
Haenszel test. To calculate this statistic, first, a weighted difference of the probabilities for
a correct response in the focal and reference groups is calculated for each ability level. As
a second step, these differences are summed to obtain a summary statistic. According to
Zwick [15], this summary statistic is used as a descriptive measure for the size of a DIF
effect and typically not as a formal test statistic.

Several publications addressed the application of the ideas underlying the Mantel–
Haenszel test to CAT [32–36]. Here, the basic idea is to define the ability levels that are used
for comparing the focal and reference groups not on the raw score but on the estimated
person parameters. For technical details, we refer to these publications; additionally, we
point out that these methods can conceptually also be applied to MST.

3.1.2. MSTSIB

This test was proposed by Gierl, Lai, and Li [37] for detecting DIF in MST and is
technically based on the SIBTEST procedure of Shealy and Stout [38]. A related test named
CATSIB, which was designed for application in CAT, was proposed by Nandakumar and
Roussos [39]. MSTSIB aims to detect DIF effects between a focal group and a reference
group. The reasoning of the test is the following: If there is no DIF between the focal
and reference groups, the expected response to a given item should be identical for both
groups and only depend on the estimated ability θ̂ of the respondent. MSTSIB assumes
that the final ability estimate provides an accurate point estimate of each respondent’s
ability. Let ESR(θ̂) be the probability of a correct response of a member of the reference
group with an estimated ability of θ̂ and ESF(θ̂) be the corresponding probability for a
member of the focal group. MSTSIB now defines a series of intervals in which the ability
parameter estimates in the sample can fall. For each interval, the difference between ESR(θ̂)
and ESF(θ̂) is estimated, and a weighted mean of the overall difference is calculated.
The weights consider the number of respondents from the focal and reference groups in
each interval. Under the null hypothesis of no DIF, this difference should be normally
distributed with a mean of zero, which is used for a statistical test. For technical details on
this procedure, see [37].

3.1.3. Likelihood Ratio Test

Lei, Chen, and Yu [40] proposed and evaluated a method for DIF testing in CAT that
is based on a likelihood ratio test. As was the case for the previous tests, this test assumes
that all respondents are assigned to either a focal or a reference group. Conceptually, this
test consists of the following steps. First, the missing data resulting from the adaptive
test presentation are replaced by imputed data using the assumed IRT model. Second, a
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likelihood ratio test was carried out that compares the likelihood of two models. In the first
of these models, the item parameters of the focal and reference groups are assumed to be
identical, whereas they are allowed to differ in the second model.

Conceptually, this test can also be applied with multistage tests. For a critical discus-
sion of this approach, see [15], Section 17.3.

3.2. Methods for Continuous Covariates

In this outline, we provide a nontechnical introduction to three methods that were
proposed to detect DIF with respect to a continuous covariate in multistage tests. Using
the estimated ability parameters, they aim to detect differences in the response behavior
between respondents that differ with regard to a continuous covariate. The three methods
that we describe are (a) logistic regression and (b) two types of score-based tests. Note that
there are also methods proposed for assessing parameter invariance that can be used to
detect DIF with respect to a continuous covariate. An example is moderated nonlinear
factor analysis (e.g., [41]). This method formulates DIF as person covariates moderating
the parameters of the measurement model. Like in the linear logistic regression approach,
an assumption needs to be made about the shape of the moderating effect. Typically linear
effects are assumed.

3.2.1. Linear Logistic Regression

This test was proposed by Swaminathan and Rogers [42] for DIF detection in linear
tests. As its name suggests, this method uses a linear logistic regression model to describe
the responses of the respondents to the individual items. The dependent variable of this
regression model is the observed response (0 or 1) in a given item, whereas the independent
variables are the estimated ability parameters, an observed person covariate and the
interaction of these two predictors. Under the null hypothesis of parameter invariance, the
person covariates and the interaction should not provide any additional information on
the prediction of the response in addition to the ability parameters, and therefore, their
regression coefficients should be zero. The logistic regression test for a given item is now
based on a likelihood ratio test that checks whether the regression coefficients of the person
covariate and the interaction are zero. In this study, an item was flagged by the linear
logistic regression test if the p-value of this likelihood ratio test was below 0.05.

