
Tutorial

Flexible Item Response Modeling in R with the flexmet Package

Leah Feuerstahler

����������
�������

Citation: Feuerstahler, L. Flexible

Item Response Modeling in R with

the flexmet Package. Psych 2021, 3,

447–478. https://doi.org/10.3390/

psych3030031

Academic Editor: Alexander

Robitzsch

Received: 15 July 2021

Accepted: 11 August 2021

Published: 16 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Psychology, Fordham University, 441 E Fordham Road, Bronx, NY 10458, USA;
lfeuerstahler@fordham.edu

Abstract: The filtered monotonic polynomial (FMP) model is a semi-parametric item response
model that allows flexible response function shapes but also includes traditional item response
models as special cases. The flexmet package for R facilitates the routine use of the FMP model in
real data analysis and simulation studies. This tutorial provides several code examples illustrating
how the flexmet package may be used to simulate FMP model parameters and data (both for
dichotomous and polytomously scored items), estimate FMP model parameters, transform traditional
item response models to different metrics, and more. This tutorial serves as both an introduction
to the unique features of the FMP model and as a practical guide to its implementation in R via the
flexmet package.

Keywords: item response theory; psychometric scaling; software tutorial

1. Background

Although many applications of item response theory are in the context of parametric
models such as the Rasch, two, and three-parameter logistic models [1], there is also a
recognized need for models that allow for more flexible relationships between the latent
trait and an item category response [2]. Models and techniques that allow for more flexible
item response functions are variously known as non-parametric [2], quasi-parametric [3], or
semi-parametric [4] models, and include methods such as Mokken scale analysis [5], kernel
smoothing [6], and polynomial splines [4]. Historically, flexible item response models
have been used to analyze data sets with small sample sizes, to check the assumptions
of parametric item response models, and as an alternative to poorly fitting parametric
models [2]. In recent years, flexible item response models have increasingly been used
in confirmatory contexts. For example, flexible item response models have recently been
applied to computerized adaptive testing [7,8], the creation of item banks for measuring
health outcomes [9], and the development of optimal scoring procedures [10].

A compelling recent addition to the family of semi-parametric item response models
is the filtered monotonic polynomial (FMP) model [3,11]. The general form of the FMP
model [12] used in this paper is a generalization of Muraki’s generalized partial credit
model [13] (GPCM) that replaces a linear function of the latent trait θ with a polynomial
expansion of θ. As clarified below, constraints are placed on the item parameters so that
this polynomial function is a monotonically increasing function of θ. For item i with Ci
ordered response categories and person j, the item response function (IRF) of the general
FMP model gives the probability of a response in category c, c = 0, . . . Ci − 1, as

P(Xij = c|θj, bi) =
exp

(
∑c

v=0(b0vi + m?
i (θj, b1i, . . . b2ki+1,i))

)
∑Ci−1

u=0 exp
(
∑u

v=0(b0vi + m?
i (θj, b1i, . . . b2ki+1,i))

) , (1)

where

m?
i (θj, b1i, . . . b2ki+1,i) = b1iθj + b2iθ

2
j + · · ·+ b2ki−1,iθ

2ki−1
j , (2)

Psych 2021, 3, 447–478. https://doi.org/10.3390/psych3030031 https://www.mdpi.com/journal/psych

https://www.mdpi.com/journal/psych
https://www.mdpi.com
https://doi.org/10.3390/psych3030031
https://doi.org/10.3390/psych3030031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/psych3030031
https://www.mdpi.com/journal/psych
https://www.mdpi.com/article/10.3390/psych3030031?type=check_update&version=2

Psych 2021, 3 448

∑0
v=0(b0vi + m?

i (θj, b1i, . . . b2ki+1,i)) ≡ 0, and bi = (b01i, . . . , b0Ci−1i, b1i, b2i, . . . , b(2ki+1)i)
′ is a

vector of item parameters in a polynomial coefficient parameterization.
In Equations (1) and (2), the ki parameter is an item-specific non-negative integer that

controls the maximum degree of the polynomial function of θ. Specifically, the highest-
order polynomial equals 2ki + 1, and so ki = 0, 1, and 2 imply linear, cubic, and fifth-degree
polynomial functions of θ. Note that this formulation forces an odd value for the highest-
order polynomial of θ, which is a necessary (but not sufficient) condition for the polynomial
to be a monotonic function of θ.

A key feature of the FMP model is that it reduces to familiar parametric item response
models when m? is set to be a linear function of θ (i.e., when ki = 0). Specifically, if ki = 0,
Equation (1) reduces to the GPCM, and if both ki = 0 and Ci = 2 (i.e., scored item responses
are dichotomous), then Equation (1) reduces to the two-parameter logistic (2PL) model.
Another key feature of this model not shared by many flexible item response models is
that its model parameters are portable [3], meaning that the FMP model can be used to
construct item banks, conduct adaptive testing, and score examinees not included in the
original sample. To better acquaint the reader with the relationship between the FMP
model with k = 0 and other item response models used in popular IRT software packages,
several examples of finding FMP parameters from the output of the R packages ltm [14],
mirt [15], and TAM [16] are included in Appendix A.

The FMP model requires that m?(θ) be a monotonically increasing function of θ. To en-
force monotonicity, we may use a transformation of the polynomial coefficient parameters
b. In general, consider the polynomial function

m(θ|b) = b0 + b1θ + b2θ2 + b3θ3 + · · · b2k+1θ2k+1. (3)

Equation (3) is a strictly monotonically increasing function of θ if and only if the first
derivative of m(θ),

∂m(θ)

∂θ
= b1 + 2b2θ + 3b3θ2 + · · ·+ (2k + 1)θ2k, (4)

is positive at all values of θ. One way to enforce positivity is through the following
reparameterization of Equation (4) [3,12,17]:

∂m(θ)

∂θ
=

{
exp(ω)∏k

h=1(1− 2αhθ + (α2
h + exp(τh))θ

2 if k > 0
exp(ω) if k = 0.

(5)

In this parameterization, no boundary constraints are required for ω, αh, or τh, h = 1, . . . k.
Because b0ci parameters do not affect the monotonicity of m?, no transformation of these pa-
rameters is necessary, but we use the symbol ξci = b0ci to use notation consistently across the
different parameterizations. Therefore, b0ci = ξci for c = 1, . . . , Ci− 1, b1 = exp(ωi), and the
b2, . . . , b2ki+1 parameters are functions of ωi, αi, and τi calculated using matrix operations
described elsewhere [3,11,12,18,19]. Thus, the FMP model is equivalently represented by
the polynomial coefficient parameters bi = (b01i, b02i, . . . , b0Ci−1i, b1i, b2i, . . . , b(2ki+1)i)

′ and
the Greek-letter parameters (ξ1i, ξ2i, . . . , ξ(Ci−1)i, ω, α1i, τ1i, . . . , α(2ki+1)i, τ(2ki+1)i)

′. In both
parameterizations, an item with Ci response categories and item complexity ki is described
by 2ki + Ci − 1 item parameters. To better acquaint the reader with the Greek-letter and
polynomial coefficient parameterizations, Appendix B includes formulas to calculate the
polynomial coefficients from the Greek-letter parameters up to k = 2.

2. Specifying the FMP Model in flexmetflexmetflexmet

The R package flexmet provides broad functionality for specifying, fitting, and trans-
forming the FMP model, and many of its features (relative to version 1.1) are illustrated in
the remainder of this paper. The IRF for the FMP model is specified using the polynomial
coefficient parameters bi as described in the previous section. However, the Greek-letter
parameterization is also needed when fitting and generating FMP items to ensure mono-

Psych 2021, 3 449

tonicity. The flexmet package includes the greek2b and b2greek functions to navigate
between the two different parameterizations. To illustrate these functions, consider a
six-item test. Three items (items 1, 2, and 3) are defined for binary item responses, and three
items are defined for four-category responses (items 4, 5, and 6). Additionally, items 1 and 4
have ki = 0, items 2 and 5 have ki = 1, and items 3 and 6 have ki = 2. The parameters used
for this illustration (both the Greek-letter and polynomial coefficient parameterizations)
are printed in Table 1.

Table 1. Example FMP item parameters.

Greek-Letter Parameterization

Parameter Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

ξ1 0.49 −0.87 −0.54 0.58 0.97 0.79
ξ2 0.49 0.38 0.15
ξ3 −0.05 −0.15 −1.20
ω 0.25 −0.57 −0.24 −0.41 0.58 0.57
α1 −0.63 1.13 0.45 −0.22
α2 −0.40 −0.59
τ1 −0.12 −1.76 −1.42 −1.57
τ2 −1.14 −2.45

Polynomial Coefficient Parameterization

Parameter Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

b01 0.49 −0.87 −0.54 0.58 0.97 0.79
b02 0.49 0.38 0.15
b03 −0.05 −0.15 −1.20
b1 1.28 0.57 0.79 0.66 1.79 1.77
b2 0.36 −0.57 −0.80 1.43
b3 0.24 0.03 0.26 0.71
b4 0.01 0.22
b5 0.11 0.04

The greek2b function outputs the b vector associated with the inputted xi, omega,
and (optionally) alpha and tau values. For example, the b vector for item 1 can be found
as follows.

library(flexmet)
greek2b(xi = 0.49, omega = 0.25)

b0 b1
0.490000 1.284025

As another example, let us find the b vector for item 6. In this case, the greek2b func-
tion requires the user also to specify the alpha and tau arguments, as well as multiple xi
parameters corresponding to the different response categories. Note that the xi parameters
should be given in order from ξ1i, . . . , ξ(Ci−1)i, and the alpha and tau vectors should also
be ordered α1i, . . . , αki i and τ1i, . . . , τki i.

z01b <- greek2b(xi = c(0.79, 0.15, -1.20),
omega = 0.57,
alpha = c(-0.22, -0.59),
tau = c(-1.57, -2.45))

Psych 2021, 3 450

b0_1 b0_2 b0_3 b1 b2 b3 b4 b5
0.7900 0.1500 -1.2000 1.7683 1.4323 0.7132 0.2183 0.0394

It is also possible to represent FMP item parameters with different k values and
different numbers of items in the same matrix. To do this, the NA symbol may be used
to represent higher-order ξ values for items with Ci < max(Ci). In addition, specifying
αh = 0 and τh = −∞ will set the corresponding polynomial coefficients (i.e., b2h,i and
b2h+1,i) to be equal to 0. For example, to find the matrix of polynomial–coefficient item
parameters for the example six-item test, we can bind together calls to greek2b that have
xi, alpha, and tau arguments of the same length for each item.

bmat <- rbind(greek2b(xi = c(0.49, NA, NA), omega = 0.25,
alpha = c(0, 0), tau = c(-Inf, -Inf)),

greek2b(xi = c(-0.87, NA, NA), omega = -0.57,
alpha = c(-0.63, 0), tau = c(-0.12, -Inf)),

greek2b(xi = c(-0.54, NA, NA), omega = -0.24,
alpha = c(1.13, -0.40), tau = c(-1.76, -1.14)),

greek2b(xi = c(0.58, 0.49, -0.05), omega = -0.41,
alpha = c(0, 0), tau = c(-Inf, -Inf)),

greek2b(xi = c(0.97, 0.38, -0.15), omega = 0.58,
alpha = c(0.45, 0), tau = c(-1.42, -Inf)),

greek2b(xi = c(0.79, 0.15, -1.20), omega = 0.57,
alpha = c(-0.22, -0.59), tau = c(-1.57, -2.45)))

bmat

b0_1 b0_2 b0_3 b1 b2 b3 b4 b5
[1,] 0.49 NA NA 1.2840 0.0000 0.0000 0.0000 0.0000
[2,] -0.87 NA NA 0.5655 0.3563 0.2420 0.0000 0.0000
[3,] -0.54 NA NA 0.7866 -0.5742 0.0317 0.0147 0.1094
[4,] 0.58 0.49 -0.05 0.6637 0.0000 0.0000 0.0000 0.0000
[5,] 0.97 0.38 -0.15 1.7860 -0.8037 0.2645 0.0000 0.0000
[6,] 0.79 0.15 -1.20 1.7683 1.4323 0.7132 0.2183 0.0394

