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Abstract: Explanatory item response modeling (EIRM) enables researchers and practitioners to
incorporate item and person properties into item response theory (IRT) models. Unlike traditional
IRT models, explanatory IRT models can explain common variability stemming from the shared
variance among item clusters and person groups. In this tutorial, we present the R package eirm,
which provides a simple and easy-to-use set of tools for preparing data, estimating explanatory
IRT models based on the Rasch family, extracting model output, and visualizing model results.
We describe how functions in the eirm package can be used for estimating traditional IRT models
(e.g., Rasch model, Partial Credit Model, and Rating Scale Model), item-explanatory models (i.e.,
Linear Logistic Test Model), and person-explanatory models (i.e., latent regression models) for both
dichotomous and polytomous responses. In addition to demonstrating the general functionality
of the eirm package, we also provide real-data examples with annotated R codes based on the
Rosenberg Self-Esteem Scale.

Keywords: explanatory item response models; dichotomous items; polytomous items; item property;
person property; R package eirm

1. Theoretical Background

Traditional item response theory (IRT) models enable researchers and practitioners to
analyze response data from a measurement instrument such as a test, an attitude scale, or a
psychological inventory and obtain both item information (e.g., difficulty, discrimination,
and guessing) and persons’ levels of a latent trait being measured by the instrument. That
is, these models produce unique parameters for each item and each person. This is often
referred to as the measurement approach (e.g., [1]). Using the measurement approach,
researchers and practitioners can make decisions regarding items and persons. There is
also another family of IRT models that aim to explain common variability using properties
of items and persons. This approach is known as explanatory item response modeling
(EIRM; [2]). Unlike traditional IRT models, explanatory IRT models can decompose the
common variability across item and person clusters using item properties (e.g., content),
person properties (e.g., gender), or both [2,3]. In other words, explanatory IRT models
show how much of the total variance in item-level accuracy (i.e., the probability of a correct
answer in a dichotomous item or the probability of selecting a particular response option in
a polytomous item) is due to between-item differences (items with or without graphs on a
math test; negatively-worded items vs. positively-worded items in a survey) and between-
person differences (English language learners vs. native speakers taking a reading test;
female vs. male respondents completing a personality inventory). Analyzing the effects of
item and person properties on item responses can help researchers and practitioners better
understand what construct-relevant or construct-irrelevant factors influence outcomes
from a measurement instrument [4].

Most explanatory IRT models can be formulated as special cases of generalized linear
mixed models (GLMMs) or nonlinear mixed models (NLMMs) [5,6] in which responses
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to items are considered repeated observations nested within each person in a multilevel
structure. If a GLMM consists of unique parameters for both items (either fixed or random
effects) and persons (random effects), then the resulting model becomes the Rasch model [7,8]
for dichotomous response data or the Partial Credit Model (PCM; [9]) for polytomous
response data. Both the Rasch model and PCM are fully descriptive models that describe
the variation within items through unique difficulty parameters and the variation among
persons through unique person parameters representing trait (or ability) levels [1].

1.1. Types of Explanatory IRT Models

To describe explanatory IRT models, the baseline model with no item or person
properties (i.e., Rasch model) should be examined. Assume Ypi ∼ binomial

(
1, πpi

)
where

Ypi is person p’s binary response to item i and πpi is person p’s probability of answering
item i correctly (i.e., Ypi = 1). The probabilistic formula for the Rasch model can be written
as follows:

πpi =
e(θp−βi)

1 + e(θp−βi)
, (1)

where πpi is the probability of person p answering item i correctly, βi is the difficulty
parameter for item i, and θp is the latent trait level for person p with a normal distribution,
N
(
0, σ2). Using scalar notation, the Rasch model can be rewritten in the form of a GLMM as:

ηpi = θp − βi, (2)

where ηpi is monotomously related to the probability (πpi) shown in Equation (1) by a
logit link function, ηpi = log

(
πpi/

(
1 − πpi

))
. For polytomous response data, Equation (2)

can be extended by defining threshold parameters representing conditional locations on a
latent trait continuum at which it is equally likely a person will be classified into adjacent
categories for each item (i.e., PCM) or all items (i.e., Rating Scale Model; [10]).

