
Article

Evaluating the Observed Log-Likelihood Function in Two-Level
Structural Equation Modeling with Missing Data: From
Formulas to R Code

Yves Rosseel †

����������
�������

Citation: Rosseel, Y. Evaluating the

Observed Log-Likelihood Function in

Two-Level Structural Equation

Modeling with Missing Data: From

Formulas to R Code. Psych 2021, 3,

197–232. https://doi.org/10.3390/

psych3020017

Academic Editor: Alexander

Robitzsch

Received: 30 April 2021

Accepted: 4 June 2021

Published: 7 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Data Analysis, Ghent University, B-9000 Ghent, Belgium; Yves.Rosseel@UGent.be
† Current address: Henri Dunantlaan 1, B-9000 Ghent, Belgium.

Abstract: This paper discusses maximum likelihood estimation for two-level structural equation
models when data are missing at random at both levels. Building on existing literature, a computa-
tionally efficient expression is derived to evaluate the observed log-likelihood. Unlike previous work,
the expression is valid for the special case where the model implied variance–covariance matrix at
the between level is singular. Next, the log-likelihood function is translated to R code. A sequence of
R scripts is presented, starting from a naive implementation and ending at the final implementation
as found in the lavaan package. Along the way, various computational tips and tricks are given.

Keywords: structural equation modeling; multilevel; missing data; observed loglikelihood; R code

1. Introduction

Applied users are increasingly using multilevel structural equation modeling (SEM),
partly due to its wide availability in several software packages. The open-source R package
lavaan [1] currently only handles two-level continuous data using maximum likelihood
(ML) estimation. Until now, data had to be complete: all cases with missing values were
removed from the data before the analysis could start. However, in lavaan version 0.6–9,
support for missing data is finally available. I was fortunate to have found two excellent
sources in the literature [2,3] that discuss the (observed) log-likelihood function for two-
level SEMs. Both sources describe how this log-likelihood function can be re-expressed in
a computationally convenient form. From here on, I will refer to these two results as the
McDonald solution and the du Toit and du Toit solution, respectively. Interestingly, the two
solutions are different but equivalent, which I will clarify in this paper. Both solutions
also suffer from the requirement that the model-implied variance–covariance matrix of
the variables at the between level (Σb) must be nonsingular. In practice, this often leads
to numerical problems when Σb is singular, by design, or nearly singular for a particular
model/data combination.

I have several goals for this paper. First, I wish to document the exact formulas that
are used by lavaan 0.6–9 to compute the so-called observed log-likelihood used to obtain
the ML estimates for two-level SEMs when data are missing. Second, I will suggest a
small modification to the existing solutions that will allow Σb to be singular. Finally, I will
show and discuss five R scripts that evaluate the log-likelihood function. An example
model and dataset are also provided so that readers can run these scripts on their own
machines. Because R can be very slow (compared to compiled programming languages),
care is needed to obtain reasonably efficient code. The five scripts document the various
stages of the development of “real” R code and hopefully offer some insight into the typical
process that is used (at least by me) to translate formulas to production-ready R code.

The paper is organized as follows. In Section 2, I briefly review single-level SEM,
with a focus on the log-likelihood function (or an equivalent discrepancy function), which
is needed to obtain ML estimates. In Section 3, I discuss the log-likelihood function that is

Psych 2021, 3, 197–232. https://doi.org/10.3390/psych3020017 https://www.mdpi.com/journal/psych

https://www.mdpi.com/journal/psych
https://www.mdpi.com
https://orcid.org/0000-0002-4129-4477
https://doi.org/10.3390/psych3020017
https://doi.org/10.3390/psych3020017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/psych3020017
https://www.mdpi.com/journal/psych
https://www.mdpi.com/article/10.3390/psych3020017?type=check_update&version=1

Psych 2021, 3 198

used for two-level SEM. In both sections, I first discuss the complete data setting, followed
by the missing data setting. In Section 4, I discuss the R code listed in the Appendices.
The paper ends with some final thoughts housed in Section 5.

2. SEM for Single-Level Data

In this section, I briefly describe the statistical model used in traditional SEM if the
data originate from a single population. The purpose of this section is mostly to introduce
notation and to provide some building blocks for the two-level sections. For Equations
(1)–(8), I have used the LISREL all-y notation [4] to describe the basic formulas, but I could
as well have used the Bentler-Weeks [5] or the RAM [6] notation. The remaining formulas
are unaffected by this choice.

2.1. Complete Data

Let y be a P-dimensional vector randomly drawn from a population with mean vector
µ and variance–covariance matrix Σ. A common working assumption is that the population
distribution is normal. In an SEM analysis, a model is postulated that implies a certain
structure for µ = E(y) and Σ = Var(y). The model typically consists of two parts: a
measurement part and a structural part. The measurement part of the model is defined as

y = ν + Λ η+ ε, (1)

where y is a P× 1 vector of observed variables, ν is a P× 1 vector of intercepts, Λ is a
P × M matrix of factor loadings relating the latent variables to the observed variables,
and ε is a P× 1 vector of residual errors. The structural part of the model (also called the
“latent variable model”) is defined as

η = α + B η+ ζ, (2)

where η is an M × 1 vector of latent variables, α is an M × 1 vector of intercepts, B is
an M×M matrix of coefficients for the regressions of the latent variables on each other,
and ζ is an M× 1 vector of disturbance terms. The diagonal elements of B must be zero,
and (I− B) should be invertible. To simplify the notation, I will use the convention that
an observed variable involved in the structural part of the model is upgraded to a latent
variable, with the observed variable as its only indicator with no measurement error.

To derive the model-implied moments, the structural part is written in its so-called
reduced form, where the endogenous variables only appear on the left-hand side of
the equation:

η = (I− B)−1(α + ζ)

= (I− B)−1α + (I− B)−1ζ. (3)

Plugging in the reduced form of the structural model into the measurement model results in

y = ν + Λ
[
(I− B)−1α + (I− B)−1ζ

]
+ ε

= ν + Λ(I− B)−1α + Λ(I− B)−1ζ + ε. (4)

Assuming E(ζ) = 0 and writing Var(ζ) = Ψ, it follows from (3) that

E(η) = (I− B)−1α (5)

Var(η) = (I− B)−1Ψ (I− B)−1′. (6)

Psych 2021, 3 199

Similarly, assuming E(ε) = 0, and Cov(ζ, ε) = 0 and using the notation Var(ζ) = Ψ and
Var(ε) = Θ, it follows from (4) that

µ = ν + Λ(I− B)−1α (7)

Σ = Λ (I− B)−1Ψ (I− B)−1′Λ′ + Θ. (8)

The model matrices are then ν, α, Λ, Θ, Ψ, and B. A structural model can be defined by
setting some elements of these model matrices to a fixed constant (often zero or unity), while
allowing other elements to be free. The T free elements are collected in a T-dimensional
parameter vector θ. For a given choice of values of θ, the model-implied moments can be
written as µ(θ) and Σ(θ) to stress that they are a function of these free parameters.