The person covariate in this regression model can be a categorical covariate but, in
principle, also a continuous covariate such as age. In the case of continuous covariates, this
testing approach explicitly assumes that there is a linear relationship between the covariate
tested for DIF and the logit of the predicted probability for a correct response [40]. It should
also be noted that this test assumes that the ability estimation in the multistage test is
sufficiently accurate. Another assumption of the statistical test used for comparing the
logistic regression models is that the underlying sample is sufficiently large. For evaluations
of this test in the context of CAT and linear tests, see, for instance, [40,42,43].

3.2.2. Score-Based Tests

These tests build on the tradition of score-based invariance tests that were proposed in
the field of psychometrics, e.g., [44–47]. Conceptually, these tests are based on the following
idea: for each item and each respondent, so-called individual score contributions can be
computed. Note that the score here refers to the first derivative (i.e., gradient) of the log
likelihood. Hence, the score contributions can be calculated as part of the item parame-
ter estimation and depend on the item and person parameters, as well as the observed
responses and can be interpreted as measures of model fit for each respondent-item pair. If
the chosen IRT model, together with the assumed item and estimated person parameters
accurately describes the responses of the respondents to a given item, these individual
score contributions typically fluctuate randomly around zero. If we sum these individual
score contributions over groups of test takers, the corresponding cumulative sums should
also fluctuate around zero; however, if the model is not accurate, the cumulative sums can



Psych 2021, 3 623

deviate strongly from zero. For a more detailed but slightly more technical introduction,
see [48].

This leads to the following general procedure for score-based tests for a given item in
an MST administration. First, remove all respondents who did not respond to this item.
Using the remaining respondents, calculate the individual score contributions given the
assumed item parameters, the observed responses to this item and the person parameter
estimates. Second, order the respondents and correspondingly the individual score contri-
butions with regard to a person covariate of interest. Third, calculate cumulative sums of
the individual score contributions with regard to the order from step 2. Fourth, measure
the overall deviation from the value of zero, which is expected under the null hypothesis,
by a suitable test statistic. In the study at hand, we used the maximum deviation of the
cumulative sums from zero calculated over all respondents and item parameter as the test
statistic, which is also named the double maximum statistic [46].

In general, the exact distribution of individual score contributions that are based on
person parameter estimates is unknown even though the null hypothesis is correct; a
technical discussion of the asymptotic distribution is provided by Zeileis and Hornik [49].
Therefore, it is generally not possible to calculate analytical p-values for this test. This is
particularly the case in small samples, as they can occur in multistage tests, which we will
also show later in this study. Instead, two computational workarounds were proposed.

The idea of the first procedure is that a fit statistic based on the order of the individual
score contributions (e.g., the double maximum statistic that is based on the cumulative
sums of the individual score contributions) should not change significantly if the score
contributions are ordered according to a person covariate that does not affect the item
parameters (i.e., under the null hypothesis). The procedure consists of the following steps.
First, one could permute the observed individual score contributions many times (e.g., 500)
and calculate a suitable test statistic (e.g., the double maximum statistic of the cumulative
sums) for the original sequence of score-based contributions, that is, ordered with regard to
the person covariate, and for all permutations of this sequence. The values of this statistic
that are obtained from the permutations can now serve as a reference distribution, and
a comparison of the test statistic observed for the original sequence with this reference
distribution allows the calculation of p-values. In the following, we name this variation the
score-based permutation test.

Second, one could use the estimated person parameters as approximations for the true
person parameters. Under this assumption, one could generate many (e.g., 500) artificial
datasets based on the estimated person parameters and the assumed item parameters.
Using these artificial datasets, one can obtain a reference distribution for an arbitrary test
statistic (e.g., the double maximum statistic) under the null hypothesis that no DIF effects
are present, that is, the item parameters are stable. By comparing the observed test statistic
against this reference distribution, one can obtain p-values for testing this null hypothesis.
In the following, we name this variation the score-based bootstrap test.

Before we evaluate these tests, it seems useful to summarize their underlying as-
sumptions. Both tests use a person parameter estimate as a substitute for the true person
parameter and, thus, require a sufficiently accurate parameter estimation. The score-based
permutation test further assumes that the individual score contributions can be consid-
ered interchangeable if no DIF is present. Since the distribution of the individual score
contributions also depends on the distribution of the ability parameters, this assumption
could be violated when the covariate tested for DIF is related to ability differences. We will
investigate this point in the simulation study reported later.