Instead of estimating unique difficulty (or threshold) parameters for a fully descriptive
model, item properties can be used to create an “item explanatory model” that explains
how the probability of answering an item correctly changes based on the properties of the
items [1]. This model is known as the Linear Logistic Test Model (LLTM; [11]). Following
the same scalar notation, LLTM can be written as follows:

ηpi = θp −
K

∑
k=1

βkXik, (3)

where Xik is a value for item i on item property k (k = 1, . . . , K) and βk is the estimated
regression weight for the item property (similar to difficulty in the Rasch model). With
LLTM, it is possible to include multiple item properties, such as item position effects [12]
and item response format [13], as well as their interactions, to explain the variation among
the difficulty levels of the items. Equation (3) can also be further extended by adding a
random effect for the items to account for the residual variance that cannot be explained by
the selected item properties.

Explanatory IRT models may also include person properties to explain latent trait
differences among person groups (e.g., gender). These models are typically referred to as
“person explanatory models” or latent regression models [14]. A person property can be
either a categorical (e.g., gender, ethnicity, socio-economic status) or continuous (e.g., age,
persons’ levels in a different latent trait) variable. A latent regression (Rasch) model can be
formulated as follows:

ηpi =

(
J

∑
j=1

ϑjZpj + θ∗p

)
− βi, (4)

where Zpj is a value for person p on person property j (j = 1, . . . , J), ϑj is the estimated
regression weight for the person property, and θ∗p is the adjusted latent trait level for person
p after accounting for the effect of person property j.
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LLTM in Equation (3) and the latent regression model in Equation (4) can be combined
to create a doubly explanatory model known as the latent regression LLTM. In this model,
the common variability among items and persons can be explained using a set of item
and person properties. There are also different variants of explanatory IRT models, such
as explanatory IRT models for polytomous response data [15,16], person-by-item models
with an interaction between item and person properties to examine differential item or
facet functioning [17–19], multidimensional models [20], multilevel models [21,22], and
item response tree models [23,24].

1.2. Software Programs to Estimate Explanatory IRT Models

There are several commercial and open-access software programs that can estimate
explanatory item response models. De Boeck and Wilson’s [2] seminal book on EIRM
demonstrated the estimation of explanatory item response models using the NLMIXED
procedure in SAS. Several resources illustrate the use of the GLIMMIX procedure in SAS
and the melogit and gllamm options in STATA for estimating different types of explanatory
IRT models (e.g., [25–27]). Among other commercial software programs, ConQuest [28] is
also capable of estimating LLTM and latent regression IRT models, while Mplus 8.1 [29] can
estimate various explanatory IRT models with additional parameters (e.g., discrimination).
In 2011, De Boeck and his colleagues’ paper [30] in the Journal of Statistical Software
revealed the potential of the lme4 package [31] in R [32] as an alternative, open-source
software option for estimating explanatory IRT models [30]. With the increasing popularity
of R in educational and psychological research, many researchers around the world have
begun to harness the lme4 package for estimating different variants of explanatory IRT
models based on the Rasch family of models (e.g., [16,20,23,33]). Today, there are several
R packages, such as eirm [34] and PLmixed [35], that extend the capabilities of the lme4
package for estimating more complex models. In this study, we aim to present a brief
tutorial of the eirm package [34] by demonstrating its functions for preparing response data,
estimating explanatory IRT models with dichotomous and polytomous item responses,
and visualizing the model output. We use real data from the Rosenberg Self-Esteem Scale
(RSE; [36,37]) along with annotated R codes to illustrate the functions in the eirm package.