Given a set of i.i.d. data vectors Y = {y1, y2, . . . , yN}, ML estimation seeks those
values of θ that maximize the multivariate normal log-likelihood given by

logl(θ|Y) = −NP
2

ln(2π)− N
2

ln |Σ(θ)| − 1
2

N

∑
i=1

[yi − µ(θ)]′Σ(θ)−1[yi − µ(θ)]. (9)

If the data are complete (i.e., no missing values), this log-likelihood can be rewritten in
terms of the sample moments:

logl(θ|Y) =− NP
2

ln(2π)− N
2

ln |Σ(θ)|

− N
2

tr
[
SΣ(θ)−1

]
− N

2
[ȳ− µ(θ)]′Σ−1[ȳ− µ(θ)], (10)

where ȳ is the sample mean vector, S is the (biased) sample variance–covariance matrix
(divided by N), and tr[·] is the trace operator that computes the sum of the diagonal
elements of its matrix argument. The value of θ that maximizes the log-likelihood in (10)
is called the ML estimator of θ and will be denoted by θ̂. The resulting model-implied
moments will be denoted by µ(θ̂) and Σ(θ̂), or µ̂ and Σ̂ for short.

The unrestricted (or saturated) model simply assumes that θ̂ = (ȳ′, vech[S]′)′, where
vech[·] is an operator that stacks the elements of the lower triangular part of a symmetric
matrix columnwise in a vector. As a result, for the unrestricted model, Σ̂ = S and µ̂ = ȳ.
In this case, the log-likelihood equals

logl(ȳ, S) = −NP
2

ln(2π)− N
2

ln |S| − N
2

P (11)

because ȳ − µ(θ̂) = ȳ − ȳ = 0 and tr
[
Σ(θ̂)−1S

]
= tr

[
S−1S

]
= tr[IP] = P, with IP an

identity matrix of dimension P. Comparing the restricted model to the saturated model
can be accomplished by the standard likelihood ratio test (LRT) given by

LRT = −2[logl(θ)− logl(ȳ, S)] = 2[logl(ȳ, S)− logl(θ)] (12)

= N · FML(θ), (13)

where

FML(θ) = [ȳ− µ(θ)]′Σ(θ)−1[ȳ− µ(θ)] + tr
[
SΣ(θ)−1

]
− ln |SΣ(θ)−1| − P (14)

is commonly called the normal theory-based ML discrepancy function [7]. Because logl(ȳ, S)
does not depend on θ, minimizing (14) is equivalent to maximizing (10). In the common

Psych 2021, 3 200

case, when the mean structure µ(θ) is unrestricted (hence µ(θ) = ȳ), the discrepancy
function simplifies to

FML = tr
[
SΣ(θ)−1

]
− ln |SΣ(θ)−1| − P

= tr
[
SΣ(θ)−1

]
+ ln |Σ(θ)| − ln |S| − P. (15)

To minimize the objective function in (14) or (15), an optimization method is needed.
Popular choices include Newton–Raphson, Fisher scoring, and various quasi-Newton
methods. The lavaan package uses by default a quasi-Newton method implemented in the
nlminb() function, although a custom implementation of Fisher scoring is also available.
In any case, it is necessary to evaluate the objective function many, many times. Therefore,
it is crucial to be able to evaluate this function in a fast and efficient way. Fortunately, from a
computational point of view, both (14) and (15) are easy objective functions to evaluate.
The only complication is the inverse and the determinant of Σ(θ), but this matrix has
dimension P× P, and P is usually small. The determinant of S only needs to be computed
once. Note that the computation time is independent of the sample size because (14) and
(15) only rely on summary statistics.

2.2. Missing Data

When some values in y are missing, I will assume in this paper that the missing mech-
anism is either missing completely at random (MCAR) or missing at random (MAR) [8].
In this case, ML can still be used to estimate θ by using all available data. This is sometimes
called full information maximum likelihood (FIML) estimation. Because it is no longer
possible to summarize the incomplete data by its sample mean and variance–covariance
matrix, I revert to the casewise log-likelihood function. For notational purposes, it is
convenient to introduce a selection matrix Qi for each observation. A selection matrix
can convert a vector that includes both observed and missing components (say, yi) to a
complete vector containing only the observed components (say, yo

i). To construct these
selection matrices, I start from an identity matrix and remove the rows that correspond
to the missing values. For example, suppose P = 5 and the second and fourth value are
missing in yi; thus, Qi is defined to be

Qi =

 1 0 0 0 0
0 0 1 0 0
0 0 0 0 1


so that yo

i = Qiyi. Let Pi be the number of rows of Qi. Pi may be different from observation
to observation. For each observation, µi and Σi are defined as follows:

µi = Qi µ (16)

and
Σi = Qi Σ Q′i. (17)

With this notation in place, the log-likelihood for a single observation can be written as

logl(θ|yi) = −
1
2

Pi ln(2π)− 1
2

ln |Σi(θ)| −
1
2
[yo

i − µi(θ)]
′Σi(θ)

−1[yo
i − µi(θ)]. (18)

The total log-likelihood for the entire sample is obtained by summing over the individual
log-likelihoods:

logl(θ|Y) =
N

∑
i=1

logl(θ|yi). (19)

In practice, instead of maximizing (19), it is convenient to minimize an equivalent expres-
sion where the first term of (18) is dropped (because it does not depend on θ) and where

Psych 2021, 3 201

(18) is multiplied by a factor minus two. The resulting objective function for the entire
sample then becomes

FFIML =
N

∑
i=1

ln |Σi(θ)|+ [yo
i − µi(θ)]

′Σi(θ)
−1[yo

i − µi(θ)]. (20)

Evaluating this objective function is much more costly than evaluating the objective func-
tion in (14) for the complete data setting. The determinant and the inverse of Σi(θ) need
to be computed for every observation, and the computation time will increase (linearly)
with the sample size. To decrease the computational burden, two techniques are commonly
used. The first technique is to combine all observations that have the same missing pattern.
For all observations that share the same missing pattern, it is possible to use the same
determinant and inverse of Σ(θ), but only for this particular pattern. In addition, consider
several observations that feature the same missing pattern; it is possible to summarize them
by their summary statistics and to use (14) for this pattern. In many datasets, the number
of missing patterns is far less than the number of observations. The second technique
relates to the computation of the determinant and the inverse of Σ(θ) for each pattern.
Instead, these quantities may be computed for the complete pattern and then “updated”
for each pattern exploiting the well-known formulas for the inverse and determinant of
a partitioned matrix (see Appendix B.1). This updating approach is much faster than
computing the determinant and the inverse from scratch. By combining these two tech-
niques, it becomes possible to dramatically lower the computation time that is needed to
evaluate (20).

2.3. Implementation in lavaan

Readers can explore the source code of the lavaan package, which can be found
on github using the link https://github.com/yrosseel/lavaan/tree/master/R. The file
lav_mvnorm.R contains functions that are used when data are complete. The evalu-
ation of the objective function for complete data in (14) is done in a function called
lav_mvnorm_loglik_samplestats(). The file lav_mvnorm_missing.R contains various
functions that handle missing data (assuming multivariate normality). The function
used to evaluate the objective function in (20) in the presence of missing data is called
lav_mvnorm_missing_loglik_samplestats(). The code for updating the determinant
and the inverse of a symmetric matrix after removing rows and columns from that ma-
trix can be found in the function lav_matrix_symmetric_inverse_update(), in the file
lav_matrix.R.

3. SEM for Two-Level Data

In this section, I examine two-level data. Two-level data arise from a nested sampling
scheme, where level-1 units (e.g., students) are nested within level-2 units (e.g., schools).
Next, I briefly discuss the complete data setting before delving into the main topic of this
paper: two-level data with missing values.