3.2.3. Detecting DIF for Nonoperational Items

When no item parameter estimates are available for items that should be investigated
for DIF, it is still possible to apply DIF tests that do not require such estimates. Of the
tests outlined above, this applies to the MSTSIB, the Mantel–Haenszel test, and the linear
logistic regression test.
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An alternative testing strategy consists of first estimating the item parameters using
the observed responses. As a second step, it is possible to apply DIF tests that assess
the stability of these estimates over covariates of interest. This strategy can be applied
with score-based tests. We do not provide details for conciseness, but details on how
score-based tests can be applied to item parameter estimates can be found in the literature,
e.g., [48] or [50].

A variation of the second strategy was also applied in the presented likelihood test
approach in the context of DIF tests in adaptive testing [40]. Here, the estimated item
parameters were used to impute the missing data that resulted from the adaptive test
presentation.

3.2.4. The Problem of Anchoring in DIF Detection in Multistage Tests

If the item parameters are treated as unknown, itemwise DIF tests for linear tests
usually require the definition of a set of anchor items. For these items, it is assumed that
their item parameters are invariant for the respondent population, and changes in the
estimated parameters of items investigated for DIF are related to the set of anchor items.

For linear tests, it has been found that the size of the set of anchor items affects the
power of DIF tests. If the set of anchor items contains items affected by DIF, this can
lead to an increased rate of false-positive results in DIF tests. The set of anchor items
should therefore be selected carefully, which can be either done by experts based on the
item content or based on statistical algorithms. For overviews of this research see, for
instance, [51–53].

As outlined in the previous subsection, DIF tests for multistage tests often do not
require the estimation of item parameters. If the item parameters are assumed to be known,
the problem of selecting a set of anchor items does not directly apply, although the model
leading to these item parameter estimates may have made assumptions that are similar to
the definition of anchor items. However, these DIF tests typically require the estimation of
ability parameters based on the responses to items with known item parameters. If a set
of items has been defined whose item parameters are assumed to be stable, this set could
be used to provide an estimate of the person ability that is independent of items that are
investigated for DIF. The definition of such an item set is conceptually comparable to the
definition of a set of anchor items. A possible disadvantage of this procedure is that the
use of a smaller item set usually leads to less precise person parameter estimates, as will
also be shown later in this paper. On the other hand, if the ability estimation is based on
items that possibly include items affected by DIF effects, this might lead to estimation bias.
We will also investigate this effect in this study.

3.3. Aim of This Study

As outlined in the previous subsections, several methods have been proposed for the
detection of DIF in MST. While some methods have been proposed for the detection of DIF
with respect to a continuous covariate, they have not been systematically compared thus
far. The study at hand aims to fill this gap in the literature by systemically investigating
the Type I rate and power of the proposed DIF tests in a simulation study, which will be
described below, for a wide range of conditions.

4. Materials and Methods

Our simulation study was based on the commonly used two-parametric logistic test
model [24], which is based on the following item response function:

P(Xij = 1|θi, αj, β j) =
exp(αj(θi − β j))

1 + exp(αj(θi − β j))
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Here, the item parameters αj and β j correspond to item discrimination and item
difficulty parameters, respectively, whereas θi corresponds to a person ability parameter.

In the simulation study, the sample worked on a 1× 3× 3 multistage test. In this
test, all respondents first worked on the same routing module, which contained tasks of
medium difficulty. Based on their performance, they were afterward assigned to one of
three possible modules, which corresponded to easy tasks, tasks of medium difficulty and
difficult tasks. After working on this second module, they were presented with one of three
additional possible modules of different difficulty levels, after which the test was ended.
Figure 1 presents an overview of the possible paths through the modules of this test.

Figure 1. The paths through the simulated multistage test.

In the modules containing easy, medium and difficult tasks, the item difficulty pa-
rameters β j were drawn from normal distributions N (−0.5, 1), N (0, 1) and N (0.5, 1),
respectively. The item discrimination parameters αj were drawn from a normal distribution
N (1, 0.01) for all modules.