2. eirm

The eirm package, which is essentially a wrapper around the lme4 package, provides
a simple and easy-to-use set of tools for preparing data, estimating explanatory IRT models,
extracting model output, and visualizing model results. The primary goal of the eirm
package is to streamline the processes of data preparation, model estimation, and model in-
terpretation for various explanatory IRT models. The functions in the eirm package enable
researchers to leverage the power of lme4 for the estimation of explanatory IRT models
while providing additional helper functions and visualization tools to better interpret the
model output. The eirm() function utilizes the lme4 and optimx packages (previously the
optim() function from stats) together for accelerated optimization. The model output
returned from eirm() can be visualized via a person–item map (also known as the Wright
map) using the plot() function. In addition, the marginalplot() function allows users to
visualize how the effect of one explanatory variable varies according to the value of an-
other explanatory variable, using a marginal effect plot. Furthermore, the eirm package
allows users to estimate explanatory IRT models not only with dichotomous responses
(e.g., correct/incorrect, true/false, or yes/no) but also with polytomous responses (e.g.,
strongly disagree/disagree/agree/strongly agree). The polyreformat() function can help
users restructure their polytomous response data to estimate explanatory extensions of
polytomous Rasch models, and the eirmShiny() function allows users to import their
dataset, estimate explanatory IRT models, and view the model output using an interactive
web application straight from R.

In the following sections, we use response data from the RSE scale to demonstrate
the use of primary functions in the eirm package. As we present each step (e.g., data
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preparation, model estimation, and model visualization), we also provide the R codes to
perform those steps. The R codes for replicating the examples presented in this study, along
with the response data, are available at the following link: https://osf.io/eapd8/ (accessed
on 28 July 2021)

2.1. Data Preparation

As explained earlier, explanatory IRT models following the GLMM framework as-
sume a multilevel structure where item responses (level 1) are repeated observations
nested within persons (level 2). It is also possible to estimate explanatory IRT models as
cross-classified multilevel models where both items and persons are considered random
effects. For more information about such models, see [38]. To accommodate this multilevel
structure in the data, the eirm package requires the response data to be in a long format. Re-
sponse data obtained from educational and psychological instruments are often compiled
within a wide-format structure in which a person’s responses will be in a single row and
each response is in a separate column. Before using the eirm package, the wide-format data
must be restructured as long-format data in which each row represents one item and thus
each person has multiple rows. That is, we can see repeated observations (i.e., items) as
multiple rows for each person. In long-format data, the person-level variables that do not
change across the items remain the same (e.g., gender), while the other variables varying at
the item level (e.g., item content) have different values across the rows.

In our example, we use data from the RSE scale (rse.csv) that consists of 961 respon-
dents’ answers to 10 items based on a 4-point Likert scale (ranging from 0 strongly disagree to
3 strongly agree). In the data, responses to negatively-phrased items (i.e., items 3, 5, 8, 9, and
10) are reversed-coded to place all the items in the positive direction (i.e., higher response
values are likely to indicate higher self-esteem unless threshold locations are disordered).
The data also contain a pseudo identification number and three demographic variables
(i.e., country, gender, and age) for each respondent. To prepare the data for subsequent
analyses, we use the melt() function in the reshape2 package [39] and transform the data
from a wide format to a long format (see Figure 1).
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A snapshot of the difference between the wide-format and long-format versions of the
RSE data can be seen in Table 1. Unlike in the wide-format data, items in the long-format
data are nested within persons and thus the same person has multiple rows (i.e., the same
person has 10 rows representing 10 items in the RSE dataset).

https://osf.io/eapd8/
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Table 1. First five rows of wide and long format data.

Wide Format Long Format

Person q1 q2 q3 Person Item Response

1 2 2 3 1 q1 2
2 2 2 0 1 q2 2
3 1 1 0 1 q3 3
4 2 2 2 1 q4 3
5 2 2 2 1 q5 2

In the second step, we use the long-format data to define item-level predictors (i.e.,
item properties) based on whether the items were negatively worded (denoted with N) or
positively worded (denoted with P) and the position of the items in the RSE scale (i.e., 1 to
10). Finally, we create a binary numerical version of the gender variable that will be used as a
person-level predictor (i.e., a person property) in the explanatory IRT models (see Figure 2).
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2.2. EIRM for Dichotomous Responses