Following from Equation (1), these item parameters can be used to find the probability
of responding in each response category as a function of the latent trait θ; that is, the IRF.
The irf_fmp function calculates item response probabilities for the FMP model given a
scalar or vector of latent trait value(s) theta and a matrix or vector of item parameters
bmat in the polynomial coefficient parameterization. It may also be necessary to specify the
maxncat function, which gives the maximum number of response categories represented
in the matrix (such that the first maxncat-1 columns are interpreted as ξ parameters). The
default value of maxncat = 2, so this argument should be specified if bmat includes at
least one polytomous item. Calls to irf_fmp will result in a three-dimensional array with θ
values in the first dimension, items in the second dimension, and response categories in
the third dimension. For example,

theta <- c(-1, 1)
irf_fmp(theta = theta, bmat = bmat, maxncat = 4)

, , c = 0
##
item 1 item 2 item 3 item 4 item 5 item 6
theta = -1 0.6887 0.7894 0.8836 0.3256 0.8581 0.4118
theta = 1 0.1450 0.4271 0.5429 0.0280 0.0051 0.0000

Psych 2021, 3 451

##
, , c = 1
##
item 1 item 2 item 3 item 4 item 5 item 6
theta = -1 0.3113 0.2106 0.1164 0.2994 0.1304 0.3800
theta = 1 0.8550 0.5729 0.4571 0.0970 0.0467 0.0006
##
, , c = 2
##
item 1 item 2 item 3 item 4 item 5 item 6
theta = -1 NA NA NA 0.2517 0.0110 0.1849
theta = 1 NA NA NA 0.3074 0.2374 0.0487
##
, , c = 3
##
item 1 item 2 item 3 item 4 item 5 item 6
theta = -1 NA NA NA 0.1233 0.0005 0.0233
theta = 1 NA NA NA 0.5677 0.7109 0.9506

In the above output (and elsewhere in this tutorial), informative dimension labels
have been added to ease readability. This output shows, for example, that the probabilities
of responding in categories 0, 1, 2, and 3 to item 6 for a person with θ = −1 equal 0.4118,
0.3800, 0.1849, and 0.0233. Notice that the output also includes some NA values. This is
because items 1, 2, and 3 have only 2 response categories, and therefore these subjects can
only respond in categories 0 and 1 and categories 2 and 3 are NA.

For dichotomous items, it is common to only find the probability of responding in the
higher response category (because the sum of response category probabilities must sum
to 1 for each θ, probabilities for category 0 are 1 minus those for category 1). In flexmet,
specific category response probabilities can be found by adding the returncat argument.
This is illustrated below for item 1:

irf_fmp(theta = theta, bmat = bmat[1,], maxncat = 4, returncat = 1)

item 1
theta = -1 0.3113050
theta = 1 0.8549576

Notice that the maxncat argument is set equal to 4 in this example, even though the
item is dichotomous. This is because the item parameters are taken from the first row of
bmat, and bmat includes columns corresponding to four-category items. In other words,
maxncat should be set to one greater than than the number of bmat columns (or one greater
than the number of bmat entries, if bmat is a vector) that correspond to ξ parameters,
even if no item with maxncat categories is included in the call to bmat. Note that the
returncat argument represents the value of the category to output, where categories are
labeled starting at 0. Therefore, returning category “1” for dichotomous item 1 returns
the probability of a positive item response to item 1. By default, if maxncat = 2, only
probabilities for category “1” are returned, and if maxncat > 2, all response category
probabilities are returned.

Calls to irf_fmp also can be used to plot IRFs. Figure 1 displays the IRFs for the six
example items, and tge code to produce a version of this figure is included in Appendix C.
In this figure, response probabilities for category 1 (a positive response) are shown for the
3 dichotomous items, and all response category probabilities are shown for the 3 polyto-
mous items.

Psych 2021, 3 452

Figure 1. Item response functions for six example FMP items. Items 1, 2, and 3 are dichotomous, and
items 4, 5, and 6 have four response categories. Items 1 and 4 have ki = 0, items 2 and 5 have ki = 1,
and items 3 and 6 have ki = 2.

3. Fitting the FMP Model in flexmetflexmetflexmet

The flexmet package includes functionality for specifying, fitting, and manipulating
the general FMP model. Notably, flexmet is not the only R package available for fitting
the FMP model. For example, the mirt package [15] includes functionality to estimate
FMP item parameters using marginal maximum likelihood estimation. However, if any
items have k = 0, the mirt package currently (version 1.34 of mirt is current at the time
of writing) requires the user to estimate either 2PL or GPCM parameters rather than
FMP parameters. Because mirt parameterizes the 2PL and GPCM differently than the
Greek-letter FMP parameterization, this may make the mirt package less than ideal for
tests with a variety of ki values and for advanced applications of the FMP model (such
as scale transformations, as described in a later section). Therefore, the flexmet package
includes several ways to estimate FMP model parameters, including built-in methods
for fixed-effects and random-effects estimation, as well as a wrapper that uses the mirt

Psych 2021, 3 453

package to estimate parameters and return parameter estimates in a standardized format.
As illustrated below, flexmet facilitates item parameter estimation for items with any
combination of ki values and numbers of response categories, with or without the use of
Bayesian priors.

Early applications of the FMP model treated the latent trait as a fixed effect to estimate
item parameters [3,11]. In this fixed-effects approach, initial estimates of the θ parameters are
treated as known quantities when calculating maximum likelihood estimates of the Greek-
letter parameters for an individual item. These fixed θ values are called θ surrogates [3,11]
and are calculated as the first principal components scores of the full data matrix. In the
following code chunk, 1000 true θ values are simulated from a standard normal distribution.
Then, the sim_data function in flexmet is used in conjunction with the six-item bmat matrix
defined earlier to randomly generate item response data. Finally, θ surrogates are calculated
by passing the simulated data to flexmet’s get_surrogates function.

set.seed(234)
theta <- rnorm(1000)
dat <- sim_data(bmat = bmat, theta = theta, maxncat = 4)
tsur <- get_surrogates(dat)

The tsur object now includes 1000 θ surrogate values calculated from the simulated
data. To estimate item parameters for a single item using fixed-effects estimation with θ
surrogates, we can use the fmp_1 function in flexmet. As illustrated below, this function
requires the user to specify the data vector, the desired k value, and a vector of θ surrogates
tsur. Below, this is illustrated for k values of 0, 1, and 2.

i <- 2 # choose an item
fe0i <- fmp_1(dat[, i], k = 0, tsur = tsur)
fe1i <- fmp_1(dat[, i], k = 1, tsur = tsur)
fe2i <- fmp_1(dat[, i], k = 2, tsur = tsur)

The best choice of k for a given item is typically unknown, and so authors have
suggested comparing the item-level Akaike Information Criteria (AIC) value to select the
optimal k value [3,12]. We can perform this comparison by extracting the AIC list element
from each call to fmp_1.

c(fe0i$AIC, fe1i$AIC, fe2i$AIC)

[1] 1167.464 1157.760 1159.476

In this example, k = 1 leads to the lowest AIC value. Incidentally, k = 1 is also the
data-generating k value for this item (item 2), though this will not always be the case.
Note that it is not always desirable to seek the “correct” ki value, but instead it may be
preferable to approximate the population curve as closely as possible without overfitting
the data. One measure of the similarity of item response functions is the root integrated
mean squared error (RIMSE; [6,12]), which is defined here as

RIMSE =

√√√√∫ (Ci−1

∑
c=0

xP1(Xi = c|θ)−
Ci−1

∑
c=0

xP2(Xi = c|θ)
)2

g(θ)dθ (6)

where P1 and P2 represent the two item response functions to compare (not necessarily from
the FMP model), and g(θ) indicates a θ distribution to integrate over. Smaller values of
RIMSE indicate greater similarity between the two curves. In flexmet, the rimse function
can calculate the RIMSE for any combination of b-vectors that represent the same number of
response categories (though not illustrated here, rimse can also be used with non-FMP item

Psych 2021, 3 454

response functions). In flexmet, g(θ) is standard normal by default but can be modified
using the int argument, which expects a matrix with two columns. The first column
should include a sequence of quadrature points, and the second column should include
the densities of each quadrature point, scaled so that the densities sum to 1. The int_mat
function in flexmet facilitates the creation of this matrix. The int_mat function takes a
distribution function distr (such as dnorm or dunif), a named list args of the parameters
of that distribution, the lower and upper bounds of the quadrature points, lb and ub, and
the number of quadrature points, npts. An example of modifying these arguments of the
int_mat function is included later in this paper (Section 4.2).

The first two arguments to rimse should be two vectors of b-parameters, in either
order. In the code below, the true b-parameters for item 2 are listed first. Note that because
columns 2 and 3 of bmat represent category intercept parameters for polytomous items
(and include NA values for item 2), we omit these from the b-vector when calling rimse.
The estimated b-parameters are listed second and are found in the bmat list element of
each call to fmp_1. If items are polytomous, the ncat argument should also be specified to
indicate the number of response categories. Because the default value of ncat = 2, it is not
necessary to include this argument for dichotomous items.

c(rimse(bmat[i, -c(2, 3)], fe0i$bmat),
rimse(bmat[i, -c(2, 3)], fe1i$bmat),
rimse(bmat[i, -c(2, 3)], fe2i$bmat))

[1] 0.06720749 0.04754961 0.05220503

Comparing the RIMSE of the estimated curves versus the data-generating curves for
3 values of k, we see that k = 0 leads to the highest error in estimation, followed by k = 2,
and k = 1 most closely traces the population item response function.

It is also possible to estimate fixed-effects item parameters for multiple items in
one command using the fmp function with the em = FALSE argument. This method will
automatically calculate θ surrogates based on the provided data matrix. In the fmp function,
it is possible to specify different k values for different items. Namely, if a scalar is specified
for the k argument, the same k value will be used for all items. Otherwise, a vector of k
values should be specified, one per item.

In the example below, the fixed-effects FMP model is fit several times. First, all items
are fit with k = 0, k = 1, and k = 2. Based on these results, a model with differing k values
is specified based on the optimal k value, as indicated by comparing item-level AIC values.

fe0 <- fmp(dat, k = 0, em = FALSE)
fe1 <- fmp(dat, k = 1, em = FALSE)
fe2 <- fmp(dat, k = 2, em = FALSE)
rbind(fe0modAICs, fe1modAICs, fe2modAICs)

1 2 3 4 5 6
k = 0 1127.219 1167.464 1129.203 2135.735 1241.019 1783.829
k = 1 1130.652 1168.813 1131.627 2137.054 1241.437 1710.060
k = 2 1131.957 1172.118 1126.248 2135.115 1245.171 1764.221

The user may notice that the model with k = 2 produces an error that the (item param-
eter) information matrix cannot be inverted. This is a common problem with high k values.
If this error occurs, standard errors are not available for the estimated item parameters;
however, the item parameter estimates themselves may be used without concern.