3.1. Complete Data

Given J clusters with variables measured at both levels, let yji be the P-dimensional
vector of level-1 variables from unit i in cluster j, where i = 1, 2, . . . , nj and j = 1, 2, . . . , J.
Let zj be the K-dimensional vector of level-2 variables for cluster j. Combining zj with
the nj observations of cluster j, a Pj = K + (nj × P) dimensional vector vj can be defined
containing all observed variables for a single cluster j:

v′j = (z′j, y′j1, y′j2, . . . , y′jnj
)′. (21)

https://github.com/yrosseel/lavaan/tree/6e3e89f63a12ea2b6bdb9d5572b69ceb5c82226a

Psych 2021, 3 202

I will use the notation µj = E(vj) and Vj = Var(vj). In this paper, I only consider two-level
SEMs with random intercepts. For models with random slopes, see [9]. When only random
intercepts are involved, the level-1 vector yji can be split into a within and a between part:

yji = yjb + yjwi, (22)

where it is assumed that Cov(yjb, yjwi) = 0 and Cov(zj, yjwi) = 0 for all i and j. I will use
the notation µy = E(yji), Σb = Var(yjb), and Σw = Var(yjwi) for all i and j. For some level-1
variables in the model, it may be convenient to set the between part in (22) to zero. I refer
to these variables as “within-only” variables. The corresponding rows and columns in Σb
are then zero. In this paper, it is always assumed that Σw is positive definite, but Σb can be
singular. Further, I will use the notation µz = E(zj), Σzz = Var(zj), and Σzy = Cov(zj, yjb)
for all j. The mean vector µj can then be written as

µ′j = (µ′z, 1′nj
⊗ µ′y)

′, (23)

where 1nj is a unity vector of size nj, and⊗ is the Kronecker-product operator. The variance–
covariance matrix Vj can be written as

Vj =

[
Σzz 1′nj

⊗ Σzy

1nj ⊗ Σyz 1nj 1
′
nj
⊗ Σb + Inj ⊗ Σw

]
, (24)

where I use Σyz = Σ′zy. Note that 1nj 1
′
nj

is just a unity matrix of dimension nj × nj.
Structural models may now be defined by restricting the elements of µz, µy, Σzz, Σzy,

Σw, and Σb to be a function of a parameter vector θ. This can be accomplished by setting
up an SEM for each level, resulting in a set of model matrices for the within part and
another set of model matrices for the between part—not unlike a two-group SEM analysis.
For a given model and a given cluster, µj and Vj can be written as a function of θ. Given
data Z = {v1, v2, . . . , vJ} for a random sample of J clusters, the total log-likelihood for the
complete sample is given by

logl(θ|Z) =
J

∑
j=1

logl(θ|vj), (25)

where

logl(θ|vj) = −
1
2

Pj ln(2π)− 1
2

ln |Vj(θ)| −
1
2
[vj − µj(θ)]

′Vj(θ)
−1[vj − µj(θ)]. (26)

Again, maximizing the log-likelihood can be replaced by minimizing the objective function:

FML2 =
J

∑
j=1

ln |Vj(θ)|+ [vj − µj(θ)]
′Vj(θ)

−1[vj − µj(θ)]. (27)

Note the close similarity between Equations (18)–(20) respectively, but a crucial difference
is that Pj (and therefore Vj) can become very large within applications. For example,
consider a fairly large dataset, with P = 20 and K = 5. For a given cluster, let nj = 100,
Pj = 5 + 100× 20 = 2005; this would necessitate finding the determinant and the inverse
of a 2005× 2005 dimensional matrix Vj, only for this cluster. From a computational point
of view, this is not practical. To overcome this problem, the special structure of Vj must
be exploited. Ideally, (27) can be rewritten so that the determinant and the inverse of
matrices that need to computed are of size P or K. Before showing a solution, I must first

Psych 2021, 3 203

introduce some notation. The matrix Vj in (24) consists of four blocks and can be written
symbolically as

Vj =

[
Vj(zz) Vj(zy)
Vj(yz) Vj(yy)

]
. (28)

For the corresponding blocks of the inverse of Vj, I will use the following notation:

V−1
j =

[
Vj(zz) Vj(zy)
Vj(yz) Vj(yy)

]−1

=

[
Vzz

j Vzy
j

Vyz
j Vyy

j

]
. (29)

Further, I define δj to be the difference between vj and µj:

δ′j = (vj − µj)
′ = (δ′jz, δ′jy)

′, (30)

where the last term δj is partitioned into a z part and a y part—just like Vj. The quadratic
form in (27) can be written as:

δ′jV
−1
j δj = δ′jzVzz

j δjz + δ′jzVzy
j δjy + δ′jyVyz

j δjz + δ′jyVyy
j δjy (31)

= δ′jzVzz
j δjz + 2(δ′jzVzy

j δjy) + δ′jyVyy
j δjy (32)

= qzz
j + 2qzy

j + qyy
j . (33)

The objective function can then be written as follows:

FML2 =
J

∑
j=1

ln |Vj|+ qzz
j + 2qzy

j + qyy
j . (34)

The main task now is to find a computationally convenient expression for the three
quadratic terms qyy

j , qzy
j , and qzz

j as well as for the determinant of Vj. McDonald and
Goldstein [10] accomplished this more than 30 years ago. They obtained the following
expressions for the determinant and for the quadratic forms:

ln |Vj| = ln |Σzz|+ (nj − 1) ln |Σw|+ ln |nj · Σb.z + Σw| (35)

qyy
j = tr[(Yj − µy)Σ

−1
w (Yj − µy)

′]− nj · t′jΣ−1
w tj + nj · t′j(njΣb.z + Σw)

−1tj (36)

qzy
j = −nj · g′j(njΣb.z + Σw)

−1tj (37)

qzz
j = δ′jzΣ−1

zz δjz + nj · g′j(njΣb.z + Σw)
−1gj, (38)

where the nj × P matrix Yj contains all level-1 observations within cluster j, and where the
following notation was used:

tj = ȳj − µy (39)

gj = ΣyzΣ−1
zz δjz (40)

Σb.z = (Σb − ΣyzΣ−1
zz Σzy). (41)

Although this may seem like a more complicated function, it can be evaluated much
faster than the original function in (27). A little known fact (see [11,12]) is that instead
of taking the sum over all clusters, it is possible to take the sum over all cluster sizes.
The different number of cluster sizes (S) is often much smaller than the number of clusters
(J). In the balanced case where all clusters have the same size, S = 1 and no summation is

Psych 2021, 3 204

even needed. Finally, further simplification can be achieved by making use of the pooled
within-sample covariance matrix defined by

Spw =
1

(N − J)

J

∑
j=1

nj

∑
i=1

(yji − ȳj)(yji − ȳj)
′. (42)

This results in the objective function that is effectively used by lavaan:

FML2 = (N − J)
(

ln |Σw| + tr
[
Σ−1

w Spw

])
+

S

∑
s=1

Ns ·
[
ds + qzz

s + 2qzy
s + qyy

s

]
, (43)

where

ds = ln |Σzz|+ ln |ns · Σb.z + Σw| (44)

qyy
s = ns · t′s(nsΣb.z + Σw)

−1ts (45)

qzy
s = −ns · g′s(nsΣb.z + Σw)

−1ts (46)

qzz
s = δ′szΣ−1

zz δsz + ns · g′s(nsΣb.z + Σw)
−1gs. (47)

Ns is the number of observations from all the clusters that have the same cluster size ns.
Further, δs, ts, and gs are now based on the observations of all clusters that share the same
cluster size. The actual R code that is used by lavaan to evaluate this objective function
can be found in the function lav_mvnorm_cluster_loglik_samplestats_2l() in the file
lav_mvnorm_cluster.R.