The following examples show how to use item and person properties to explain di-
chotomous responses in the long-format RSE dataset. First, we install and activate the
eirm package. The eirm package version 0.4 is currently available on the Comprehensive
R Archive Network (CRAN; https://cran.r-project.org/ (accessed on 28 July 2021) and can
be downloaded using the install.packages() function in R. We also create a new response
variable called “agree” by recoding the response categories of strongly agree and agree
as 1 and strongly disagree and disagree as 0 to obtain a binary variable of agreement (see
Figure 3). We will use the new response variable to demonstrate explanatory IRT models
available for dichotomous responses. We will begin with the Rasch model (i.e., a fully
descriptive model) as the baseline model and then continue with LLTM (i.e., item explana-
tory), latent regression Rasch (i.e., person explanatory), and latent regression LLTM (i.e.,
doubly explanatory).
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To estimate the Rasch model for the RSE dataset, we will use the eirm() function,
which is the primary function to estimate explanatory IRT models in the eirm package.
The eirm() function requires a regression-like formula where a dependent variable (i.e.,
agree) and predictors (i.e., item) should be defined:

formula = “agree ~ -1 + item + (1|person)”, (5)

https://cran.r-project.org/
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where “agree” is the variable for dichotomous responses, “-1” removes the intercept from
the model and gives parameter estimates for all items (otherwise, the parameter for the first
item becomes the intercept, and the parameters for the remaining items are estimated as the
difference from the intercept), “item” represents the item labels (or identifiers) in the dataset,
and “(1|person)” refers to the random effects for persons represented by the “person”
variable in the dataset. By default, the eirm() function estimates an easiness parameter for
each item using a logit link function because it uses a regression model parameterization
where positive parameters indicate positive association with the dependent variable.

After model estimation is completed, users can set “difficulty=TRUE” in the print()
function to view the difficulty parameters (i.e., easiness * -1). It should be noted that the
estimated model parameters for both items and respondents are only point estimates (i.e.,
a posterior distribution is not available for the estimated parameters). The plot() function
can be used to visualize the estimated item parameters (either difficulty or easiness), along
with the estimated latent trait levels, in a person–item map (i.e., Wright map). Figure 4
shows the R codes to estimate the Rasch model and print the model output.
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Note that Figure 5 is essentially a modified version of the person–item map that the
plotPImap() function in the eirm package [40] produces for the Rasch model. The x-axis
shows the latent trait continuum, the y-axis shows the item labels, the locations of the
points (on the x-axis) indicate the easiness parameters for the items, and the bars at the
top of the plot show the distribution of the latent trait estimates. Users can modify figure
aesthetics such as labels of the x and y axes and the figure title.
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To estimate explanatory IRT models (e.g., LLTM, latent regression Rasch model, and
latent regression LLTM), a similar regression-like formula should be defined for each model.
The LLTM formula to estimate the effects of item wording and item position is as follows:

formula = “agree ~ -1 + wording + position + (1|person)”, (6)

where “wording” and “position” are the item properties that are expected to influence how
the respondents answered the items on the RSE scale. If LLTM yields statistically significant
effects for these item properties, it would indicate the importance of item wording and
item position as explanatory variables for the RSE scale (see Figure 6).
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aesthetics such as labels of the x and y axes and the figure title.  
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The regression-like formula of the latent regression Rasch model to estimate the 
gender effect (i.e., person property) is defined as follows: 

formula = “agree ~ -1 + item + gender2 + (1|person)”, (7) 

where “gender2” is a categorical person property (i.e., a person-level predictor). Note 
that the formula includes “item” to estimate the item difficulty (or easiness) parameters 
for the items. Thus, there is no item property involved in the model. This model yields 
individual parameters for the items, latent trait estimates for the respondents, and an 
overall gender effect. Including gender as a predictor may improve the estimation of 
person parameters but will not necessarily impact the estimates of item parameters (see 
Figure 7). 
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Finally, we demonstrate the latent regression LLTM model that includes both item 
and person properties as predictors of agreeing with the items on the RSE scale (i.e., the 
“agree” variable is the dependent variable). This is a doubly explanatory model because 
the item properties (item wording and item position) explain the item-level variation and 
gender explains the person-level variation in the RSE dataset. The following formula 
shows how to define the latent regression LLTM model for the eirm() function: 

formula = “agree ~ -1 + wording + position + gender2 + (1|person)”. (8) 

Figure 6. Estimate the LLTM model and print the model output.