Based on the above results, we see that the lowest AIC value is observed for k = 0, 0,
2, 2, 0, and 1 for the 6 items. We may then choose to fit a new fixed-effects FMP model with
these varying k values, as illustrated below.

Psych 2021, 3 455

fe_mixed <- fmp(dat, k = c(0, 0, 2, 2, 0, 1), em = FALSE)
fe_mixed$bmat

b0_1 b0_2 b0_3 b1 b2 b3 b4 b5
[1,] 0.3892 NA NA 1.2077 0.0000 0.0000 0.0000 0.0000
[2,] -0.6355 NA NA 0.9249 0.0000 0.0000 0.0000 0.0000
[3,] -0.7711 NA NA 0.8339 -0.0075 0.0866 -0.0006 0.0040
[4,] 1.1438 0.5142 -0.3266 1.0889 0.0757 0.0270 0.0013 0.0003
[5,] 1.9865 0.7333 -1.6325 4.0021 0.0000 0.0000 0.0000 0.0000
[6,] 1.3672 0.2662 -1.2763 1.4312 1.1918 0.9096 0.0000 0.0000

In the item parameter matrix printed above, notice how items with different k values
and numbers of response categories are represented. Specifically, NA’s are used as place-
holders for items 1–3 that include less than the maximum number of response categories.
In contrast, if ki is less than the maximum ki value represented in the parameter matrix (as
is the case for items 1, 2, 5, and 6), then the higher-order b parameters are set to 0.

In addition to fixed-effects estimation, flexmet also provides functionality for random-
effects estimation using marginal maximum likelihood estimation via the expectation-
maximization (EM) algorithm [20]. The flexmet package includes both an inbuilt algorithm
for estimating item parameters (using the fmp function with option em = TRUE) and a
wrapper to the mirt [15] package (using the fmp function with option em = "mirt"). The
mirt algorithm is currently faster and more reliable than the inbuilt algorithm, and so this
option is used for illustration. Note that the mirt package must be installed in order to use
this option. Using the same pattern of k values found with the fixed-effects model, we find
the following results:

re_mixed <- fmp(dat, k = c(0, 0, 2, 2, 0, 1), em = "mirt")
re_mixed$bmat

b0_1 b0_2 b0_3 b1 b2 b3 b4 b5
[1,] 0.3974 NA NA 1.2866 0.0000 0.0000 0.0000 0.0000
[2,] -0.6441 NA NA 0.9516 0.0000 0.0000 0.0000 0.0000
[3,] -0.4041 NA NA 0.3588 -0.5703 0.7080 -0.4838 0.2066
[4,] 0.9198 0.3836 -0.0562 0.4188 -0.0197 0.1213 -0.0043 0.0157
[5,] 0.4667 0.4789 -0.4709 1.7170 0.0000 0.0000 0.0000 0.0000
[6,] 0.7189 0.1984 -0.9902 1.4832 0.8613 0.1684 0.0000 0.0000

At a glance, comparing the bmat outputs of fe_mixed and re_mixed indicates that
while some parameter estimates are similar across the two estimation methods, others
are quite different. Notably, for highly parameterized models such as the FMP model,
very different sets of parameters can trace similar curves. For this reason, it is useful to
plot curves or to apply overall summary measures such as the RIMSE when comparing
estimated curves to the true curve or to each other. These RIMSE values are calculated for
fe_mixed and re_mixed after illustrating one final estimation method.

Another useful estimation option available for both the fmp_1 and fmp functions
is the use of Bayesian priors. Particularly, for higher values of k, the FMP model may
become computationally unstable, which can be somewhat alleviated through the use of
priors [12]. Because the Greek-letter parameterization of the FMP is used for parameter
estimation, priors are placed on the Greek-letter parameters rather than on the more
readily interpretable b parameters. When choosing priors, it may be helpful to note
that (ξ1i, . . . ξ(Ci−1)i) = (b01i, . . . b0Ci−1i) and that ω = ln b1. In addition, higher-order b
parameters will equal zero if the corresponding α = 0 and τ = −∞. Prior predictive
simulation may help the user to select appropriate priors. For example, the following

Psych 2021, 3 456

code produces a prior predictive simulation of 20 item response curves generated from the
following distributions: ξ ∼ N(0, 1), ω ∼ N(−0.5, 1), α ∼ N(0, 0.5), and τ ∼ N(−3, 0.5).
The plot produced by this code is shown in Figure 2. This choice of priors appears to allow
for a variety of shapes and locations of the FMP curves, and so we continue to illustrate
Bayesian estimation with these priors.

par(mfrow = c(1, 1)) # display only one figure in the plotting window
set.seed(234)
k <- rep(c(1, 2), each = 10)
pp_bmat <- sim_bmat(n_items = 20, k = k, ncat = 2,

xi_dist = list(rnorm, mean = 0, sd = 1),
omega_dist = list(rnorm, mean = -0.5, sd = 1),
alpha_dist = list(rnorm, mean = 0, sd = 0.5),
tau_dist = list(rnorm, mean = -3, sd = 0.5))$bmat

curve(irf_fmp(x, pp_bmat[1,]), xlim = c(-3, 3), ylim = c(0, 1),
xlab = expression(theta), ylab = "probability", col = k[1])

for(i in 2:20)
curve(irf_fmp(x, pp_bmat[i,]), add = TRUE, col = k[i])

Figure 2. Prior predictive simulation of FMP item response curves with k = 1 and k = 2 and
ξ ∼ N(0, 1), ω ∼ N(−0.5, 1), α ∼ N(0, 0.5), and τ ∼ N(−3, 0.5).

Priors can be added to models fit using flexmet by specifying the prior argument to
the fmp or fmp_1 function. As of version 1.1 of flexmet, only normally distributed priors
are available, and the same priors are applied to all model parameters of a given class
(i.e., for all items in the data set and for all instances of that parameter type within an item).
To specify priors, a list with named elements xi, omega, alpha, and tau should be passed
to the prior argument. For example, to specify a standard normal prior for all ξs, we
may write prior = list(xi = c("norm", 0, 1)). The code below illustrates Bayesian
estimation with the em = "mirt" option.

re_priors <- fmp(dat, k = c(0, 1, 2, 0, 1, 2), em = "mirt",
prior = list(xi = c("norm", 0, 1),

omega = c("norm", -0.5, 1),
alpha = c("norm", 0, 0.5),
tau = c("norm", -3, 0.5)))

Psych 2021, 3 457

Finally, we may compare the accuracy of each of the three illustrated estimation
methods using the rimse function. The code below does this for each of the six simulated
items. For each item, random-effects estimation tends to lead to somewhat more accurate
curves than fixed-effects estimation, and the use of priors improves parameter estimation
accuracy in some, but not all, cases.

rimse_res <- sapply(1:6, function(i){
c(rimse(fe_mixed$bmat[i,], bmat[i,], ncat = 4),

rimse(re_mixed$bmat[i,], bmat[i,], ncat = 4),
rimse(re_priors$bmat[i,], bmat[i,], ncat = 4))

})

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6
fe_mixed 0.0194 0.0672 0.0520 0.1454 0.1446 0.1944
re_mixed 0.0181 0.0659 0.0298 0.1281 0.1149 0.1093
re_priors 0.0180 0.0378 0.0595 0.0285 0.0254 0.1147

Several other estimation options are available with the fmp and fmp_1 functions that
are not illustrated here. A vector of starting values may be specified with the start_vals
argument, where parameters should be listed in the same order as the estimated parameters
given in the parmat list element of the fitted model object. For fixed-effects estimation, the
method argument indicates the optimization algorithm (passed to the optim function in R’s
stats package). For random-effects estimation, the max_em option indicates the maximum
number of EM cycles (default 500), and the n_quad function indicates the number of
quadrature points (default 49). Additional named arguments may be passed to the optim
function (if em = TRUE) or the mirt function (if em = "mirt").

Finally, flexmet includes the th_est_ml and th_est_eap functions for maximum
likelihood (ML) and expected a posteriori (EAP, [21]) person parameter estimation. Both of
these functions require a data matrix dat and a matrix of b-parameters bmat. If at least
one item is polytomous, the maxncat argument should also be specified. By default, the
th_est_eap function uses a standard normal prior with 33 quadrature points, and this
may be modified using the int argument in conjunction with int_mat. A call to either
trait estimation function will result in a matrix with two columns: one for the θ parameter
estimates and one for the standard errors (for ML) or posterior standard deviations (for
EAP). The code below illustrates this procedure for the example data and the re_priors
estimated item parameters.

mle_ests <- th_est_ml(dat = dat, bmat = re_priors$bmat, maxncat = 4)
eap_ests <- th_est_eap(dat = dat, bmat = re_priors$bmat, maxncat = 4)
head(cbind(mle_ests, eap_ests))

ML_est ML_sem EAP_est EAP_psd
[1,] -0.1834 0.3758 -0.1162 0.3628
[2,] -1.9319 1.1834 -1.2733 0.5576
[3,] -1.0507 0.5395 -0.9304 0.4786
[4,] 0.9762 0.4800 0.8133 0.4591
[5,] 1.5290 0.7820 1.1532 0.5422
[6,] 0.6364 0.4342 0.5429 0.3581

4. Transforming the FMP Model with flexmetflexmetflexmet

Aside from the increased flexibility in IRF shapes afforded by the FMP model, another
potential use of the FMP model is to transform item response models linearly or nonlin-
early [18,19]. Specifically, suppose that two scalings of the latent trait, θ and θ?, are related
by a monotonic polynomial function of degree 2kθ + 1 such that

Psych 2021, 3 458

θ = t0 + t1θ? + t2θ?2 + · · · t2kθ+1θ?2kθ+1, (7)

where kθ is a non-negative integer. Then, an FMP model defined on the scale of θ may be
transformed to the scale of θ? using matrix operations described elsewhere [18,19]. For a
given kθ and an item with a given ki (i.e., item complexity defined on the scale of θ), the
item complexity on the scale of θ?, k?i , equals

k?i = 2kikθ + ki + kθ . (8)

Therefore, item response functions on the scale of θ? will necessarily have larger item
complexities than response functions on the scale of θ.

Two applications of nonlinearly transforming the FMP model will be illustrated below.
In the first application, item parameters are estimated separately for two groups with
different latent trait distributions. Because the latent trait is often assumed to follow a
standard normal distribution for model identification, the fitted item response models will
be on different, nonlinearly related, scales. Linear and nonlinear linking transformations
will be estimated and compared. In the second application, an item response model will be
transformed such that the latent trait scale is on a more interpretable percentage-correct
score metric.

4.1. Item Parameter Linking with the FMP Model

If item parameters for the same items are estimated from two different samples, item
parameter linking may be used to put the parameters on the same scale. The need for item
parameter linking arises from differences in model identification constraints [22]. For the
most common parametric item response models, such as the 2PL and GPCM, the chosen
functional form of the item response model identifies the scale of the latent trait up to a
linear transformation. In addition, models may be identified by assuming that the latent
trait is standardized, or that the latent trait follows a standard normal distribution (as is
the case for the fixed-effects FMP estimation illustrated above). Therefore, if there are any
differences in the location, variance, or shape of the latent trait distribution between groups,
linking may be necessary to put the two sets of item parameters on more similar scales. To
illustrate how item parameters on different scales may be linked with the FMP model, an
illustrative simulation is presented next.