3.2. Missing Data

To handle missing values at both levels, it will be convenient to introduce selection
matrices Qji and Gj for the first and second levels, respectively. The matrix Qj is defined to
be the collection of all Qji matrices from the same cluster:

Qj =


Qj1
Qj2

...
Qjnj

.

It is now possible to express µj and Vj as follows:

µ′j = [(Gjµz)
′, (Qj1µy)

′, (Qj2µy)
′, . . . , (Qjnj µy)

′]′ (48)

and

Vj =

[
GjΣzzG′j GjΣzyQ′j
QjΣyzG′j Vj(yy)

]
. (49)

The Vj(yy) matrix is defined as

Vj(yy) = QjΣbQ′j +
nj⊕

i=1

QjiΣwQ′ji, (50)

where the direct sum
⊕

operator is used to create a block diagonal matrix, with each
block being equal to QjiΣwQ′ji. If data are complete in cluster j, then Gj and Qji become

identity matrices. In that case, QjΣbQ′j equals 1nj 1
′
nj
⊗ Σb,

⊕nj
i=1 QjiΣwQ′ji equals Inj ⊗ Σw,

GjΣzyQ′j equals 1′nj
⊗ Σzy, and GjΣzzG′j equals Σzz. Because an expression for µj and Vj

Psych 2021, 3 205

was found, it becomes possible to estimate the model parameters using ML by minimizing
the following objective function:

FML2 =
J

∑
j=1

ln |Vj(θ)|+ [vo
j − µj(θ)]

′Vj(θ)
−1[vo

j − µj(θ)], (51)

where vo
j only contains the observed values from vj:

vo′
j = [(Gjzj)

′, (Qj1yj1)
′, (Qj2yj2)

′, . . . , (Qjnj yjnj)
′]′. (52)

The objective function can be written again as in (34). Just like in the complete case,
the challenge is to rewrite this objective function so as to avoid the computation of the
determinant and the inverse of the formidable matrix Vj directly. Below, I briefly describe
two solutions, put forth by McDonald [2] and du Toit and du Toit [3], respectively.

3.3. The McDonald (1993) Solution

In Appendix B.1, two identities are shown to invert a partitioned matrix. McDonald
starts from the second identity, and he develops an expression for Vyy

j . Using my notation,
the expression becomes

Vyy
j =

[
QjΣbQ′j +

nj⊕
i=1

QjiΣwQ′ji −QjΣyzG′jΣ
zz
j GjΣzyQ′j

]−1

, (53)

where Σzz
j is defined by

Σzz
j = (GjΣzzG′j)

−1. (54)

By moving the
⊕

term to the front and rearranging the remaining terms, the expression
can be rewritten as

Vyy
j =

[nj⊕
i=1

QjiΣwQ′ji + Qj

(
Σb − ΣyzG′jΣ

zz
j GjΣzy

)
Q′j

]−1

. (55)

To simplify the notation, I will define

Λj =

nj⊕
i=1

QjiΣwQ′ji (56)

and
Σj(b.z) =

(
Σb − ΣyzG′jΣ

zz
j GjΣzy

)
. (57)

This means Equation (55) can be written in a more compact form:

Vyy
j =

[
Λj + QjΣj(b.z)Q

′
j

]−1
. (58)

This is a typical example wherein the Woodbury identity (see Appendix B.2) can be ex-
ploited. Importantly, McDonald assumes that both Σb and Σj(b.z) are positive definite. He
then uses the classic Woodbury identity in (A25) to obtain the following expression for Vyy

j :

Vyy
j = Λ−1

j −Λ−1
j Qj

(
Σ−1

j(b.z) + Q′jΛ
−1
j Qj

)−1
Q′jΛ

−1
j . (59)

Psych 2021, 3 206

Note that Λj is a block diagonal matrix. Therefore, the inverse Λ−1
j can be easily computed

by inverting the individual blocks (see Appendix B.4). From this, an expression for the
quadratic form qyy

j may be produced:

qyy
j = δ′jyVyy

j δjy

= δ′jyΛ−1
j δjy − δ′jyΛ−1

j Qj

(
Σ−1

j(b.z) + Q′jΛ
−1
j Qj

)−1
Q′jΛ

−1
j δjy

= δ′jyΛ−1
j δjy − p′j

(
Σ−1

j(b.z) + Aj

)−1
pj, (60)

where I have used the following notation:

pj = Q′jΛ
−1
j δjy and Aj = Q′jΛ

−1
j Qj. (61)

For the qzz
j term, Vj(zz) must first be inverted. Using the second identity of a partitioned

matrix once more results in

Vzz
j = Σzz

j + Σzz
j GjΣzyQ′j

[
Λj + QjΣj(b.z)Q

′
j

]−1
QjΣyzG′jΣ

zz
j . (62)

Note that the Woodbury push-through (right) identity (see Appendix B.2) may be applied

to the example
[
Λj + QjΣj(b.z)Q′j

]−1
Qj:

[
Λj + QjΣj(b.z)Q

′
j

]−1
Qj = Λ−1

j Qj

(
Σ−1

j(b.z) + Q′jΛ
−1
j Qj

)−1
Σ−1

j(b.z). (63)

Plugging this into Equation (62) results in

Vzz
j = Σzz

j + Σzz
j GjΣzyQ′jΛ

−1
j Qj

(
Σ−1

j(b.z) + Q′jΛ
−1
j Qj

)−1
Σ−1

j(b.z)ΣyzG′jΣ
zz
j (64)

= Σzz
j + Σzz

j GjΣzyAj

(
Σ−1

j(b.z) + Aj

)−1
Σ−1

j(b.z)ΣyzG′jΣ
zz
j . (65)

The quadratic form qzz
j can then be written as

qzz
j = δ′jzVzz

j δjz

= δ′jzΣzz
j δjz + δ′jzΣzz

j GjΣzyAj

(
Σ−1

j(b.z) + Aj

)−1
Σ−1

j(b.z)ΣyzG′jΣ
zz
j δjz

= δ′jzΣzz
j δjz + g′j Aj

(
Σ−1

j(b.z) + Aj

)−1
Σ−1

j(b.z) gj, (66)

where the following notation has been used:

gj = ΣyzG′jΣ
zz
j δjz. (67)

Finally, instead of qzy
j , an expression for qyz

j must be found; the inverse of Vj(yz) can be
written as

Vyz
j = −

[
Λj + QjΣj(b.z)Q

′
j

]−1
Qj ΣyzG′j Σzz

j . (68)

Again, using the identity from Equation (A27) results in

Vyz
j = −Λ−1

j Qj

(
Σ−1

j(b.z) + Q′jΛ
−1
j Qj

)−1
Σ−1

j(b.z)ΣyzG′jΣ
zz
j

= −Λ−1
j Qj

(
Σ−1

j(b.z) + Aj

)−1
Σ−1

j(b.z)ΣyzG′j Σzz
j . (69)