The regression-like formula of the latent regression Rasch model to estimate the gender
effect (i.e., person property) is defined as follows:

formula = “agree ~ -1 + item + gender2 + (1|person)”, (7)

where “gender2” is a categorical person property (i.e., a person-level predictor). Note that
the formula includes “item” to estimate the item difficulty (or easiness) parameters for the
items. Thus, there is no item property involved in the model. This model yields individual
parameters for the items, latent trait estimates for the respondents, and an overall gender
effect. Including gender as a predictor may improve the estimation of person parameters
but will not necessarily impact the estimates of item parameters (see Figure 7).
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Finally, we demonstrate the latent regression LLTM model that includes both item and
person properties as predictors of agreeing with the items on the RSE scale (i.e., the “agree”
variable is the dependent variable). This is a doubly explanatory model because the item
properties (item wording and item position) explain the item-level variation and gender
explains the person-level variation in the RSE dataset. The following formula shows how
to define the latent regression LLTM model for the eirm() function:

formula = “agree ~ -1 + wording + position + gender2 + (1|person)”. (8)

In addition to printing the model output, the marginalplot() function can be used
to visualize the marginal effects in the latent regression LLTM model. This function uses
the ggeffects package [41] to calculate the marginal effects and the ggplot2 package [42]
to create a plot. The marginal effect plot will show the predicted probability of agreeing
with the RSE items because of the interaction among item position, wording, and gender
(see Figure 8).
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tains the original model output from the lme4 package (i.e., a glmerMod object). There-
fore, the helper functions designed for the lme4 package can be used to extract additional 

Figure 8. Estimate the latent regression LLTM and print the model output.

Figure 9 shows the marginal effect plot for the latent regression LLTM model. There
are two separate plots for female (1) and male (0) respondents. The x-axis represents item
positions (ranging from 1 to 10) and the y-axis represents the predicted probability of agree-
ing with the RSE items (ranging from 0 to 1). The plot shows how the predicted probability
changes depending on item positions and item wording for each gender group. For both
gender groups, the predicted probability decreases as item position increases. In addition,
the positively worded items seem to have a higher predicted probability for both female
and male respondents, compared with the negatively worded items. The latent regression
LLTM model can be further extended by adding an interaction term between item and
person properties (e.g., wording*gender2). For more information on the interpretation of
the estimated effects for item and person properties, as well as their interactions, readers
can review De Boeck et al. [30], Bulut et al. [19], and Stanke and Bulut [16].

Psych 2021, 3, FOR PEER REVIEW 8 
 

In addition to printing the model output, the marginalplot() function can be used to 
visualize the marginal effects in the latent regression LLTM model. This function uses the 
ggeffects package [41] to calculate the marginal effects and the ggplot2 package [42] 
to create a plot. The marginal effect plot will show the predicted probability of agreeing 
with the RSE items because of the interaction among item position, wording, and gender 
(see Figure 8).  

 
Figure 8. Estimate the latent regression LLTM and print the model output. 

Figure 9 shows the marginal effect plot for the latent regression LLTM model. There 
are two separate plots for female (1) and male (0) respondents. The x-axis represents item 
positions (ranging from 1 to 10) and the y-axis represents the predicted probability of 
agreeing with the RSE items (ranging from 0 to 1). The plot shows how the predicted 
probability changes depending on item positions and item wording for each gender 
group. For both gender groups, the predicted probability decreases as item position in-
creases. In addition, the positively worded items seem to have a higher predicted proba-
bility for both female and male respondents, compared with the negatively worded 
items. The latent regression LLTM model can be further extended by adding an interac-
tion term between item and person properties (e.g., wording*gender2). For more infor-
mation on the interpretation of the estimated effects for item and person properties, as 
well as their interactions, readers can review De Boeck et al. [30], Bulut et al. [19], and 
Stanke and Bulut [16]. 