To simulate data, a population set of FMP item parameters was first generated for
20 items each with two response categories and k = 0 using the sim_bmat function in
flexmet. With the sim_bmat function, the user can generate items with varying k values
and numbers of response categories by specifying vectors for the k and ncat functions. The
population item parameters were then used to generate data for two groups of 5000 exami-
nees. The population latent trait values for the first group were first drawn from a standard
normal distribution, then transformed by taking −2 plus e to the power of the standard
normal scores divided by 2. The population latent trait values for the second group were
drawn from a standard normal distribution. From this design, because the second group’s
θ values were transformed to the scale of the first group’s scores (which were identified by
a combination of the shape of the fitted model and the assumption of a standard normal
distribution), the population relationship between the two scales equals

θ = −2 + exp(θ?/2). (9)

set.seed(123)
bmat <- sim_bmat(n_items = 20, k = 0, ncat = 2)$bmat
theta1 <- exp(rnorm(5000) / 2) - 2
theta2 <- rnorm(5000)

Psych 2021, 3 459

After generating population θ values, data were then generated separately for each
group. To select the k values that best represent these data, each item for each group was
first fit to a series of FMP models using the fmp_1 function based on theta surrogates.
Specifically, each item was first fit with k = 0 and k = 1. If the AIC for k = 0 was smaller
than for k = 1, then the final model was fit with k = 0. If not, models with sequentially
higher k values were fit until the model with the smaller k value had a smaller AIC than
the model with the higher k value. The code to implement this procedure is included
in Appendix D and resulted in a mixture of k = 0 and k = 1 for both groups. Once
the empirically selected k values for each item and group were chosen, item parameters
were estimated again with fmp and the em = "mirt" option. For group 1, the argument
technical = list(NCYCLES = 1500) was passed to mirt because more than 500 cycles of
the EM algorithm (the default in mirt) were required for this model to converge.

data1 <- sim_data(bmat = bmat, theta = theta1)
data2 <- sim_data(bmat = bmat, theta = theta2)

k1 <- c(0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)
k2 <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1)

d1_2pl <- fmp(data1, k = k1, em = "mirt",
technical = list(NCYCLES = 1500))

d2_2pl <- fmp(data2, k = k2, em = "mirt")

The flexmet package includes two functions for linking item parameters: hb_link
for linking based on the Haebara method (HB) [23] and sl_link for linking based on the
Stocking–Lord method (SL) [24], and both functions take the same arguments. The bmat1
and bmat2 arguments give the matrices of item parameters in the polynomial coefficient
parameterization. These functions currently assume that both matrices include the same
set of common items in the same order. The bmat2 parameters are on the θ? metric
and are transformed to the θ metric of the bmat1 parameters. The polynomial degree
of the estimated transformation is specified by the k_theta argument (monotonicity of
the estimated linking transformation is ensured using the same strategy as is used for
item parameters).

hb0 <- hb_link(bmat1 = d1_2pl$bmat, bmat2 = d2_2pl$bmat, k_theta = 0)
hb1 <- hb_link(bmat1 = d1_2pl$bmat, bmat2 = d2_2pl$bmat, k_theta = 1)
hb2 <- hb_link(bmat1 = d1_2pl$bmat, bmat2 = d2_2pl$bmat, k_theta = 2)

sl0 <- sl_link(bmat1 = d1_2pl$bmat, bmat2 = d2_2pl$bmat, k_theta = 0)
sl1 <- sl_link(bmat1 = d1_2pl$bmat, bmat2 = d2_2pl$bmat, k_theta = 1)
sl2 <- sl_link(bmat1 = d1_2pl$bmat, bmat2 = d2_2pl$bmat, k_theta = 2)

c(hb0$value,hb1$value, hb2$value)

[1] 0.5743 0.4077 1.6079

c(sl0$value, sl1$value, sl2$value)

[1] 0.1845 0.1203 0.3127

From the objects returned by calls to hb_link and sl_link, the value list element
gives the function value from minimizing the HB or SL criterion (see [23,24] for details).
Comparing these values resulting from the HB or SL method with different kθ can help

Psych 2021, 3 460

inform which kθ yields the most appropriate latent trait transformations, where smaller
values indicate smaller differences between the estimated item/test response functions
on the two scales. Although criteria values from calls to hb_link should not be compared
to values from calls to sl_link, comparing values with different kθ suggests that kθ = 1
leads to the closest match between the two sets of item parameters under both the SL and
HB methods.

Calls to hb_link and sl_link also output the estimated vector of polynomial co-
efficients in the tvec list element. As shown below, although these values are similar
for the HB and SL methods, there are some differences, particularly for higher-order
polynomial coefficients.

rbind(hb0$tvec, sl0$tvec)

t0 t1
HB -0.9472 0.6339
SL -0.9277 0.6137

rbind(hb1$tvec, sl1$tvec)

t0 t1 t2 t3
HB -0.9925 0.4322 0.0732 0.0803
SL -0.9970 0.5154 0.1189 0.0091

rbind(hb2$tvec, sl2$tvec)

t0 t1 t2 t3 t4 t5
HB -0.8978 0.0000 0.0000 0.0002 -0.0073 0.0904
SL -0.8871 0.0011 0.0017 0.2405 0.0004 0.0003

The tvec output is useful for understanding the estimated relationship between
the θ and θ? scales. Recall from Equation (7) that θ is a polynomial function of θ?, and
Equation (9) gives the population relationship between θ and θ?. In Figure 3, the SL linking
transformations are compared to the true linking transformation. The code to reproduce
a version of this figure is included in Appendix E and makes use of flexmet’s inv_poly
function to calculate the θ value that corresponds to any particular value of θ?. Although in
non-simulation applications, the true latent trait transformation will not be known, plotting
may still be a useful tool to inspect the similarity of different transformations.

Psych 2021, 3 461

Figure 3. True linking transformation and estimated Stocking–Lord linking transformations with
various kθ values.

To illustrate the meaning of the linking transformation, consider a θ value of 0.5. In
the code below, this θ value is transformed to a θ? value using the inv_poly function,
which takes a scalar value (here, each θ) and returns the θ? value that combines with the
polynomial coefficient vector coefs (see Equation (7)) to produce θ. As shown below for
the SL transformation with kθ = 1, the item response probabilities for theta combined with
the originally estimated bmat are identical to the transformed thetastar values combined
with the transformed item parameters (which are found in the bmat list element of the
linking output). This equality is demonstrated for the first three items of the simulated test.

theta <- 0.5
irf_fmp(theta, d2_2pl$bmat[1:3,])

[,1] [,2] [,3]
[1,] 0.6613631 0.7826067 0.6244098

thetastar <- inv_poly(theta, coefs = sl1$tvec)
irf_fmp(thetastar, sl1$bmat[1:3,])

[,1] [,2] [,3]
[1,] 0.6613657 0.7826081 0.6244117

Psych 2021, 3 462

4.2. Transforming the FMP Model to a User-Defined Scale

Another potential application of FMP model transformations is to specify an item
response model on a latent trait metric other than θ. In the following illustration, flexmet
functions are used to transform a set of 3 parameter logistic (3PL) model item parameters
from the typical θ metric to a percentage-correct (PC) metric where the lowest score is 0, the
highest score is 100, and scores roughly correspond to the percentage of items answered
correctly. Although this type of model transformation is illustrated using a PC metric, any
monotonic transformation is possible, so long as the user can identify a suitable polynomial
approximation to the desired transformation. Transforming the entire item response model
to a more interpretable metric allows for trait estimates, item information, standard errors,
and other quantities to be calculated directly on the reported score metric.

The item parameters used for the following illustration are taken from the tcals data
set found in version 3.16 of the catR package [25] (and also included in Appendix F). Note
that these parameters correspond to the following representation of the 3PL model:

P(Xij = 1|θj, a?i , b?i , c?i) = c?i +
1− c?i

1 + exp(−a?i (θj − b?i))
, (10)

where a?i indicates the item discrimination parameter, b?i indicates the item difficulty
parameter, and c?i indicates the guessing, or lower asymptote, parameter. The star notation
is used for these item parameters only to avoid confusion with previously defined notation.

Note that the 3PL presented in Equation (10) is not a special case of the FMP model as
presented in Equation (1). However, for dichotomous item responses, an FMP model may
be specified that includes upper (d?i) and/or lower (c?i) asymptotes on the item response
functions [26] as follows:

P(Xij = 1|θjbi, c?i , d?i) = c?i +
d?i − c?i

1 + exp(−b0 −m?(θj, b1i, . . . , b2ki+1,i))
. (11)

If not otherwise specified, we may assume that all d?i = 1 and all c?i = 0. In many flexmet
functions, upper and lower asymptote parameters may be specified using the cvec and
dvec arguments (note that flexmet currently does not allow these asymptote parameters
to be estimated with the fmp or fmp_1 functions; however, most other flexmet functions
accommodate asymptote parameters). These asymptote parameters are unaffected by
transformations of the latent trait metric.

In the code below, the tcals parameters are read in first. Then, an object fmp_pars
is defined that transforms the 3PL a?i and b?i parameters to the polynomial coefficients
required by the FMP model. Then, a sequence of θ values is generated between −4
and 4, and item response probabilities are calculated for each item and θ value. The
expected percentage-correct (PC) scores are then calculated by summing the item response
probabilities for each θ value and multiplying them by 100/85 (where 85 is the number
of test items). We then regress the θ values on the PC scores using monotonic polynomial
regression [27] as implemented in version 0.3–10 of the Monopoly package [28] for R. Several
regressions are fit using k values (which are used as kθ values) from 0 to 5, where, as before,
2k + 1 indicates the maximum polynomial degree. Finally, the average regression residual
is printed for each k value.

data(tcals, package = "catR")

fmp_pars <- cbind(-tcals$a * tcals$b, tcals$a)

theta <- seq(-4, 4, length = 5000)
probs <- irf_fmp(theta = theta, b = fmp_pars, cvec = tcals$c)
PC <- rowSums(probs) * 100 / 85

mp_res <- lapply(0:5, function(k){

Psych 2021, 3 463

MonoPoly::monpol(theta ~ PC, K = k, weights = dnorm(theta))
})

sapply(mp_res, function(x) mean(x$residuals))

[1] 0.12065489 0.09256206 0.06798434 0.05051354 0.03738312 0.02756218

The average regression residuals indicate that higher k values lead to better approx-
imations of the desired curve. However, choosing a higher k value will lead to many
higher-order coefficients for the transformed item parameters, so we may choose to use
the smallest k value that yields an acceptable level of accuracy. For instance, if we decide
that an average regression residual of less than 0.1 is acceptable, then we may choose to
move forward with the k = 1 transformation. The estimated regression coefficients then
become the polynomial coefficients with which to transform fmp_pars (i.e., the t coeffi-
cients for Equation (7) with kθ = 1). We can implement this transformation by applying the
transform_b function in flexmet to each row of fmp_pars, specifying the θ transformation
coefficients in the tvec argument, as illustrated below.

tvec <- coef(mp_res[[2]])
transformed_bmat <- t(apply(fmp_pars, 1, transform_b, tvec = tvec))

head(transformed_bmat)

b0 b1 b2 b3
[1,] -19.1331 0.9053 -0.0136 0.0001
[2,] -9.4778 0.4777 -0.0072 0.0000
[3,] -16.9269 0.8561 -0.0128 0.0001
[4,] -24.7629 1.0949 -0.0164 0.0001
[5,] -10.7440 0.5110 -0.0077 0.0000
[6,] -12.9219 0.5887 -0.0088 0.0000

Note again that the c?i parameters remain unchanged during FMP parameter transfor-
mations, and so the argument cvec = tcals$c should be passed to any flexmet function
that makes use of these parameters. For example, we may compare two methods of calcu-
lating trait estimates on the transformed θ?/PC metric: first, estimating person parameters
on the θ metric and then applying the polynomial transformation; and estimating person
parameters directly on the θ?/PC metric. In this example, we use a standard normal prior
to estimate EAPs on the θ metric, and a N(80, 10) prior to estimate EAPs directly on the
θ?/PC metric. This prior is specified by feeding the output of a call to the int_mat function
to the int argument. In the example code shown below, both priors are specified with
89 quadrature points, the prior on θ is bounded between 0 and 4, and the prior on θ? is
bounded between 0 and 100. Finally, the EAPs that were estimated on the θ metric are
transformed to the θ?/PC metric using the inv_poly function.