Psych 2021, 3 207

The quadratic form qzy
j is therefore given by

qyz
j = δ′jyVyz

j δjz

= −δ′jyΛ−1
j Qj

(
Σ−1

j(b.z) + Aj

)−1
Σ−1

j(b.z)ΣyzG′j Σzz
j δjz

= −p′j
(

Σ−1
j(b.z) + Aj

)−1
Σ−1

j(b.z) gj. (70)

For the determinant of Vj, the formula for the determinant of a partitioned matrix in (A24)
can be used to write |Vj| as

|Vj| = |Vj(zz)| · |Vj(yy) −Vj(yz)V
zz
j Vj(zy)|

= |GjΣzzG′j| · |QjΣbQ′j +
nj⊕

i=1

QjiΣwQ′ji −QjΣyzG′jΣ
zz
j GjΣzyQ′j|

= |GjΣzzG′j| · |Λj + QjΣj(b.z)Q
′
j|. (71)

The first determinant is simple because the largest dimension of GjΣzzG′j is K × K (or
smaller, if missing values are present in zj). The argument of the second determinant,
however, is still too large to be practical. McDonald [2] suggests a recursive formula, where
the second determinant is computed in an incremental fashion. However, here I will give
an explicit solution, making use of the determinant identity in (A31):

|Vj| = |GjΣzzG′j| · |Λj| · |Σj(b.z)| · |Σ−1
j(b.z) + Q′jΛ

−1
j Qj| (72)

= |GjΣzzG′j| · |Λj| · |Σj(b.z)| · |Σ−1
j(b.z) + Aj|. (73)

To summarize and for future reference, the final expressions for the determinant and the
three quadratic forms are as follows:

|Vj| = |GjΣzzG′j| · |Λj| · |Σj(b.z)| · |Σ−1
j(b.z) + Aj| (74)

qyy
j = δ′jyΛ−1

j δjy − p′j
(

Σ−1
j(b.z) + Aj

)−1
pj (75)

qyz
j = −p′j

(
Σ−1

j(b.z) + Aj

)−1
Σ−1

j(b.z) gj (76)

qzz
j = δ′jzΣzz

j δjz + g′j Aj

(
Σ−1

j(b.z) + Aj

)−1
Σ−1

j(b.z) gj. (77)

To make the connection with the expressions for the complete data setting, note that when
data are complete, Σj(b.z) = Σb.z, Σzz

j = Σ−1
zz , Aj = njΣ

−1
w , pj = njΣ

−1
w (ȳj − µy) = njΣ

−1
w tj,

and gj = ΣyzΣ−1
zz δjz. Furthermore, when data are complete, both pj and Aj contain Σ−1

w .
Therefore, it can be verified (using the identity (AB)−1 = B−1A−1 for nonsingular AB and
the classic Woodbury identity) that

Σ−1
w

(
Σ−1
(b.z) + nj Σ−1

w

)−1
Σ−1
(b.z) =

(
Σw + nj Σ(b.z)

)−1

and
njΣ
−1
w

(
Σ−1
(b.z) + nj Σ−1

w

)−1
Σ−1

w = Σ−1
w −

(
Σw + nj Σ(b.z)

)−1
.

3.4. The du Toit and du Toit (2008) Solution

To invert the partitioned matrix Vj, McDonald [2] made use of the second identity
in (A21) to develop the formulas. By contrast, du Toit and du Toit [3] start from the first
identity in (A20). Because the rest of the paper will focus on the McDonald solution,

Psych 2021, 3 208

the details are given in Appendix A. Below are the final expressions for the determinant
and the three quadratic forms:

|Vj| = |GjΣj(z.y)G
′| · |Λj| · |Σb| · |Σ−1

b + Aj| (78)

qyy
j = δ′jyΛ−1

j δjy − p′j
[
Bj − BjΣ

−1
b ΣyzG′jV

zz
j GjΣzy Σ−1

b Bj

]
pj (79)

qyz
j = −p′j

(
Σ−1

b + Aj

)−1
Σ−1

b g̃j (80)

qzz
j = δ′jzVzz

j δjz, (81)

where Bj =
(

Σ−1
b + Aj

)−1
and g̃j = ΣyzG′jV

zz
j .

3.5. An Extension to Allow Σb to Be Singular

An important limitation of both approaches is that they both assume Σb and (in the
case of McDonald) Σj(b.z) are nonsingular and therefore are invertible. However, sometimes
rows and columns in Σb are all zero (e.g., if they correspond to within-only variables),
or restrictions in the model have been imposed that result in a singular Σb. For example,
consider a one-factor model at the between level. If the residual variances are fixed to
zero, then Σb will be singular. This is a common setting as zero-residual variances are
sometimes used in cluster-invariant measurement models [13,14]. In other settings, Σb
may be near singular, potentially leading to numerical instabilities. For all these reasons, it
would be useful if the previous solutions could be adapted to handle the case where Σb is
singular. The solution is simply to replace the classic Woodbury identity in (A25) by the
more general version in (A26). I will illustrate how this changes the final expressions for
the McDonald solution. The logic for the du Toit and du Toit approach is similar.

Consider again the expression for Vyy
j as it was presented in Equation (58):

Vyy
j =

[
Λj + QjΣj(b.z)Q

′
j

]−1
. (82)

Applying the classic Woodbury identity results in an expression (59) that contains the
inverse of Σj(b.z). However, if the more general identity (A26) is used, then (59) may be
rewritten as follows:

Vyy
j = Λ−1

j −Λ−1
j Qj

(
IP + Σj(b.z)Q

′
jΛ
−1
j Qj

)−1
Σj(b.z)Q

′
j Λ−1

j

= Λ−1
j −Λ−1

j Qj

(
IP + Σj(b.z)Aj

)−1
Σj(b.z)Q

′
j Λ−1

j . (83)

In this expression, Σj(b.z) does not need to be inverted. On the other hand, if Σj(b.z) is
invertible, then it follows that:(

IP + Σj(b.z)Aj

)−1
Σj(b.z) =

(
Σj(b.z)Σ

−1
j(b.z) + Σj(b.z)Aj

)−1
Σj(b.z)

=
(

Σj(b.z)(Σ
−1
j(b.z) + Aj)

)−1
Σj(b.z)

=
(

Σ−1
j(b.z) + Aj

)−1
Σ−1

j(b.z)Σj(b.z)

=
(

Σ−1
j(b.z) + Aj

)−1
. (84)

Psych 2021, 3 209

The term on the right-hand side is used in the McDonald solution, but if it is replaced
by the term on the left-hand side, the following alternative expressions for the quadratic
forms emerge:

qyy
j = δ′jyΛ−1

j δjy − p′j
(

IP + Σj(b.z)Aj

)−1
Σj(b.z) pj (85)

qyz
j = −p′j

(
IP + Σj(b.z)Aj

)−1
gj (86)

qzz
j = δ′jzΣzz

j δjz + g′j Aj

(
IP + Σj(b.z)Aj

)−1
gj. (87)

None of these expressions require Σb or Σj(b.z) to be nonsingular, making them much more
useful in practice. The last task is to find an expression for the determinant of Vj that can
be used when Σb or Σj(b.z) is singular. Here, I will make use of the determinant identity in
(A32), which results in the following:

|Λj + QjΣj(b.z)Q
′
j| = |Λj| · |IP + Q′jΛ

−1
j QjΣj(b.z)|

= |Λj| · |IP + AjΣj(b.z)|. (88)

Thus, the determinant of Vj can be written as

|Vj| = |GjΣzzG′j| · |Λj| · |IP + AjΣj(b.z)|, (89)

which again does not require the inversion of Σj(b.z).