The person parameters θi were drawn from a normal distribution, with the exact
distribution depending on the simulation condition. Each person was further assigned
a continuous covariate Ci, which was drawn from a uniform distribution U (20, 80). This
covariate can be seen as a simulation of an age covariate, which was further used for DIF
testing and for the simulation of ability differences within the simulated conditions, as will
be described below. It was further used for the simulation of DIF effects.

The simulation conditions varied with regard to the following characteristics:

• The length of the modules: The length of the individual modules was either 9 or
18 items, leading to an overall test length of 27 or 54 items.

• The presence of impact effects: Based on the value of Ci, respondents were assigned to
one of two groups of comparable size, to which we will refer to as Group 1 (Ci ≤ 50)
and Group 2 (Ci > 50). These groups were used for the simulation of ability dif-
ferences, that is, impact effects between the respondents. If impact was absent, the
person parameters of both Group 1 and Group 2 were sampled from a standard
normal distribution N (0, 1). If impact effects were simulated, the person parameters
of Group 1 were sampled from a normal distribution N (−0.5, 1), whereas the person
parameters of Group 2 were sampled from a normal distribution N (0.5, 1).
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• The presence and direction of DIF effects: We simulated conditions with and without
uniform DIF effects. In the conditions without DIF effects, the item parameters
underlying the observed responses were identical to the assumed item parameters,
that is, those used for the estimation of the person parameters and the routing during
the multistage test. In the conditions with DIF effects, this was not the case, but
the assumed item difficulty parameters of the first 1, 2 or 4 items in each module
(depending on the overall length of the modules and the rate of DIF items) differed
from the item parameters underlying the observed item parameters depending on
the value of Ci. The conditions with DIF effects varied with regard to the following
characteristics:

– The rate of DIF items: The number of items with DIF effects in a each module
was either one out of nine, or two out of nine items. The DIF items were always
the first presented in each module.

– Direction of DIF effects: In conditions with unbalanced DIF effects, the item
difficulty parameters of DIF items were all changed in the same way, depending
on the type of simulated DIF effect (see below). In conditions with balanced DIF
effects, the item difficulty parameters of DIF items in stages 1 and 3 of the test
changed in the same way as in the condition with unbalanced DIF effects. For
DIF items in stage 2, the direction of the change was reversed.

– Relationship between covariate and change of item parameters (Form of the DIF
effect): Depending on the value of Ci, the affected item difficulty parameters
changed by one of three functions: If the relationship could be described by a
step function, βi increased by 0.6 for all respondents with Ci > 50 under the
unbalanced DIF condition. If the relationship between the DIF effect and Ci

was linear, the change of βi was 0.6 · Ci−20
60 under the unbalanced DIF condition;

therefore, it was 0 for respondents with Ci = 20 but 0.6 for respondents with
Ci = 80. If the relationship was finally described by a U-turn function, βi was
increased by 0.6 for all respondents with Ci < 35 or Ci > 65 under the unbalanced
DIF condition. In the following, we refer to these conditions as linear, stepwise
and U-turn DIF effects.

• The number of respondents: The test was completed by 200, 500 or 1000 respon-
dents. The overall sample size limited the sizes of the samples that were available for
evaluating the individual items.

• The person parameter estimation method: The person parameters were either esti-
mated by an ML (i.e., a maximum likelihood) estimator or by a WL (i.e., a weighted
maximum likelihood) estimator [27]. In case of respondents who gave only correct or
only incorrect responses, the ML estimator did not lead to finite parameter estimates
and the WL estimator was used instead.