Psych 2021, 3 464

set.seed(987)
dat <- sim_data(bmat = fmp_pars, theta = rep(0, 1000),

maxncat = 2, cvec = tcals$c)
theta_ests <- th_est_eap(dat = dat, bmat = fmp_pars,

maxncat = 2, cvec = tcals$c,
int = int_mat(dnorm, list(mean = 0, sd = 1),

lb = -4, ub = 4, npts = 89))
tstar_ests <- th_est_eap(dat = dat, bmat = transformed_bmat,

maxncat = 2, cvec = tcals$c,
int = int_mat(dnorm, list(mean = 80, sd = 10),

lb = 0, ub = 100, npts = 89))

theta_ests_transformed <- sapply(theta_ests[, 1], inv_poly, coefs = tvec)

summary(tstar_ests[, 1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
76.83 82.11 83.71 83.70 85.20 92.80

summary(theta_ests_transformed)

Min. 1st Qu. Median Mean 3rd Qu. Max.
77.59 82.90 84.45 84.44 85.91 93.36

Comparing the distribution of trait estimates calculated with both approaches, we
see that the scores are relatively similar (the small difference in estimated distributions
may be due to the use of different prior distributions). However, a major advantage of
estimating parameters directly on the θ?/PC metric is that the estimated standard errors
are on the appropriate metric. That is, nonlinear monotonic transformations of the latent
trait metric can lead to unexpected distortions of the information matrices [19,29]. An
illustration of the effects of this transformation is illustrated in Figure 4, and the code to
reproduce a version of this figure is included in Appendix F. This code makes use of the
iif_fmp function in flexmet, which has similar arguments to the irf_fmp function and
yields item information for any FMP items and θ values. In the upper panels of Figure 4,
three example IRFs (taken from the 85 tcals items) are displayed on the θ metric and after
being transformed to the θ?/PC metric. Notice that although the shape of each IRF changes,
the relative relationships among the three curves do not change. In the bottom panels, the
test information function (i.e., the sum of item-level information functions) is illustrated
for both the θ and θ? metrics. Whereas test information on the θ metric is unimodal and
centered just below θ = 0, the θ? metric is bimodal with peaks around θ? = 35 and θ? = 90.
This result implies that the items that the trait regions measured most accurately on the
θ metric are not necessarily those measured most accurately on the θ? metric. This result
also highlights the importance of calculating information directly on the metric on which
scores are reported.

Psych 2021, 3 465

Figure 4. Item response functions (upper row) and test information functions (bottom row) on the
original θ metric and on the transformed percentage-correct metric θ?.

5. Summary

This paper provides an introduction to the specification and use of the FMP model
through the flexmet package for R. Version 1.1 of flexmet includes functionality to estimate
FMP item parameters for both dichotomous and polytomous items, as well as methods to
transform FMP item parameters, generate FMP item parameters and data, and several other
methods that are particularly useful when working with the FMP model. The provided
examples also illustrate some scenarios in which it may be desirable to use the FMP model,
including fitting IRFs that can take on more flexible shapes than allowed by traditional
models and transforming item response models to user-defined metrics (e.g., a sum score or
proportion-correct metric). Moreover, it is hoped that broader use of the flexmet package
will lead to further development of the flexmet package, including planned features such
as more choices of prior distributions for Bayesian estimation and the estimation of upper
and lower asymptote parameters. Although not every feature of the current flexmet
package is illustrated in the examples presented above, we hope that this tutorial provides
the reader with an accessible introduction to the FMP model and the tools to use the FMP
model with the flexmet package.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All information required to fully reproduce the results in this paper is
included in text.

Psych 2021, 3 466

Acknowledgments: Many thanks to Xing Chen for his assistance testing code and suggesting
improvements and to three anonymous reviewers for their suggestions in improving the readability
and accessibility of this tutorial.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

2PL Two-parameter logistic
3PL Three-parameter logistic
AIC Akaike information criterion
EAP Expected a posteriori
EM Expectation-maximization
FMP Filtered monotonic polynomial
GPCM Generalized partial credit model
HB Haebara
IRF Item response function
ML Maximum likelihood
PC Percentage-correct
RIMSE Root integrated mean squared error
SL Stocking–Lord

Appendix A. Relationship of the FMP Model (k = 0) to Equivalent Models in Other
Software Packages

The purpose of this appendix is to illustrate how to transform 2PL and GPCM item
parameters from various software packages to the item parameters used by the FMP model
with k = 0. These transformations are useful for fully understanding the FMP model and
some of its applications (e.g., see Section 4.2). Although these examples are in the context of
specific R packages, they are broadly representative of the most common parameterizations
of the 2PM and GPCM, and well as variations of these models such as the 3PM (see also
Section 4.2) and the partial credit model.

In the following examples, 2PL or GPCM data are generated using the flexmet
package (item parameter and data generation are described in Section 3). The data are
then fit to the 2PL or GPCM using the ltm version 1.1-1 [14], mirt version 1.34 [15],
and TAM version 3.7-16 [16] packages, the estimated item parameters are transformed to
FMP parameters. The equivalence of the different parameterizations is then verified by
comparing category response probabilities using flexmet’s irf_fmp function (introduced
in Section 2) and each package’s inbuilt function for calculating response probabilities.
Throughout, packages are called explicitly using R’s :: syntax to avoid potential package
conflicts and to clarify which commands belong to which packages. Note also that this
appendix uses flexmet functions and conventions that are more fully described within the
main tutorial.

Appendix A.1. Two-Parameter Model

In Equation (1), the portion of the numerator within the exp() function when k = 0
and Ci = 2 (i.e., the conditions which make the FMP model equivalent to the 2PL) equals

b0i + b1iθ. (A1)

The following code demonstrates how to find the FMP b0i and b1i parameters from other
parameterizations of the 2PL. To begin, we first generate 2PL data.

set.seed(987)
population_pars <- flexmet::sim_bmat(n_items = 10, k = 0, ncat = 2)$bmat
dat <- flexmet::sim_data(bmat = population_pars, theta = rnorm(1000))

Psych 2021, 3 467

The ltm package with option IRT.param = FALSE and the mirt package both param-
eterize the 2PL in the same way as the FMP model. This is illustrated first for ltm.

library(ltm) # must be loaded in for the ltm() function to work
ltm_fit1 <- ltm::ltm(dat ~ z1, IRT.param = FALSE)
ltm_fit1_FMP <- ltm::coef.ltm(ltm_fit1)

The first column of ltm_fit1_FMP is labeled (Intercept) and is equivalent to b0i. The
second column of ltm_fit1_FMP is labeled z1 and is equivalent to b1i. This is verified by
comparing predicted response probabilities.

i <- 1 # choose an item
th <- c(-1.35, 0, 1.35) # choose theta values
ltm::plot.ltm(ltm_fit1, type = "ICC", items = i, z = th, plot = FALSE)
flexmet::irf_fmp(theta = th, bmat = ltm_fit1_FMP[i,])

[1] 0.294512 0.484810 0.679617
[1] 0.294512 0.484810 0.679617

When fitting the 2PL in mirt, the same parameterization is used as for the FMP model,
but mirt will print the bi1 parameters (labeled a in mirt) before the b0i parameters (labeled
d inmirt), so the columns must be reordered.

mirt_fit <- mirt::mirt(as.data.frame(dat), model = 1, itemtype = "2PL")
mirt_fit_FMP <- mirt::coef(mirt_fit, simplify = TRUE)$items
mirt_fit_FMP <- mirt_fit_FMP[, c(2, 1)] # reorder column
i <- 1 # choose an item
th <- c(-1.35, 0, 1.35) # choose theta values
mirt::probtrace(mirt::extract.item(mirt_fit, i), Theta = th)[, 2]
flexmet::irf_fmp(theta = th, bmat = mirt_fit_FMP[i,])

[1] 0.294519 0.484803 0.679598
[1] 0.294519 0.484803 0.679598

A common way for the 2PL to be parameterized is in terms of the difficulty parameter
di f fi and a discrimination parameter disci. In this parameterization, the expression inside
the exp() (see Equation (A1)) is

disci(θ − di f fi). (A2)

Therefore, the FMP b01 = −di f fidisci and the FMP b1i = disci. This difficulty-
discrimination parameterization is used by the ltm package with option IRT.param =
TRUE, as illustrated next.

library(ltm) # ltm package must be loaded to make the following run
ltm_fit2 <- ltm::ltm(dat ~ z1, IRT.param = TRUE)
head(ltm::coef.ltm(ltm_fit2))

Dffclt Dscrmn
Item 1 0.100948 0.602068
Item 2 -1.667651 0.569169
Item 3 -0.332753 0.585347
Item 4 -0.247654 0.723104
Item 5 -0.981639 0.651483
Item 6 0.417462 1.614207

Psych 2021, 3 468

Here, we see that ltm stores the difficulty parameters in the first column and the
discrimination parameters in the second column. Next, we transform these parameters to
b0i and b1i and verify that these parameters yield the same FMP response probabilities as
ltm’s inbuilt function.

ltm_fit2_FMP <- cbind(-ltm::coef.ltm(ltm_fit2)[, 1] *
ltm::coef.ltm(ltm_fit2)[, 2],

ltm::coef.ltm(ltm_fit2)[, 2])
i <- 1 # choose an item
th <- c(-1.35, 0, 1.35) # choose theta values
ltm::plot.ltm(ltm_fit2, type = "ICC", items = i, z = th, plot = FALSE)
flexmet::irf_fmp(theta = th, bmat = ltm_fit2_FMP[i,])

[1] 0.294512 0.484810 0.679617
[1] 0.294512 0.484810 0.679617

Finally, the TAM package uses a slightly different expression for the 2PL than the
previously explored packages. Namely, the expression within the numerator exp() (see
Equation (A1)) is

Biθ − ξi. (A3)

tam_fit <- TAM::tam.mml.2pl(dat)
head(tam_fit$item) # item information, including estimated parameters

item N M xsi.item AXsi_.Cat1 B.Cat1.Dim1
I1 I1 1000 0.486 0.060796 0.060796 0.602032
I2 I2 1000 0.708 -0.949163 -0.949163 0.569194
I3 I3 1000 0.545 -0.194759 -0.194759 0.585384
I4 I4 1000 0.540 -0.179057 -0.179057 0.723115
I5 I5 1000 0.642 -0.639498 -0.639498 0.651467
I6 I6 1000 0.387 0.673979 0.673979 1.614457