 
Figure 9. Estimate the latent regression LLTM and print the model output (Note. 1 = Female and 0 = 
Male. ▲= Positively-worded items and ⬤ = Negatively-worded items. Position refers to the posi-
tions of the items on the RSE scale. Error bars indicate the 95% confidence interval around the 
predicted probability values). 

Although the eirm() function returns the model output as an eirm object, it still re-
tains the original model output from the lme4 package (i.e., a glmerMod object). There-
fore, the helper functions designed for the lme4 package can be used to extract additional 

Figure 9. Estimate the latent regression LLTM and print the model output (Note. 1 = Female and
0 = Male. N= Positively-worded items and • = Negatively-worded items. Position refers to the
positions of the items on the RSE scale. Error bars indicate the 95% confidence interval around the
predicted probability values).

Although the eirm() function returns the model output as an eirm object, it still retains
the original model output from the lme4 package (i.e., a glmerMod object). Therefore,
the helper functions designed for the lme4 package can be used to extract additional
information from the estimated models (see Figure 10). For example, relative model fit
indices, such as the Akaike information criterion (AIC), the Bayesian information criterion
(BIC), and deviance statistics, can be extracted from the models using the summary()
function in R, and the ranef() function can be used to extract the random effects (i.e., latent
trait estimates).



Psych 2021, 3 316

Psych 2021, 3, FOR PEER REVIEW 9 
 

information from the estimated models (see Figure 10). For example, relative model fit 
indices, such as the Akaike information criterion (AIC), the Bayesian information crite-
rion (BIC), and deviance statistics, can be extracted from the models using the summary() 
function in R, and the ranef() function can be used to extract the random effects (i.e., la-
tent trait estimates). 

 
Figure 10. Extract additional information from the explanatory IRT models. 

2.3. EIRM for Polytomous Responses 
As an extension of the lme4 package, the eirm package also assumes that item re-

sponses follow a binomial distribution. One implication of using a binomial distribution 
is that the dependent variable (i.e., item responses) must be dichotomous. Therefore, 
polytomously-scored items with ordered response categories (e.g., Likert-scale items) 
cannot be used as a dependent variable. To tackle this problem, the polyreformat() func-
tion in the eirm package allows users to reorganize polytomous responses by creating a 
set of pseudo-dichotomous responses from the original (ordinal) responses. The 
polyreformat() function elongates the long-format data by adding new rows depending 
on the number of response categories in the polytomous items (see [16] for more details 
on the polyreformat procedure). It must be noted that the polyreformat() function as-
sumes ordered response categories (i.e., ordinal scale), and thus polytomous responses 
with nominal response categories should not be restructured using this function. In the 
following example, we use the RSE items with response categories of 0 (strongly disagree) 
to 3 (strongly agree) to illustrate how the polyreformat() function reorganizes polytomous 
responses (see Figure 11). 

 
Figure 11. Convert polytomous responses to pseudo-dichotomous responses. 

In this example, we use long-format data (rse_long) when reformatting polytomous 
responses. The polyreformat() function can also reshape wide-format data into long 
format data if the original dataset is not already in the long format. After defining the 
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polyreformat() function creates a series of dummy-coded responses based on the poly-
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category”. The “polyresponse” column represents the dummy-coded responses (0, 1, or 
NA) and the “polycategory” column represents which response category combinations 
have been used when creating the dummy-coded responses. In the reformatted RSE da-
taset (rse_long2), each item has three rows, representing the adjacent response category 
combinations of 0-1, 1-2, and 2-3. Therefore, there are three values for the “polycategory” 
column: Cat_1, Cat_2, and Cat_3. Figure 12 demonstrates how each polytomous response 
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Figure 10. Extract additional information from the explanatory IRT models.