For each combination of conditions, 500 datasets were simulated. All simulated
datasets were analyzed with the linear logistic regression test as well as the score-based
bootstrap test and the score-based permutation test, with both score-based tests using
500 bootstrap samples for calculating p-values. Each test was applied with two possible
person parameter estimates. In the first variation, all items were used for estimating the
person parameters. In the second variation, only items that were not affected by DIF in
conditions with DIF effects were used for estimating the person ability parameters (i.e.,
depending on the simulation condition, the responses to the first one, two or four items of
each module were not considered when estimating the person ability parameters). We will
refer to this second variation as the variation in which only items suspected to be free of
DIF were used for person parameter estimation.
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While the score-based tests were applied using R code from the mstDIF R package [54],
the linear logistic regression test was applied using R code specifically written for this
study. Because modules are adaptively selected in the MST design, it is possible that some
modules in stage two and stage three are administered to only a small proportion of the
test takers. Consequently, there are items with only a small number of responses. Yet, in
general, to reliably fit statistical models, estimate parameters, or detect effects, a minimal
amount of information is required. This also applies to DIF detection. Therefore, in the
simulation study, we chose to set the minimal number of responses to 100, for an item
to be eligible for a DIF detection analysis. Thus, the evaluation and comparison of the
DIF detection tests was limited to the items in the modules that were administered to at
least 100 respondents. In Section 5.1, we will evaluate the rate of respondents above this
threshold in the various conditions of our simulation study.

5. Results

Before presenting the results on the evaluation of the three tests under each condition,
we will investigate (a) how often the individual modules were worked on and (b) the
accuracy of the person parameter estimates under the various conditions. We will then
discuss the Type I error rate and the power of the three tests under the various conditions.

5.1. Selection Rates of Individual Modules

We investigated how often individual modules were answered by 100 respondents or
more under the various conditions of the simulation study, since this threshold determined
whether items in this modules were investigated for DIF or not. Due to the adaptive
selection of modules in the MST design, not all modules in stages two and three could
be expected to be selected equally often. As follows from Figure 1, all respondents were
administered the routing module in stage one. Yet in stage two and three the respondents
were distributed across the three modules in each stage. Particularly in conditions with
200 respondents, often less than 100 respondents worked on the items contained in the
modules in stages two and three. As an illustration, we report the response frequency
in the first iteration of the condition with 200 respondents and 63 items without DIF or
impact effects, where the WL estimator was used for the person parameter estimation.
Here, 200 respondents worked on the module in stage one, 33, 61 and 106 respondents
worked on the three modules in stage two, and 3, 77 and 120 respondents worked in the
modules in stage three.

In conditions with 500 or 1000 respondents, the relative response rates to the individ-
ual modules were similar, but due to the higher sample size, more modules were worked
on by 100 respondents or more. Figure 2 gives the response frequencies to the six modules
in stages two and three across all 500 replications in the condition with 1000 respondents
and 63 items, without DIF or impact effects, where the WL estimator was used for per-
son parameter estimation. The figure illustrates that under these simulation conditions,
especially the module in stage two that contained items of medium difficulty was less
frequently selected. In the other conditions of the simulation study, similar distributions
were found.

As a result of the adaptive selection in the MST design, across replications, approxi-
mately 33% of the modules were administered to 100 respondents or more in conditions
with 200 respondents. As a consequence, only items from these modules were considered
for the itemwise DIF tests analysis. In the conditions with 500 or 1000 respondents, this
was the case for 77% and 86% of the modules, respectively.
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Figure 2. Overall frequency distributions of responses across all 500 iterations to the individual modules with items of three
difficulty levels in stages two and three for a condition with 1000 respondents and 63 items. There were no DIF or impact
effects, and the WL estimator was used for person parameter estimation.

5.2. Accuracy of the Person Parameter Estimates

As a second step, we investigated the precision of the person parameter estimates. For
all datasets in all conditions, we evaluated the root mean squared error (RMSE) for the final
person parameter estimate, depending on whether all items or only the items that were
suspected to be free of DIF were used for the final ability estimation. As a summary statistic,
we calculated the median RMSE for all datasets generated under each condition. The RMSE
is calculated as the square root of the mean of the squared differences between the true
person parameter and the person parameter estimate. Values close to zero correspond to
an accurate estimation.

We found that the RMSE was mainly influenced by the test length and, to a lesser
degree, by the estimator used. The number of respondents and the presence of impact had
no obvious influence on the median RMSE. As expected, the inclusion of additional items
increased the precision of the person parameter estimates, and the WL estimator led to
more precise estimates than the ML estimator. A similar result was reported by Warm [27].
Furthermore, we found no strong influence of DIF effects on this measure of the precision
of the ability estimates under the conditions of this simulation study.