Therefore, the TAM 2PL model output is related to the FMP model in that b0i = −ξi
and b1i = Bi. Again, we can verify that this transformation results in the same predicted
response probabilities (up to rounding error). Note that for the TAM package, the function
that calculates response probabilities is located in the CDM package and appears to only be
available for a certain grid of θ values. The 9th, 11th, and 13th of these θ values are used
below for illustration.

tam_fit_FMP <- cbind(-tam_fit$item$xsi.item, tam_fit$item$B.Cat1.Dim1)
i <- 1 # choose an item
th <- attr(CDM::IRT.irfprob(tam_fit), "theta")[c(9, 11, 13)]
CDM::IRT.irfprob(tam_fit)[i , 2, c(9, 11, 13)]
flexmet::irf_fmp(theta = th, bmat = tam_fit_FMP[i,])

[1] 0.313624 0.484806 0.659630
[1] 0.313623 0.484806 0.659629

Appendix A.2. Generalized Partial Credit Model

In Equation (1), the portion of the numerator within the exp() function when k = 0
and Ci > 2 (i.e., the conditions that make the FMP model equivalent to the GPCM) equals

Psych 2021, 3 469

c

∑
v=0

(b0vi + b1iθ). (A4)

The following code demonstrates how to find the FMP b0ci and b1i from other param-
eterizations of the GPCM. To begin, we first generate GPCM data with five response
categories.

rm(list = ls()) # clear environment
set.seed(876)
population_pars <- flexmet::sim_bmat(n_items = 10, k = 0, ncat = 5)$bmat
dat <- flexmet::sim_data(bmat = population_pars,

theta = rnorm(1000), maxncat = 5)

The ltm package with the IRT.param = FALSE option produces GPCM item param-
eter estimates that are already in the same format that the flexmet package uses for the
FMP model.

library(ltm) # must be loaded in for the gpcm() function to run
ltm_fit1 <- ltm::gpcm(data = dat, IRT.param = FALSE)
head(ltm::coef.gpcm(ltm_fit1))

Catgr.1 Catgr.2 Catgr.3 Catgr.4 Dscrmn
V1 1.046 0.865 0.149 -0.525 1.552
V2 0.956 0.298 0.109 -0.604 2.049
V3 0.748 0.947 0.731 -0.173 2.136
V4 1.022 0.241 -0.460 -0.694 1.244
V5 0.937 0.469 0.181 -0.616 2.289
V6 0.644 0.326 0.097 -0.396 1.115

Here, columns Catgr.1 through Catgr.4 include parameters b01i through b04i, and
the Dscrmn column includes the b1i parameters. We can verify that these are equivalent by
comparing the response probabilities calculated from each package. Here (and through the
rest of this section), any minor differences in predicted probabilities can be attributed to
rounding.

ltm_fit1_FMP <- ltm::coef.gpcm(ltm_fit1)
i <- 1 # choose an item
th <- c(-1.35, 0, 1.35) # choose theta values
ltm::plot.gpcm(ltm_fit1, type = "ICC", items = i, z = th, plot = FALSE)
flexmet::irf_fmp(theta = th, ltm_fit1_FMP[i,], maxncat = 5)

Catgr.1 Catgr.2 Catgr.3 Catgr.4
[1,] 0.681183 0.238462 0.069684 0.009947 0.000724
[2,] 0.043312 0.123246 0.292752 0.339686 0.201003
[3,] 0.000040 0.000927 0.017905 0.168873 0.812255
[,1] [,2] [,3] [,4] [,5]
[1,] 0.681086 0.238528 0.069706 0.009955 0.000725
[2,] 0.043302 0.123249 0.292718 0.339750 0.200981
[3,] 0.000040 0.000928 0.017909 0.168937 0.812185

The ltm package with the IRT.param = TRUE argument uses a slightly different parame-
terization of the GPCM. Namely, the numerator expression within the exp() (see Equation (A4))
is ∑c

v=0 Dscrmi(θ − Catgrci) so that b0ci = −CatgrciDscrmi and b1i = Dscrmi.

Psych 2021, 3 470

library(ltm) # ltm package must be loaded to make the following run
ltm_fit2 <- ltm::gpcm(data = dat, IRT.param = TRUE)
ltm_pars2 <- ltm::coef.gpcm(ltm_fit2)
head(ltm_pars2)

Catgr.1 Catgr.2 Catgr.3 Catgr.4 Dscrmn
V1 -0.674 -0.558 -0.096 0.338 1.552
V2 -0.467 -0.146 -0.054 0.294 2.049
V3 -0.350 -0.444 -0.342 0.081 2.136
V4 -0.821 -0.194 0.369 0.558 1.244
V5 -0.409 -0.205 -0.079 0.269 2.289
V6 -0.578 -0.293 -0.087 0.354 1.115
V7 0.251 0.325 0.801 0.622 0.765
V8 -2.290 0.483 0.504 2.064 0.364
V9 -0.524 -0.431 0.075 -0.149 0.474
V10 0.302 0.096 0.481 0.301 0.903

We can then transform the outputted ltm parameters to FMP parameters and verify
that each leads to the same predicted probabilities.

ltm_fit2_FMP <- cbind(-ltm_pars2[, 1] * ltm_pars2[, 5],
-ltm_pars2[, 2] * ltm_pars2[, 5],
-ltm_pars2[, 3] * ltm_pars2[, 5],
-ltm_pars2[, 4] * ltm_pars2[, 5],
ltm_pars2[, 5])

i <- 1 # choose an item
th <- c(-1.35, 0, 1.35) # choose theta values
ltm::plot.gpcm(ltm_fit2, type = "ICC", items = i, z = th, plot = FALSE)
flexmet::irf_fmp(theta = th, ltm_fit2_FMP[i,], maxncat = 5)

Catgr.1 Catgr.2 Catgr.3 Catgr.4
[1,] 0.68114 0.23847 0.06971 0.00996 0.00072
[2,] 0.04328 0.12318 0.29269 0.33974 0.20110
[3,] 0.00004 0.00093 0.01789 0.16883 0.81231
[,1] [,2] [,3] [,4] [,5]
[1,] 0.68102 0.23852 0.06977 0.00996 0.00073
[2,] 0.04326 0.12314 0.29274 0.33978 0.20108
[3,] 0.00004 0.00093 0.01790 0.16888 0.81225

Next, the mirt package with option itemtype = "gpcmIRT" is very similar to the ltm
package with option IRT.param = TRUE. The expression within the numerator exp() (see
Equation (A4)) is ∑c

v=0 ai(θ − bci) so that the FMP b0ci = −bciai and the FMP b1i = ai.

mirt_fit1 <- mirt::mirt(as.data.frame(dat), model = 1, itemtype = "gpcmIRT")
mirt_pars1 <- mirt::coef(mirt_fit1, simplify = TRUE)$items
head(mirt_pars1)

a1 b1 b2 b3 b4 c
V1 1.604088 -0.607911 -0.496352 -0.063637 0.340979 0
V2 2.307321 -0.434459 -0.114577 -0.011683 0.325999 0
V3 2.350332 -0.320676 -0.380056 -0.290298 0.116407 0
V4 1.318478 -0.755949 -0.152858 0.375798 0.559860 0
V5 2.616824 -0.384260 -0.171619 -0.035806 0.304774 0
V6 1.213649 -0.537403 -0.248817 -0.047386 0.377680 0

Psych 2021, 3 471

Here, the ai parameters are in the first column, and the b1i–b4i parameters are in
columns 2 through 5. The following code implements the appropriate transformation and
verifies its equivalence to the FMP model as implemented in flexmet.

mirt_fit1_FMP <- cbind(-mirt_pars1[, 2] * mirt_pars1[, 1],
-mirt_pars1[, 3] * mirt_pars1[, 1],
-mirt_pars1[, 4] * mirt_pars1[, 1],
-mirt_pars1[, 5] * mirt_pars1[, 1],
mirt_pars1[, 1])

i <- 1 # choose an item
th <- c(-1.35, 0, 1.35) # choose theta values
mirt::probtrace(mirt::extract.item(mirt_fit1, i), Theta = th)
flexmet::irf_fmp(theta = th, bmat = mirt_fit1_FMP[i,], maxncat = 5)

P.1 P.2 P.3 P.4 P.5
[1,] 0.718438 0.218482 0.055555 0.007056 0.000468
[2,] 0.050484 0.133860 0.296778 0.328673 0.190205
[3,] 0.000038 0.000870 0.016826 0.162471 0.819796
[,1] [,2] [,3] [,4] [,5]
[1,] 0.718438 0.218482 0.055555 0.007056 0.000468
[2,] 0.050484 0.133860 0.296778 0.328673 0.190205
[3,] 0.000038 0.000870 0.016826 0.162471 0.819796

The mirt package also includes the itemtype = "gpcm" option for fitting the GPCM.
Here, the expression in the numerator exp() (see Equation (A4)) is caiθ + di (note the lack
of the summation operator), where c is the response category (e.g., 1, 2, 3, or 4). Because
this expression is equivalent to the cumulative sum in the FMP model expression, some
of the FMP-equivalent parameters must be found through subtraction. Namely, the FMP
b1i = ai, b01i = d1, and b0ci = dc − dc−1 for c > 1. Below, we fit the model and inspect the
outputted model parameters.

mirt_fit2 <- mirt::mirt(as.data.frame(dat), model = 1, itemtype = "gpcm")
mirt_pars2 <- mirt::coef(mirt_fit2, simplify = TRUE)$items
head(mirt_pars2)

a1 ak0 ak1 ak2 ak3 ak4 d0 d1 d2 d3 d4
V1 1.604585 0 1 2 3 4 0 0.976432 1.773830 1.877017 1.330860
V2 2.308880 0 1 2 3 4 0 1.005227 1.271728 1.300226 0.548738
V3 2.353282 0 1 2 3 4 0 0.757869 1.654055 2.338335 2.065157
V4 1.318610 0 1 2 3 4 0 0.997297 1.199669 0.705070 -0.032312
V5 2.619433 0 1 2 3 4 0 1.009280 1.460999 1.556443 0.759314
V6 1.213762 0 1 2 3 4 0 0.652742 0.955466 1.013786 0.556153

Here, we only want to use the columns of estimated parameters: a1, d1, d2, d3, and
d4. In the code below, the appropriate FMP parameters is found by manually subtracting
the appropriate parameter estimates.

mirt_fit2_FMP <- cbind(mirt_pars2[, 8], # d1
mirt_pars2[, 9] - mirt_pars2[, 8], # d2 - d1
mirt_pars2[, 10] - mirt_pars2[, 9], # d3 - d2
mirt_pars2[, 11] - mirt_pars2[, 10], # d4 - d3
mirt_pars2[, 1]) # a1

i <- 1 # choose an item

Psych 2021, 3 472

th <- c(-1.35, 0, 1.35) # choose theta values
mirt::probtrace(mirt::extract.item(mirt_fit2, i), Theta = th)
flexmet::irf_fmp(theta = th, bmat = mirt_fit2_FMP[i,], maxncat = 5)

P.1 P.2 P.3 P.4 P.5
[1,] 0.718286 0.218571 0.055608 0.007066 0.000469
[2,] 0.050336 0.133639 0.296647 0.328893 0.190485
[3,] 0.000037 0.000866 0.016776 0.162280 0.820041
[,1] [,2] [,3] [,4] [,5]
[1,] 0.718286 0.218571 0.055608 0.007066 0.000469
[2,] 0.050336 0.133639 0.296647 0.328893 0.190485
[3,] 0.000037 0.000866 0.016776 0.162280 0.820041