4. Implementation in R Code

Formulas are useful to study, but for some readers, it may be more rewarding to
study the implementation of these formulas in source code. Appendix C contains the
source code of several short R scripts. The first script (main.R) contains the dataset and
the example model and runs the code in the other scripts. Following this are five R
scripts that each illustrate a different approach to evaluate the objective function in (51).
Starting (objective1.R) with a naive implementation, the first step is to compute the
determinant and the inverse of the full Vj matrix for each cluster. This script allows for the
introduction of various ingredients in a simple way. In objective2.R, I will implement
the formulas at the end of Section 3.5. This version is faster (see Table 1) than the naive
version—as expected.

If the programmer feels that this implementation is still too slow, it may be tempting
to rewrite the code in a compiled language, such as C/C++ or FORTRAN. Without any effort
(apart from the programming effort), this will result in a much faster code. I will attempt to
improve the R code itself to allow the code to run even faster. In the objective3.R script,
I will avoid the explicit construction of selection matrices and will include some minor
improvements. This will further decrease the computation time. In the objective4.R
script, I will make use of missing patterns within each cluster. Unfortunately, this hardly
leads to any improvement because the cluster sizes are rather modest in my example
dataset. In the objective5.R script, I will use missing patterns as found in the entire
dataset. Although this requires much more housekeeping, the gain in computation time
is significant. An overview of the computation time for the five objective functions is
presented in Table 1. In the second column, the average computation time (over 100
replications) is shown in milliseconds. In the last column, I take the second objective
function as the baseline and show the time differences in percentages.

Psych 2021, 3 210

Table 1. Timing results for the five objective functions. The second column contains the average
computation time (over 100 replications) in milliseconds. The third column shows percentages, where
the second objective function serves as the baseline.

Version Absolute Time (ms) Relative Time

Objective 1 3875.32 992.90
Objective 2 390.30 100.00
Objective 3 85.89 22.01
Objective 4 82.52 21.14
Objective 5 20.18 5.17

The R scripts are based on the McDonald solution, taking into account the extension
for singular Σb matrices. Equivalent R scripts (not shown here) have been written for the
du Toit and du Toit solution. However, the shortcut that is used in objective5.R does not
seem to apply for the du Toit and du Toit solution. For this reason, I only report the scripts
based on the McDonald solution. In what follows, I will briefly discuss each file, guiding
readers through the source code.

4.1. The Main.R File

To explore the R code, readers should start with the file main.R, which is listed in
Appendix C.1. The script starts with reading in the dataset (Lines 4–9). The (artificial)
dataset contains 2500 observations of 20 variables, clustered in J = 200 clusters. The cluster
sizes are 5, 10, 15, and 20, with 50 clusters of each size. The y1–y10 and x1–x3 variables
are measured at the within level, whereas the z1–z4 and w1–w3 variables are measured
at the between level. Roughly 10% of the data are missing at both levels. Then, I specify
a two-level model using lavaan syntax (Lines 10–38). In this model, the y1–y6 variables
are split into a within and a between part. The y7–y10 and x1–x3 variables are within-only
variables. The z1–z4 and w1–w3 variables are between-only variables. Next, I call the
sem() function (Lines 44–45), but with the do.fit = FALSE argument. This implies that
only the model and the dataset are processed, without starting the optimization. In fact, I
will simply keep the starting values and only use the resulting dummy.fit object to extract
the model-implied statistics and information about the dataset. There are T = 83 free
parameters in this model. The next lines in the script extract some useful information from
the dummy.fit object. The lavmodel object (Line 52) contains the internal representation of
the model, including all model matrices. Lp (Line 53) contains various information about
the clusters: the number of clusters (Line 64), cluster size (Line 65), cluster index (Line
66), and an index of the between-level variables (Line 67). In Line 54, Y1 contains the raw
dataset as a 2500× 20 matrix, and Y2 (Line 55) contains the cluster aggregated data as
a 200× 20 matrix. The lav_model_implied() function (Line 57) is used to compute the
model-implied statistics for this model—given the current set of parameters. This returns a
list (implied), which contains a mean vector and a variance–covariance matrix per level.
These implied statistics are then further broken down (Line 61) into smaller pieces: µy, µz,
Σw, Σb, Σzz, and Σyz. These vectors and matrices will always be the input for the objective
functions. For each of the five objective functions, I first read in the source code (e.g., Line
71), and then I run the function to compute the value of the objective function (e.g., Lines
72–74). Sometimes, I precompute a few quantities that are needed in the objective function.
For example, for objective4.R, a list (MP) is needed that contains information about the
missing patterns for every cluster (Lines 91–95). For objective5.R, information is needed
about the missing patterns for the complete dataset at both levels (Lines 104–105). Finally, I
use the microbenchmark package to benchmark the five different functions (Lines 112–129).
The results are shown in Table 1.

4.2. The Objective1.R File

The first script for the objective function (objective1.R) is listed in Appendix C.2.
This script is based on Section 3.2. Apart from the transpose of Σyz (Line 9), no preparations

Psych 2021, 3 211

are needed. Everything happens within the main for-loop (Lines 12–81), which runs
over all clusters. For each cluster, the contribution to the (log)likelihood is computed and
stored in a vector loglik (Line 11). If the function argument loglik. is FALSE (the default),
then the constant is omitted and the log-likelihood contribution is multiplied by a factor
−2 (minus two) (Lines 74–79). The final value of the objective function is the sum over
all cluster contributions (Line 83). For a given cluster (j), the cluster size nj must first be
noted (Line 15). Then, any variables at the between level are ascertained (Line 17). In my
example, this will always be the case. Then the data for this cluster are collected in an
nj × P dimensional matrix Yw.j for the within level (Line 18) and in a K× 1 vector z.j for
the between level (Line 19). For the data vector at the between level, the Gj selection matrix
(Lines 21–26) is created to keep track of the missing values in z.j. If the data are complete,
Gj will be an identity matrix. The missing values in z.j are removed (Line 27). Similarly,
for the within level, a selection matrix Qji is created (Lines 34–42) for every observation
in this cluster. A corresponding W.ji matrix (Line 43) is also created, which corresponds
to QjiΣwQ′ji, because these matrices are needed to construct the block diagonal matrix⊕nj

i=1 QjiΣwQ′ji (using the lav_matrix_bdiag() function, Line 54). All the Qji matrices for
this cluster are then collected in a Pj × P dimensional matrix Qj (Line 47). It is now possible
to construct the variance–covariance matrix Vj for this cluster. First, the four parts (V.zz,
V.zy, V.yz, and V.yy (Lines 51–54)) are constructed, and then the full V.j matrix (Lines
56–57) is assembled. The est.j vector contains the model-implied means for both the
between and the within level (Lines 58–59). The obs.j vector contains the observed data
for both levels (Lines 60–61). Both vectors contain Pj elements. The difference between
these two vectors is stored in delta.j (Line 71). Perhaps the biggest task in this script
(in terms of computation time) is the computation of the determinant and the inverse of
the Pj × Pj dimensional matrix Vj (Lines 68–69). Once the inverse has been computed, it
is possible to compute the quadratic form δ′jVjδj, storing the (scalar) result in q.j (Line
72). Finally, the cluster contribution to the objective value is stored in loglik, and the next
cluster can then be addressed. After repeating this J = 200 times, the final value for the
objective function is stored in out and returned to the caller.