2.3. EIRM for Polytomous Responses

As an extension of the lme4 package, the eirm package also assumes that item re-
sponses follow a binomial distribution. One implication of using a binomial distribution is that
the dependent variable (i.e., item responses) must be dichotomous. Therefore, polytomously-
scored items with ordered response categories (e.g., Likert-scale items) cannot be used as a
dependent variable. To tackle this problem, the polyreformat() function in the eirm package
allows users to reorganize polytomous responses by creating a set of pseudo-dichotomous
responses from the original (ordinal) responses. The polyreformat() function elongates the
long-format data by adding new rows depending on the number of response categories in the
polytomous items (see [16] for more details on the polyreformat procedure). It must be noted
that the polyreformat() function assumes ordered response categories (i.e., ordinal scale), and
thus polytomous responses with nominal response categories should not be restructured using
this function. In the following example, we use the RSE items with response categories of 0
(strongly disagree) to 3 (strongly agree) to illustrate how the polyreformat() function reorganizes
polytomous responses (see Figure 11).
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In this example, we use long-format data (rse_long) when reformatting polytomous
responses. The polyreformat() function can also reshape wide-format data into long format
data if the original dataset is not already in the long format. After defining the person-level
variables (i.e., id.var), the variable name that indicates the item labels (var.name), and the
variable names that indicate the response values (val.name), the polyreformat() function
creates a series of dummy-coded responses based on the polytomous responses and adds
two new columns to the data: “polyresponse” and “polycategory”. The “polyresponse”
column represents the dummy-coded responses (0, 1, or NA) and the “polycategory”
column represents which response category combinations have been used when creating
the dummy-coded responses. In the reformatted RSE dataset (rse_long2), each item has
three rows, representing the adjacent response category combinations of 0-1, 1-2, and 2-3.
Therefore, there are three values for the “polycategory” column: Cat_1, Cat_2, and Cat_3.
Figure 12 demonstrates how each polytomous response category is dichotomized in the
new dataset. For example, if a respondent selected the response category of 0, then the
dummy-coded responses for this polytomous response would be 0 for 0-1 (Cat_1) and NA
for 1-2 (Cat_2) and 2-3 (Cat_3). This indicates that the respondent selected the former (0) of
the first two adjacent response categories (0 and 1). Since the selected response category is
neither 2 nor 3, Cat_2 and Cat_3 remain missing (i.e., NA).
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tances from the first threshold parameter (see Figure 14).  
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Using the reformatted dataset (rse_long2), it is possible to estimate a variety of de-
scriptive and explanatory IRT models. For example, a Rating Scale Model (RSM; [43])
can be estimated using “polyresponse” as the dependent variable and both “item” and
“polycategory” as the predictors:

formula = "polyresponse ~ −1 + item + polycategory + (1|person)". (9)

This model yields a unique location parameter for each item (based on “item”) and a
set of threshold parameters that are fixed across all the items in the RSE scale (based on
“polycategory”). Figure 13 shows the R codes to estimate the RSM.
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Figure 13. Estimate the Rating Scale Model and print the model output.

In addition to RSM, PCM can be estimated similarly. Unlike RSM with fixed threshold
parameters across the items, PCM estimates unique threshold parameters for each item. To
estimate PCM, the formula needs to be modified by adding an interaction between “item”
and “polycategory”:

formula = "polyresponse ~ −1 + item + item:polycategory + (1|person)", (10)

where “item:polycategory” indicates that we want to estimate unique threshold parameters
through an interaction between the items and the response categories. In the formula
above, “item” estimates the first threshold parameter (Cat_1), and “item:polycategory”
estimates the other threshold parameters (Cat_2 and Cat_3) as distances from the first
threshold parameter (see Figure 14).
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3. Discussion 
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Once the polytomous response dataset is reorganized using the polyreformat() func-
tion, the explanatory IRT models available for dichotomous responses (i.e., LLTM, latent
regression model, and latent regression LLTM) can also be estimated with polytomous
responses. For example, LLTM can be used to explain the effects of item properties on the
threshold parameters, while the latent regression model can be used to explain the effect of
person properties on the latent trait levels. In the following example, we use “wording”
and “position” as item properties to estimate their impact on the threshold parameters. By
default, the item properties explain the first threshold parameter in the items. To explain
the other threshold parameters, the model can be expanded with interaction terms between
the item properties and “polycategory” (see Figure 15).