Finally, we illustrate the equivalence of the FMP model and the the GPCM as estimated
in TAM. The parameterization used here is similar to that used by mirt with the itemtype
= "gpcm" option. Here, the expression inside the exp() of Equation (A4) is Bciθ + Aci.

tam_fit <- TAM::tam.mml.2pl(dat, irtmodel = "GPCM")
tam_fit$item

item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
I1 I1 1000 2.258 -0.351 -1.011 -1.839 -1.957 -1.406
I2 I2 1000 2.083 -0.152 -0.955 -1.226 -1.288 -0.609
I3 I3 1000 2.311 -0.527 -0.729 -1.638 -2.336 -2.106
I4 I4 1000 1.974 -0.003 -1.002 -1.218 -0.733 -0.012
I5 I5 1000 2.106 -0.203 -0.944 -1.389 -1.521 -0.814
I6 I6 1000 2.134 -0.147 -0.637 -0.945 -1.017 -0.588
I7 I7 1000 1.498 0.398 0.206 0.470 1.098 1.592
I8 I8 1000 1.849 0.076 -0.828 -0.645 -0.454 0.306
I9 I9 1000 2.155 -0.113 -0.240 -0.435 -0.389 -0.451
I10 I10 1000 1.661 0.284 0.292 0.397 0.847 1.134
B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
I1 1.577 3.153 4.730 6.307
I2 2.142 4.285 6.427 8.570
I3 2.213 4.425 6.638 8.851
I4 1.272 2.544 3.816 5.088
I5 2.410 4.819 7.229 9.638
I6 1.151 2.302 3.452 4.603
I7 0.781 1.561 2.342 3.123
I8 0.371 0.742 1.113 1.484
I9 0.483 0.965 1.448 1.931
I10 0.917 1.835 2.752 3.670

Note in the above that the columns beginning with B.Cat are integer multiples of
each other; that is, the values in B.Cat2.Dim1 are double those in B.Cat1.Dim1, those in
B.Cat3.Dim1 are triple those in B.Cat1.Dim1, and so forth. Therefore, we only need the
B.Cat1.Dim1 column, which is equivalent to the FMP b1i. The columns beginning with
AXsi are equivalent to the negative di parameters in the previous mirt example (i.e., mirt
with option itemtype = "gpcm"). As such, subtraction could be used to find the FMP
parameters in the same manner as the previous mirt example. However, it is simpler to
use the estimated xsi parameters in TAM, printed below.

Psych 2021, 3 473

head(tam_fit$xsi)

xsi se.xsi
I1_Cat1 -1.011297 0.106840
I1_Cat2 -0.828046 0.101751
I1_Cat3 -0.117161 0.095900
I1_Cat4 0.550557 0.092844
I2_Cat1 -0.955250 0.107489
I2_Cat2 -0.270634 0.113281

Notice that for item 1, the xsi for category 1 is the same as AXsi_.Cat1, the xsi for
category 2 equals AXsi_.Cat2 - AXsi_.Cat1, and so forth. Therefore, the negative xsi
parameters are equal to the FMP b0ci parameters. The following code builds a matrix of
FMP parameters from the TAM output and verifies that both methods produce the same
category response probabilities.

tam_fit_FMP <- cbind(-matrix(tam_fitxsixsi, ncol = 4, byrow = TRUE),
tam_fit$item$B.Cat1.Dim1)

th <- attr(CDM::IRT.irfprob(tam_fit), "theta")[c(9, 11, 13)]
t(CDM::IRT.irfprob(tam_fit)[i , , c(9, 11, 13)])
flexmet::irf_fmp(theta = th, bmat = tam_fit_FMP[i,], maxncat = 5)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.631367 0.261690 0.090305 0.015307 0.001331
[2,] 0.047186 0.129715 0.296881 0.333767 0.192451
[3,] 0.000098 0.001778 0.026997 0.201300 0.769827
[,1] [,2] [,3] [,4] [,5]
[1,] 0.631355 0.261696 0.090310 0.015309 0.001331
[2,] 0.047180 0.129705 0.296874 0.333776 0.192465
[3,] 0.000098 0.001778 0.026994 0.201292 0.769839

Appendix B. Relationship between Greek-Letter and Polynomial Coefficient
Parameterizations of the FMP Model

This appendix presents explicit formulas to transform Greek-letter FMP parameters to
FMP polynomial coefficients for items with ki ∈ {0, 1, 2}. Matrix equations to implement
these equations more efficiently, as well as extensions to larger k values, are available in
other sources [3,11,12,18,19]. These equations are provided for didactic purposes only;
the practical implementation of these transformations can always be performed using the
greek2b and b2greek functions in flexmet.

Appendix B.1

k = 0

b0ci = ξci (A5)

b1i = exp(ωi) (A6)

Appendix B.2

k = 1

Psych 2021, 3 474

b0ci = ξci (A7)

b1i = exp(ωi) (A8)

b2i = −α1i exp(ωi) (A9)

b3i = (α2
1i + exp(τ1i))

exp(ωi)

3
(A10)

Appendix B.3

k = 2

b0ci = ξci (A11)

b1i = exp(ωi) (A12)

b2i = −(α1i + α2i) exp(ωi) (A13)

b3i =
(

α2
1i + α2

2i + exp(τ1i) + exp(τ2i) + 4α1iα2i

)exp(ωi)

3
(A14)

b4i = −
(

α1i(α
2
2i + exp(τ2i)) + α2i(α

2
1i + exp(τ1i))

)exp(ωi)

2
(A15)

b5i = (α2
1i + exp(τ1i))(α

2
2i + exp(τ2i))

exp(ωi)

5
(A16)

Appendix C

Code to Reproduce Figure 1.

library(flexmet)

find matrix of b-parameters
bmat <- rbind(greek2b(xi = c(0.49, NA, NA), omega = 0.25,

alpha = c(0, 0), tau = c(-Inf, -Inf)),
greek2b(xi = c(-0.87, NA, NA), omega = -0.57,

alpha = c(-0.63, 0), tau = c(-0.12, -Inf)),
greek2b(xi = c(-0.54, NA, NA), omega = -0.24,

alpha = c(1.13, -0.40), tau = c(-1.76, -1.14)),
greek2b(xi = c(0.58, 0.49, -0.05), omega = -0.41,

alpha = c(0, 0), tau = c(-Inf, -Inf)),
greek2b(xi = c(0.97, 0.38, -0.15), omega = 0.58,

alpha = c(0.45, 0), tau = c(-1.42, -Inf)),
greek2b(xi = c(0.79, 0.15, -1.20), omega = 0.57,

alpha = c(-0.22, -0.59), tau = c(-1.57, -2.45)))

set up plotting window
par(mfrow = c(3, 2))

for(i in 1:3){
items 1, 2, 3
curve(irf_fmp(x, bmat[i,], maxncat = 4, returncat = 1),

xlim = c(-3, 3), ylim = c(0, 1), main = paste("Item", i),
xlab = expression(theta), ylab = "probability")

items 4, 5, 6
curve(irf_fmp(x, bmat[i+3,], maxncat = 4, returncat = 0),

xlim = c(-3, 3), ylim = c(0, 1), main = paste("Item", i + 3),
xlab = expression(theta), ylab = "probability")

curve(irf_fmp(x, bmat[i+3,], maxncat = 4, returncat = 1), add = TRUE)
curve(irf_fmp(x, bmat[i+3,], maxncat = 4, returncat = 2), add = TRUE)
curve(irf_fmp(x, bmat[i+3,], maxncat = 4, returncat = 3), add = TRUE)

}

Psych 2021, 3 475

Appendix D

Code to Find AIC-Based k Values for Simulated Data.

library(flexmet)

set.seed(123)
bmat <- sim_bmat(n_items = 20, k = 0, ncat = 2)$bmat
theta1 <- exp(rnorm(5000) / 2) - 2
theta2 <- rnorm(5000)
data1 <- sim_data(bmat = bmat, theta = theta1)
data2 <- sim_data(bmat = bmat, theta = theta2)
tsur1 <- get_surrogates(data1)
tsur2 <- get_surrogates(data2)

choose k values for data set 1
k1 <- rep(NA, 20)
for(i in 1:20){

initialize
mod_a <- mod_b <- fmp_1(data1[, i], k = 0, tsur = tsur1)
while(mod_a$AIC >= mod_b$AIC){ # chile

mod_a <- mod_b
mod_b <- fmp_1(data1[, i], k = mod_a$k + 1, tsur = tsur1)

}
k1[i] <- mod_a$k

}

choose k values for data set 2
k2 <- rep(NA, 20)
for(i in 1:20){

initialize
mod_a <- mod_b <- fmp_1(data2[, i], k = 0, tsur = tsur2)
while(mod_a$AIC >= mod_b$AIC){

mod_a <- mod_b
mod_b <- fmp_1(data2[, i], k = mod_a$k + 1, tsur = tsur2)

}
k2[i] <- mod_a$k

}

Appendix E

Code to Reproduce Figure 3.

library(flexmet)

read in the linking coefficients estimated in the main paper
tvec_sl0 <- c(-0.9278, 0.6137) # sl0$tvec
tvec_sl1 <- c(-0.9970, 0.5155, 0.1188, 0.0091) # sl1$tvec
tvec_sl2 <- c(-0.8871, 0.0012, 0.0018, 0.2412, -0.0001, 0.0003) # sl2$tvec

calculate theta values
tstar <- seq(-3, 3, length = 100)
theta <- exp(tstar / 2) - 2
theta_0 <- sapply(tstar, fw_poly, coefs = tvec_sl0)
theta_1 <- sapply(tstar, fw_poly, coefs = tvec_sl1)
theta_2 <- sapply(tstar, fw_poly, coefs = tvec_sl2)

Psych 2021, 3 476

plot
plot(tstar, theta, type = 'l', xlim = c(-3, 3), ylim = c(-3, 3),

ylab = expression(theta), xlab = expression(paste(theta, "*")))
points(tstar, theta_0, type = 'l', lty = 2)
points(tstar, theta_1, type = 'l', lty = 3)
points(tstar, theta_2, type = 'l', lty = 4)
legend("topleft", lty = 1:4,

legend = c("true relationship",
"k_theta = 0",
"k_theta = 1",
"k_theta = 2"))

Appendix F

Code to Reproduce Figure 4.