Table 1 presents the range of the medians of the RMSE for the various conditions of
test length and the ability estimator used for conditions without DIF effects. In each row,
the range was calculated over the conditions with and without impact and the different
conditions of sample size and estimation method.

Table 1. The range of median RMSEs for the person parameter estimation for all conditions without
DIF effects.

Test Length Estimator RMSE Using All Items RMSE without Possible DIF Items

27 items ML 0.46–0.47 0.49–0.50
54 items ML 0.32–0.33 0.34–0.35
27 items WL 0.44–0.45 0.47–0.48
54 items WL 0.31–0.32 0.33–0.34
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For conditions with DIF effects, very similar results were found. In conditions with
one out of nine items showing DIF, the range of RMSEs was comparable to those found
for the analogous conditions without DIF effects. In conditions with two out of nine items
showing DIF, the RMSEs were slightly increased by values between 0.01 and 0.02.

5.3. Type I Error Rate

We start with considering the Type I error rate, that is, the rate of positive DIF detection
in items which are not affected by DIF effects. Under all conditions without DIF effects, the
Type I error rates of the bootstrap and permutation score-based tests as well as the linear
logistic regression test were within a range of 0.045–0.066 and thus close to the nominal
Type I error rate of 0.05.

When only items that were suspected of being DIF-free were used for the person
parameter estimation, this was also the case for conditions with DIF effects when items
without DIF effects were tested for DIF. In the case where all items were used for person
parameter estimation, the Type I error rates of both score-based tests were in the range of
0.044–0.082 under conditions with DIF effects when one out of nine items was affected by
DIF. For the linear logistic regression test, the corresponding Type I error rates were in a
range of 0.051–0.062. If two out of nine items were affected by DIF, the Type I error rate
of the score-based tests was in a range of 0.042–0.123, whereas the Type I error rate of the
logistic regression test was in a range of 0.051–0.081. For the score-based tests, Type I error
rates over 0.1 were only observed in two conditions, where an unbalanced stepwise DIF
effect was simulated in a large sample size of 1000 respondents, the modules consisted of
nine items and impact was present.

5.4. Power

As a first step, we estimated the influence of the various factors of the simulation
study on the power of the DIF tests by applying an ANOVA. In this analysis, the power
was the dependent variable, whereas the conditions of the simulation study (Number of
respondents, number of items, direction of the DIF effect, rate of DIF items, relationship
between covariate and DIF effect, estimation method for the person parameter) and their
two-way interactions were the independent variables. After carrying out the ANOVA, we
estimated the η2 of each independent variable. Table 2 shows all independent variables
with a η2 larger than or equal to 0.01.

All other factors not listed in Table 2 showed an η2 smaller than 0.01. These included
the use of DIF items for person parameter estimation, the rate of DIF items, the length of
the modules, and the method used for estimating the person parameters.

We now present the power of the various tests against the simulated DIF effects, that
is, the rate of positive DIF detection when DIF is present. Since the power of the score-
based bootstrap test and the score-based permutation test were almost identical under all
conditions, we only present results for the bootstrap test and the linear logistic regression
test. Given the results presented in Table 2, this section only presents results for conditions
with modules containing nine items and one DIF item, where the person parameters were
estimated using the WL estimator and where all items were used for ability estimation. We
further present detailed results for all conditions where two out of nine items showed DIF
in the Appendix A. Figure 3 presents the rate of significant results for various conditions of
sample size, presence of impact, direction of the DIF effect and type of relationship with
the person covariate. All power rates were below 0.7, and the highest power rates were
observed for the largest sample size, as could be expected.

Overall, we find that the score-based tests have power against all simulated model
violations, whereas the linear logistic regression test had power against the stepwise and
linear DIF effects but no power against the U-turn DIF effect. The power of all three tests
to detect DIF was highest under conditions with a stepwise DIF effect when compared to
conditions with a linear or a U-turn DIF effect.
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Table 2. All simulation conditions and two-way interactions of simulation conditions with an effect
corresponding to an η2 larger than or equal to 0.01 on the power of the DIF tests.