formula = “polyresponse ~ −1 + wording + position + polycategory + (1|person)”. (11)
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Our final example demonstrates a latent regression PCM with gender (gender2) as a
person property (see Figure 16). The model estimates unique threshold parameters for the
items (based on “item” and “item:polycategory”) and a gender effect (based on “gender2”).
The formula for this model is as follows:

formula = “polyresponse ~ −1 + item + item:polycategory + gender2 + (1|person)”. (12)
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3. Discussion

After De Boeck and Wilson [2] introduced the idea of extending traditional IRT models
by incorporating item and person properties as predictors, many researchers and practi-
tioners began to implement EIRM to examine how item and person properties can explain
common variability stemming from the shared variance among item clusters and person
groups. Unlike a fully descriptive IRT model (e.g., Rasch model, PCM, RSM), an explana-
tory IRT model can involve external predictors (either categorical or continuous) to further
describe items in terms of difficulty or persons regarding latent trait levels. Therefore, EIRM
allows researchers and practitioners to utilize the IRT framework for both measurement
and explanation purposes [2]. A wide range of EIRM applications in the literature include
analysis of group differences [3,44,45], differential item and facet functioning (e.g., [17,18]),
item position effects (e.g., [12,46]), and item parameter drift (e.g., [19,47]).

In 2011, De Boeck et al.’s [30] detailed tutorial in the Journal of Statistical Software
described how to estimate explanatory IRT models with the lme4 package in R. Since then,
several researchers have created additional R packages that extended the capabilities of
lme4 (e.g., [34,35]). In this tutorial paper, we demonstrate the eirm package, which offers
simple tools for estimating explanatory IRT models, extracting model output, and visu-
alizing model outcomes in R. Using real data from the RSE scale and annotated R codes,
we aim to promote the eirm package to make it more accessible to a broad range of audi-
ences. Researchers and practitioners can utilize the eirm package to estimate traditional
IRT models (e.g., Rasch, PCM, and RSM), item-explanatory models (i.e., LLTM), person-
explanatory models (i.e., latent regression models), and doubly explanatory models (i.e.,
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latent regression LLTM) for both dichotomous and polytomous responses. In addition, the
polyreformat() function in the eirm package helps users transform polytomous responses
into a series of dummy-coded responses to meet the binominal distribution requirement
in lme4.

Limitations

There are several limitations when using the eirm package to estimate explanatory
IRT models. First, the eirm package is only capable of estimating explanatory IRT models
based on the Rasch family of models. Therefore, explanatory IRT models that involve
discrimination parameters (e.g., LLTM with discrimination parameters, Generalized Partial
Credit Model, and Graded Response Model) cannot be estimated using the eirm package.
The mirt package [48] and R packages focusing on latent variable modeling could be
viable alternatives when estimating more complex versions of the explanatory IRT models
presented in this tutorial. A second limitation of the eirm package is that despite employing
a different optimizer to speed up the estimation process, computation time may increase
substantially depending on the number of items and persons in the response data and the
number of parameters to be estimated in the model (i.e., model complexity). Third, the
eirm package only yields points estimates for model parameters. Users who are interested
in obtaining posterior distributions of model parameters in a Bayesian setting can use other
R packages, such as blme [49] and brms [50]. Finally, the eirm package does not include
any functions to simulate response data based on explanatory IRT models. For users who
are interested in Monte Carlo simulations with explanatory IRT models, other R packages
such as TAM [51] and eRm [38] may be better alternatives.
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