read in tcals parameters
tcals <- data.frame(

a = c(2.225, 1.174, 2.104, 2.691, 1.256, 1.447, 1.947, 2.817, 2.664,
3.218, 2.572, 2.311, 1.768, 1.615, 2.107, 1.455, 1.722, 1.789,
3.533, 1.615, 1.176, 2.218, 2.405, 2.029, 1.973, 1.030, 0.814,
1.770, 1.322, 2.841, 2.310, 0.407, 0.866, 0.912, 1.753, 2.442,
1.756, 1.728, 0.888, 2.771, 1.469, 1.736, 2.131, 3.826, 3.171,
2.029, 1.248, 1.244, 2.621, 2.024, 2.194, 0.739, 2.575, 2.682,
1.751, 1.176, 1.025, 2.093, 2.568, 3.076, 2.866, 2.613, 3.983,
1.639, 1.899, 1.782, 2.698, 3.162, 2.361, 2.655, 1.901, 1.016,
0.992, 1.346, 1.385, 1.256, 2.881, 1.166, 1.462, 2.968, 2.058,
1.935, 1.600, 2.189, 1.933),

b = c(-1.885, -2.411, -2.439, -1.282, -1.930, -1.554, -1.075, -0.551,
-0.626, -0.246, 0.251, 0.189, -1.534, -3.088, -1.139, -1.673,
-1.349, -1.481, -0.962, -1.441, -0.549, -0.814, -0.454, -0.008,
0.805, -1.229, 0.687, -1.104, -1.441, -0.257, -0.282, -1.103,
-2.224, -3.457, -1.658, -2.070, -1.782, -1.991, -2.815, -1.412,
-1.531, -1.945, -0.810, -0.729, -0.663, -0.993, -2.392, -1.743,
-1.867, -1.696, -1.284, -2.356, -1.444, -1.107, -1.352, -2.014,
-1.364, -1.232, -0.565, -0.265, -0.032, -0.115, 0.120, -2.139,
-1.889, -1.639, -1.006, -0.621, -0.248, -0.086, -1.107, -1.268,
-1.115, -0.612, -0.589, -0.182, 0.840, -1.377, -1.103, 0.711,
-0.265, -0.648, -1.093, -0.664, -0.952),

c = c(0.210, 0.212, 0.192, 0.294, 0.170, 0.205, 0.246, 0.105, 0.095, 0.078,
0.147, 0.178, 0.185, 0.202, 0.224, 0.182, 0.195, 0.144, 0.168, 0.133,
0.223, 0.115, 0.076, 0.117, 0.094, 0.183, 0.215, 0.192, 0.134, 0.341,
0.239, 0.236, 0.195, 0.194, 0.210, 0.168, 0.233, 0.214, 0.201, 0.252,
0.218, 0.253, 0.295, 0.212, 0.222, 0.224, 0.196, 0.209, 0.161, 0.156,
0.227, 0.213, 0.175, 0.275, 0.228, 0.222, 0.172, 0.243, 0.166, 0.235,
0.236, 0.092, 0.063, 0.200, 0.191, 0.187, 0.148, 0.256, 0.273, 0.330,
0.238, 0.210, 0.203, 0.153, 0.171, 0.196, 0.233, 0.190, 0.283, 0.089,
0.142, 0.304, 0.384, 0.180, 0.316))

fmp_pars <- cbind(-tcals$a * tcals$b, tcals$a)

tvec <- c(-10.484125, 0.406875, -0.006091, 0.000032) # coef(mp_res[[2]])
transformed_bmat <- t(apply(fmp_pars, 1, transform_b, tvec = tvec))

i1 <- 5

Psych 2021, 3 477

i2 <- 24
i3 <- 27

par(mfrow = c(2, 2))

upper-left:
curve(irf_fmp(x, fmp_pars[i1,], cvec = tcals$c[i1]),

xlim = c(-4, 4), ylim = c(0, 1),
xlab = expression(theta),
ylab = "probability", col = 2)

curve(irf_fmp(x, fmp_pars[i2,], cvec = tcals$c[i2]),
add = TRUE, col = 3)

curve(irf_fmp(x, fmp_pars[i3,], cvec = tcals$c[i3]),
add = TRUE, col = 4)

upper-right:
curve(irf_fmp(x, transformed_bmat[i1,], cvec = tcals$c[i1]),

xlim = c(0, 100), ylim = c(0, 1),
xlab = expression(paste(theta, "*")),
ylab = "probability", col = 2)

curve(irf_fmp(x, transformed_bmat[i2,], cvec = tcals$c[i2]),
add = TRUE, col = 3)

curve(irf_fmp(x, transformed_bmat[i3,], cvec = tcals$c[i3]),
add = TRUE, col = 4)

lower-left:
x1 <- seq(-4, 4, length = 1000)
y1 <- rowSums(iif_fmp(theta = x1, bmat = fmp_pars, cvec = tcals$c))
plot(x1, y1, type = 'l', xlab = expression(theta),

ylab = "test information")

lower-right:
x2 <- seq(0, 100, length = 1000)
y2 <- rowSums(iif_fmp(theta = x2, bmat = transformed_bmat,

maxncat = 2, cvec = tcals$c))
plot(x2, y2, type = 'l', xlab = expression(paste(theta, "*")),

ylab = "test information")

References
1. Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores;

Lord, F., Novick, M., Eds.; Addison-Wesley: Reading, MA, USA, 1968; pp. 397–479.
2. Molenaar, I.W. Thirty years of nonparametric item response theory. Appl. Psychol. Meas. 2001, 25, 295–299. [CrossRef]
3. Liang, L.; Browne, M.W. A quasi-parametric method for fitting flexible item response functions. J. Educ. Behav. Stat. 2015,

40, 5–34. [CrossRef]
4. Ramsay, J.; Winsberg, S. Maximum marginal likelihood estimation for semiparametric item analysis. Psychometrika 1991,

56, 365–379. [CrossRef]
5. Mokken, R.J. A Theory and Procedure of Scale Analysis; De Gruyter Mouton: Berlin, Germany; New York, NY, USA, 2011.
6. Ramsay, J.O. Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika 1991, 56, 611–630.

[CrossRef]
7. Falk, C.F.; Feuerstahler, L.M. On the Performance of Semi-and Nonparametric Item Response Functions in Computer Adaptive

Tests. Educ. Psychol. Meas. 2021. [CrossRef]
8. Xu, X.; Douglas, J. Computerized adaptive testing under nonparametric IRT models. Psychometrika 2006, 71, 121–137. [CrossRef]
9. Falk, C.F.; Fischer, F. More flexible response functions for the PROMIS physical functioning item bank by application of a

monotonic polynomial approach. Qual. Life Res. 2021, 1–11. [CrossRef]

http://doi.org/10.1177/01466210122032091
http://dx.doi.org/10.3102/1076998614556816
http://dx.doi.org/10.1007/BF02294480
http://dx.doi.org/10.1007/BF02294494
http://dx.doi.org/10.1177/00131644211014261
http://dx.doi.org/10.1007/s11336-003-1154-5
http://dx.doi.org/10.1007/s11136-021-02873-7

Psych 2021, 3 478

10. Wiberg, M.; Ramsay, J.O.; Li, J. Optimal scores: An alternative to parametric item response theory and sum scores. Psychometrika
2019, 84, 310–322. [CrossRef] [PubMed]

11. Liang, L. A Semi-Parametric Approach to Estimating Item Response Functions. Ph.D. Thesis, The Ohio State University,
Columbus, OH, USA, 2007.

12. Falk, C.F.; Cai, L. Maximum marginal likelihood estimation of a monotonic polynomial generalized partial credit model with
applications to multiple group analysis. Psychometrika 2016, 81, 434–460. [CrossRef] [PubMed]

13. Muraki, E. A Generalized Partial Credit Model: Application of an EM Algorithm. Appl. Psychol. Meas. 1992, 16, 159–176.
[CrossRef]

14. Rizopoulos, D. ltm: An R package for Latent Variable Modelling and Item Response Theory Analyses. J. Stat. Softw. 2006,
17, 1–25. [CrossRef]

15. Chalmers, R.P. mirt: A multidimensional item response theory package for the R environment. J. Stat. Softw. 2012, 48, 1–29.
[CrossRef]

16. Robitzsch, A.; Kiefer, T.; Wu, M. TAM: Test Analysis Modules; R Package Version 3.7-16. 2021. Available online: https:
//search.r-project.org/CRAN/refmans/TAM/html/TAM-package.html (accessed on 16 August 2021).

17. Elphinstone, C. A target distribution model for nonparametric density estimation. Commun. Stat.-Theory Methods 1983, 12, 161–198.
[CrossRef]

18. Feuerstahler, L. Exploring Alternate Latent Trait Metrics with the Filtered Monotonic Polynomial IRT Model. Ph.D. Thesis,
University of Minnesosta, Minneapolis, MN, USA, 2016.

19. Feuerstahler, L.M. Metric transformations and the filtered monotonic polynomial item response model. Psychometrika 2019,
84, 105–123. [CrossRef]

20. Bock, R.D.; Aitkin, M. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm.
Psychometrika 1981, 46, 443–459. [CrossRef]

21. Bock, R.D.; Mislevy, R.J. Adaptive EAP estimation of ability in a microcomputer environment. Appl. Psychol. Meas. 1982,
6, 431–444. [CrossRef]

22. Van der Linden, W.J.; Barrett, M.D. Linking item response model parameters. Psychometrika 2016, 81, 650–673. [CrossRef]
23. Haebara, T. Equating logistic ability scales by a weighted least squares method. Jpn. Psychol. Res. 1980, 22, 144–149. [CrossRef]
24. Stocking, M.L.; Lord, F.M. Developing a common metric in item response theory. Appl. Psychol. Meas. 1983, 7, 201–210. [CrossRef]
25. Magis, D.; Barrada, J.R. Computerized adaptive testing with R: Recent updates of the package catR. J. Stat. Softw. 2017, 76, 1–19.

[CrossRef]
26. Falk, C.F.; Cai, L. Semiparametric item response functions in the context of guessing. J. Educ. Meas. 2016, 53, 229–247. [CrossRef]
27. Murray, K.; Müller, S.; Turlach, B.A. Revisiting fitting monotone polynomials to data. Comput. Stat. 2013, 28, 1989–2005.

[CrossRef]
28. Murray, K.; Müller, S.; Turlach, B. Fast and flexible methods for monotone polynomial fitting. J. Stat. Comput. Simul. 2016,

86, 2946–2966. [CrossRef]
29. Lord, F.M. Applications of Item Response Theory to Practical Testing Problems; Erlbaum: New York, NY, USA, 1980.

http://dx.doi.org/10.1007/s11336-018-9639-4
http://www.ncbi.nlm.nih.gov/pubmed/30350132
http://dx.doi.org/10.1007/s11336-014-9428-7
http://www.ncbi.nlm.nih.gov/pubmed/25487423
http://dx.doi.org/10.1177/014662169201600206
http://dx.doi.org/10.18637/jss.v017.i05
http://dx.doi.org/10.18637/jss.v048.i06
https://search.r-project.org/CRAN/refmans/TAM/html/TAM-package.html
https://search.r-project.org/CRAN/refmans/TAM/html/TAM-package.html
http://dx.doi.org/10.1080/03610928308828450
http://dx.doi.org/10.1007/s11336-018-9642-9
http://dx.doi.org/10.1007/BF02293801
http://dx.doi.org/10.1177/014662168200600405
http://dx.doi.org/10.1007/s11336-015-9469-6
http://dx.doi.org/10.4992/psycholres1954.22.144
http://dx.doi.org/10.1177/014662168300700208
http://dx.doi.org/10.18637/jss.v076.c01
http://dx.doi.org/10.1111/jedm.12111
http://dx.doi.org/10.1007/s00180-012-0390-5
http://dx.doi.org/10.1080/00949655.2016.1139582

	Background
	Specifying the FMP Model in flexmet-.4
	Fitting the FMP Model in flexmet-.4
	Transforming the FMP Model with flexmet-.4
	Item Parameter Linking with the FMP Model
	Transforming the FMP Model to a User-Defined Scale

	Summary
	Relationship of the FMP Model (k = 0) to Equivalent Models in Other Software Packages
	Two-Parameter Model
	Generalized Partial Credit Model

	Relationship between Greek-Letter and Polynomial Coefficient Parameterizations of the FMP Model
	
	
	

	
	
	
	
	References