Independent Variable η2

Form of DIF effect 0.474
Sample size 0.274

Type of DIF test 0.039
Direction of the DIF effect 0.014

Form of DIF effect × Sample size 0.066
Form of DIF effect × Presence of impact 0.030

Form of DIF effect × Type of DIF test 0.026
Sample size × Type of DIF test 0.010

For all three tests, we found that the power was overall comparable for corresponding
conditions with and with without ability differences, that is, conditions with and with-
out impact. When comparing the power of the score-based tests and the linear logistic
regression test, we found that the score-based tests had slightly higher power against the
stepwise DIF effect, comparable power against the linear DIF effect and much higher power
against the U-turn DIF effect.

Figure 3. Power of two tests against balanced and unbalanced DIF in the β parameter for modules of 9 items and one
DIF item per module. The person parameter was estimated by applying the WL estimator to all observed responses.
The unbroken line presents the results for the linear logistic regression test, the broken line presents the results for the
score-based bootstrap test.
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6. Discussion

This study presented an evaluation of several tests for the detection of DIF effects
with regard to a continuous covariate. A first practically significant finding is that, at least
under the conditions of the simulation study presented here, the number of respondents
working on the individual modules differs strongly for the same test, with the exception
of the routing module. It follows for similar situations in practical multistage tests that
there might be too few responses to individual items or modules to evaluate the presence
of DIF in specific modules or to detect other model violations such as local dependence. A
similar problem was observed by Zwick and Bridgeman [29]. This is particularly important
for the application of DIF tests that are based on asymptotic results, such as the linear
logistic regression test. In the study at hand, only items that were worked on by 100 or more
respondents were used to evaluate the power and Type I error rate, but this threshold might
be too low or too high depending on the item pool used and the population of respondents.
Using this threshold, we found that the score-based tests and the linear logistic regression
test have a Type I error rate close to the nominal alpha level. The power of all tests can be
expected to increase with the underlying sample size, as is also suggested by Figure 3.

In our simulation study, we also found datasets where specific modules were rarely or
never presented, obviously because the corresponding items would only be informative
for a small part of the population of respondents. This can be regarded as a limitation of
our study; in a similar situation in practical assessments, one could consider reassigning
the items of such modules to other modules.

Although the DIF effects simulated in this study were large enough to be detected
by the various DIF tests, they only had an overall small effect on the precision of the
person parameter estimates, as was illustrated by the results reported in Section 5.2. We
further found that the power of the various tests was only slightly increased when only
DIF-free items were used for the person parameter estimation and that the use of items
showing DIF effects for the person parameter estimation and subsequent DIF tests did
only lead to a slight increase in false positive results in the score-based tests when there
are only few DIF items in the test. In summary, these results give the impression that the
person parameter estimates of multistage tests are rather robust under the conditions of
this simulation study in that they still provide accurate person parameter estimates that
can also be used for DIF tests. However, it should be emphasized that only one or two out
of nine items were affected by DIF in our simulations; furthermore, the DIF effects were
balanced in some conditions, which may also reduce the bias in the parameter estimation.
Since this study strongly focused on a scenario where the item parameters were already
sufficiently well known based on previous calibration studies, this rather small percentage
of DIF items might be plausible here. However, the results reported in Section 5.2 suggest
that the estimation of person parameters becomes increasingly biased when the rate of
items affected by DIF and the size of the DIF effects themselves increase. The further
investigation of the robustness of the person parameters under a variety of DIF effects is
left as a topic for future studies.

A related topic concerns the questions of how to obtain an item set that can be
considered as DIF-free. In our study, we have assumed that such an item set is already
known, but this will often not be the case in empirical analyses. In linear tests, several
strategies were suggested to obtain a set of anchor items [52,53]. The adaptation of such
strategies to multistage tests could be another interesting topic for future research.

For stepwise and linear DIF effects, the linear logistic regression test demonstrated
power levels that were similar to the power levels of the score-based tests. In these DIF
effects, there was a monotone relation between the DIF covariate and the change in the
item parameters. However, the linear logistic regression tests did not demonstrate power
to detect a U-turn DIF effect, where the change of the item parameter did not correlate with
the covariate. This finding is not unexpected since this test assumes a linear relationship
between the covariate and the change in the probability of a correct response. While we
found no condition where this test had much higher power than the score-based tests, this
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test was also less affected by the use of DIF items for the person parameter estimation, as
we have already outlined.