4.3. The Objective2.R File

The second script for the objective function (objective2.R), which is listed in Ap-
pendix C.3, is based on Section 3.3 and the extension in Section 3.5. The first part of the
script (Lines 9–49) is identical to the objective1.R script. The only addition is the creation
of the A.ji matrices, which are defined as Aji = Q′ji(QjiΣwQ′ji)

−1Qji. The sum of these nj

matrices is then stored in the matrix Aj, which corresponds to Q′jΛ
−1
j Qj—a matrix that

plays a crucial role in this script. The name for Λj in this script is bdiag_sigma.w.j, indi-
cating that this is a block diagonal matrix, where each block is based on a selection of rows
and columns of the Σw matrix (Line 52). The inverse (Λ−1

j) is called bdiag_sigma.w.j.inv
(Line 53). Next, we compute Σzz

j (Line 57), Σj(b.z) (Lines 58–60), and IBZA.j, which is
defined as IP + Σj(b.z)Aj (Line 64) and is perhaps the most important matrix of this script.
The model-implied means (est.j) and observed data (obs.j) are defined just like in the
first script (Lines 70–74). However, the difference is split between a z part (delta.z) and a
y part (delta.y) (Lines 76–81). Finally, pj (Line 82) and gj (Line 83) are defined. All the
ingredients are now in place to compute the quadratic forms q.zz, q.zy, q.yy, and even-
tually q.j (Lines 85–93). The drop() function is used to make sure the result is a scalar,
not a 1× 1 dimensional matrix. Some care is needed for clusters where all elements in
z.j are missing. In that case, Gj is empty (zero rows), and only q.y is used to form q.j
(Lines 96–101). To compute the (log) determinant, the (log) determinant of Λj is first
computed by taking the sum of the nj (log) determinants for each W.ji block (Line 106).
Then the (log) determinant of the IBZA.j matrix (Line 107) is computed, followed by the
(log) determinant of GjΣzzG′j (Line 108). The sum of these three log determinants provides
the log determinant of the full Vj matrix (Line 109). The log-likelihood contribution for

Psych 2021, 3 212

this cluster is stored in loglik (Lines 116–121), and this completes the computations for
this cluster. After J = 200 repetitions, the final value (out) is obtained and returned to
the caller.

4.4. The Objective3.R File

The objective2.R script runs faster than the objective1.R script, but there is still
much room for improvement. Perhaps the biggest problem in objective2.R is that W.ji
must be computed and inverted (see Line 45 in objective2.R) for every observation.
In addition, the construction and use of the selection matrices (Qji, Gj) are not practical and
(as I shall demonstrate) unnecessary. In the third script for the objective function (listed in
Appendix C.4), the global structure of the objective2.R script is kept intact, but I try to
improve the code to make it more efficient.

Recall that W.ji is just Σw, but the rows and columns that correspond to the missing
values for this observation have been removed. In this script, I precompute the (log)
determinant and the inverse of the full Σw matrix (Lines 12–13). If an observation has
missing values, I can “update” the inverse (and determinant) (Lines 52–57) and use this
information to incrementally construct W.logdet.j (Line 58), Aj (Lines 59–60), and pj (Line
63) while the individual observations of this cluster are processed. In addition, I update
q.yy.a (Line 64), which is the part of q.yy that only depends on within-level information.
When an observation is complete, there is no need to “update” the inverse of Σw, and I can
compute W.logdet.j (Line 67), Aj (Line 68), pj (Line 71), and q.yy.a (Line 72) immediately
using the precomputed (log) determinant and the inverse of Σw. In this script, I no longer
explicitly use the selection matrices Qji. Instead, I keep track of the missing-value indices
(na.idx) and use these to remove the rows and columns of the matrices when needed.
For the between part, I use a similar strategy. I precompute the (log) determinant and the
inverse of Σzz (Lines 23–24) and Σb.z (Line 26) for the complete case. Then, for a specific
cluster, I make a distinction between three scenarios: (1) all between values (of obs.z) are
missing (Lines 87–88), (2) at least one value is missing (but not all) (Lines 90–101), or (3) no
values are missing (Lines 103–108). In the latter case, the complete data statistics can be
used immediately. When some values are missing, the (log) determinant and the inverse
of Σzz (Lines 93–97) must be “updated.” The selection matrix Gj is no longer used. The
key matrix IBZA.j is now constructed in a slightly fancier way (Lines 113–114) in order
to avoid the construction of a diagonal matrix (for every cluster). Other improvements
are the construction of the quadratic forms (Lines 126–129), where matrix multiplications
are avoided and maximally rely on scalar multiplications. The quadratic form for the y
part is split into two parts (q.yy.a and q.yy.b), where the former was already computed
when the individual observations of this cluster (Line 64 or 72) were processed. In a
similar fashion, the z part is split into two parts (q.zz.a and q.zz.b), where the former
is based on the raw data (delta.z), and the latter is based on the gj vector for this cluster.
Because I have already computed all the needed (log) determinants along the way, I can
immediately compute V.j.logdet (Line 143). The remainder of the script is identical to
the objective2.R script.

4.5. The Objective4.R File

In the final paragraph of the last Appendix (12.B.6) of their book chapter, du Toit and
du Toit [3] write: “One could also compute the patterns of missingness within each level-2
unit . . . ” In the objective4.R script, listed in Appendix C.5, I followed this suggestion.
First, the missing pattern information for each cluster will be precomputed. This is done
in the main.R script (Lines 91–95), where we construct a list (MP) with missing pattern
information for each cluster. Instead of running over all the observations within a cluster,
the missing patterns within a cluster (Line 46) are run over. For each pattern, the (log) deter-
minant and the inverse of Σw (Lines 56–60) are “updated,” and the quantities W.logdet.j,
A.j, pj, and q.yy.z are computed (Lines 61–68). Note that freq is used to account for the
number of observations that belong to this pattern. Other small improvements in this

Psych 2021, 3 213

script are the precentering of Y1w (Lines 17–18) and Z (Lines 23–24), which facilitate the
construction of the vector of observed data for each cluster (Line 65 or 75 and Line 95 or
108). The computation of q.zz.a now happens in the between section, although it is nothing
more than a cosmetic change. Finally, the NY and NZ scalars keep track of the number of
nonmissing values in the cluster (at the within and between level, respectively). They are
used to compute Pj, which is only needed if loglik. = TRUE (Line 146). Based on Table 1,
it would seem that this script is not faster than the previous script (objective3.R)—at least
in my example. The reason is that the cluster sizes are rather small in my dataset, and the
number of missing patterns is often not much smaller than the number of observations
within a cluster. However, even for larger cluster sizes, this script is not much faster than
the previous one.