When comparing the score-based permutation and bootstrap tests, it was found that
both tests have very similar power and Type I error rates, at least under the conditions
investigated under this study. As outlined in the introduction, the bootstrap test is based
on slightly weaker assumptions; that is, it does not assume that the score contributions
of all respondents are interchangeable if DIF is absent. It can therefore be recommended
for practical applications so far, and future studies might compare these tests under more
extensive sets of conditions. However, it might also be important to note that both tests
assume that the underlying IRT model describes the observed data well. These tests might
therefore be sensitive against various other model violations in addition to DIF.

7. Computational Details

The simulation studies reported in this study were carried out with the R framework
for statistical computing, version 4.1.1, using the following R packages (in alphabetical
order): mstDIF [54], version 0.1-6, mstR [55], version 1.2, and SimDesign [56], version 2.6.

Author Contributions: Conceptualization, R.D. and D.D.; methodology, R.D. and D.D.; software,
R.D. and D.D.; validation, R.D. and D.D.; formal analysis, R.D.; investigation, R.D.; resources, R.D.;
data curation, R.D.; writing—original draft preparation, R.D. and D.D.; writing—review and editing,
R.D. and D.D.; visualization, R.D.; supervision, R.D.; project administration, R.D.; funding acquisition,
R.D. All authors have read and agreed to the published version of the manuscript.

Funding: Part of this research was supported by the scientific exchange grant 186516 of the Swiss
National Science Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code of the simulation studies is available at https://osf.io/pc2wu/
(accessed on 9 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed Simulation Results

In this appendix, we show detailed results on the power of the evaluated DIF tests for
all conditions where two out of nine items were affected by DIF effects.

Figures A1–A4 show the results for conditions with short modules. In Figures A1 and A2,
all items were used to obtain person parameter estimates, whereas Figures A3 and A4 contain
the corresponding results of tests where only items that were suspected of being DIF-free were
used for the person parameter estimation. Figures A1 and A3 present the rate of significant
results for various conditions of sample size, presence of impact, type of estimator and type
of relationship with the person covariate for balanced DIF effects. Figures A2 and A4 present
the analogous findings for unbalanced DIF effects. For conditions with long modules, very
similar results were obtained. These findings are presented in Figures A5–A8.
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Figure A1. Power of two tests against balanced DIF in the β parameter for modules of 9 items. All
items are used for ability estimation. The unbroken line presents the results for the linear logistic
regression test, the broken line presents the results for the score-based bootstrap test.

Figure A2. Power of two tests against unbalanced DIF in the β parameter for modules of 9 items. All
items are used for ability estimation. The unbroken line presents the results for the linear logistic
regression test, the broken line presents the results for the score-based bootstrap test.
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Figure A3. Power of two tests against balanced DIF in the β parameter for modules of 9 items.
Only items suspected to be DIF-free are used for ability estimation. The unbroken line presents the
results for the linear logistic regression test, the broken line presents the results for the score-based
bootstrap test.

Figure A4. Power of two tests against unbalanced DIF in the β parameter for modules of 9 items.
Only items suspected to be DIF-free are used for ability estimation. The unbroken line presents the
results for the linear logistic regression test, the broken line presents the results for the score-based
bootstrap test.
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Figure A5. Power of two tests against balanced DIF in the β parameter for modules of 18 items. All
items are used for ability estimation. The unbroken line presents the results for the linear logistic
regression test, the broken line presents the results for the score-based bootstrap test.

Figure A6. Power of two tests against unbalanced DIF in the β parameter for modules of 18 items.
All items are used for ability estimation. The unbroken line presents the results for the linear logistic
regression test, the broken line presents the results for the score-based bootstrap test.
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Figure A7. Power of two tests against balanced DIF in the β parameter for modules of 18 items.
Only items suspected to be DIF-free are used for ability estimation. The unbroken line presents the
results for the linear logistic regression test, the broken line presents the results for the score-based
bootstrap test.

Figure A8. Power of two tests against unbalanced DIF in the β parameter for modules of 18 items.
Only items suspected to be DIF-free are used for ability estimation. The unbroken line presents the
results for the linear logistic regression test, the broken line presents the results for the score-based
bootstrap test.
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