4.6. The Objective5.R File

In order to further decrease the computation time, it is necessary to decrease the
number of matrix inversions. In the objective4.R script, Σw must be inverted and the
determinant must be computed for every missing pattern in each cluster. Across clusters,
the same missing pattern often emerges. In this script, listed in Appendix C.6, I sought to
invert Σw only once for each missing pattern in the entire level-1 dataset. In addition, miss-
ing patterns will be used for the between data. The price to pay is that more housekeeping
becomes necessary. At the between level, a list SIGMA.B.Z (Line 39) is created, where the
Σj(b.z) matrix is filled in for each missing pattern at the between level (Lines 62–63). At the
same time, the J × 1 vector ZPAT2J keeps track of the missing pattern that applies for each
cluster. Later, when the IBZA.j matrix must be constructed for a given cluster, the correct
Σj(b.z) matrix can then be “selected” from the list in SIGMA.B.Z (Line 145). Similarly, a J× P
dimensional matrix GJ is created, where the gj vectors are filled in for each cluster. The gj
vector is computed only once per missing pattern, whereupon this gj fills in all rows of GJ
that share the same missing pattern at the between level (Line 64). For this purpose, I make
use of j.idx (Line 46), which keeps track of the cluster indices that share the same missing
pattern. Some care is needed for the clusters where the observed data vector is completely
empty (i.e., all values are missing). They are not part of the missing patterns in Zp and
need to be handled separately (Lines 79–85). For the within level, I use a similar strategy,
although the situation is more complex. The J× P dimensional matrix PJ and the list ALIST
(of length J) are used to store the pj vectors and the Aj matrices for all clusters, respectively.
However, these containers should be filled in while processing the missing data patterns of
the level-1 data. To better understand how this is accomplished, consider missing pattern
number 2 in Mp. This missing pattern (with a missing value for the y1 variable only) occurs
123 times in the entire dataset (so freq = 123). The cluster numbers where this pattern is
observed are stored in j.idx. Most cluster numbers are unique, but sometimes this pattern
occurs multiple times within the same cluster. These frequencies are stored in npatj (Line
100), and the unique cluster numbers are stored in j1.idx. Recall that Aj = Q′jiΛjQji
is just the sum (over all observations within a cluster) of the inverse of Σw, where (for
each observation) the rows and columns (corresponding to the missing values) have been
removed before the inverse was taken. Then the result is plugged back into a matrix where
these rows and columns are replaced by zeroes. Each time the (updated) inverse of Σw is
computed, the contribution of this pattern can be added to all the Aj matrices where j is in
j1.idx (Lines 118–122). After all missing patterns in Mp are processed, the completed Aj
matrices will be available in ALIST, so they can be extracted per cluster when it becomes
necessary to compute the IBZA.j matrix (Line 146). In a similar fashion, the PJ matrix
is gradually updated when running over the missing patterns. After all patterns have
been processed, each row in PJ will contain the pj vector for this cluster—to be used in
the computation of q.yy.b (Line 145 or 154). This scheme will bring down the number of
times it is necessary to invert (a submatrix of) Σw to a minimum. The same is true for Σzz
at the between level. Unfortunately, the IBZA.j matrix still needs to be inverted for every
cluster and remains the bottleneck (in terms of computation time) of this script. A last

Psych 2021, 3 214

small improvement in this script is that I replaced every occurrence of (solve(A) %*% B)
by solve(A, B). Finally, some generic function calls (e.g., solve()) were replaced by more
specific function calls (e.g., solve.default()) to avoid the (small) overhead that comes
with method dispatching, which is part of R’s S3 system.

Based on Table 1, this script runs significantly faster than the previous scripts. How-
ever, there is no doubt that, given more thought, even more improvements are possible.
However, objective5.R represents the current state of affairs at the time of this writing,
and this script is used (with some cosmetic changes) in lavaan 0.6-9.

4.7. Stochastic Versus Fixed Covariates

In our scripts, I have made no distinction between endogenous (“y”) and exogenous
(“x”) observed variables. In lavaan terminology, this corresponds to fixed.x = FALSE,
implying that the “x” variables are treated as stochastic (assuming multivariate normality).
This was only done for ease of presentation. By default, lavaan uses fixed.x = TRUE,
and the “x” variables are treated as fixed constants. The advantage of this is that distri-
butional assumptions are no longer needed for the “x” variables. However, the price is
that when fixed.x = TRUE, “x” variables must not have missing values. As a result, all
observations with missing values in any of the level-1 “x” variables will be deleted from
the dataset before the analysis. In addition, if missing values are present in any of the
level-2 “x” variables, the entire cluster is removed from the dataset before the analysis.

5. Conclusions

In this paper, I focused on the evaluation of the (observed) log-likelihood function
for a two-level SEM in the presence of missing data. This makes it possible to obtain
ML estimates of the model parameters using all available data. I have discussed two
approaches (the McDonald solution and the du Toit and du Toit solution), which have
been published in the literature, and have added a small extension to handle the case
where Σb is singular. Finally, I presented a sequence of R scripts to evaluate this observed
log-likelihood, starting from a naive (and slow) version and ending with a more refined
(and faster) version. This sequence was not written with this paper in mind, but it truly
reflects how the R code has evolved over time (over a period of many months) in order to
prepare the code for inclusion in lavaan. Of course, the objective function is just a small
part of the optimization machinery. Another essential ingredient is the gradient of the
objective function. This gradient can be approximated numerically, but this will be slow,
especially when the number of free parameters is rather large. Therefore, I also derived
an analytic expression for this gradient. These derivations are not shown in this paper,
but the corresponding code can be found in the file lav_mvnorm_cluster_missing.R in
the lavaan source code. Another limitation of this paper is that I only considered the
random-intercept setting. No random slopes were allowed. I refer interested readers to [9]
for a detailed description of how the log-likelihood function can be expressed to handle
random slopes in the complete data setting. As noted by Rockwood (see the Appendix
of [9]), the adaption to the missing data setting is straightforward. Translating this to
efficient R code, however, is not so straightforward. In the near future, the plan is to
incorporate the Rockwood approach into lavaan, so that both missing data and random
slopes can be handled. It would also be interesting to compare the lavaan approach with
Rampart, which is implemented in OpenMx [15]. This algorithm was designed to evaluate
many-level multilevel SEMs in a computationally efficient way. Some ideas of Rampart
(in particular the orthogonal rotation) could perhaps be integrated in our code. As a final
outlook, the plan is also to construct an expectation–maximization (EM) algorithm for the
two-level SEM setting with missing data and random slopes. This is clearly doable, as this
has been available in a commercial SEM package for almost two decades. Unfortunately, to
the best of my knowledge, there is no (published) technical literature on this algorithm.
In addition, it is not clear whether this EM algorithm can be adapted to handle the case
where Σb is singular.

Psych 2021, 3 215

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of the du Toit and du Toit Solution

The steps to derive the du Toit and du Toit solution are similar to the steps that were
used to derive the McDonald solutioin. Except that the starting point is now the first
identity (A20) in Appendix B.1. Before I start with the individual blocks of Vj, I will first
derive some intermediate results. The first is an expression for V−1

j(yy), which is different

from Vyy
j . Using the notation Λj =

⊕nj
i=1 QjiΣwQ′ji, Vj(yy) can be written as

Vj(yy) = Λj + QjΣbQ′j. (A1)

To take the inverse, the (classic) Woodbury identity in (A25) can be used to obtain

V−1
j(yy) = Λ−1

j −Λ−1
j Qj

(
Σ−1

b + Q′jΛ
−1
j Qj

)−1
Q′j Λ−1

j

= Λ−1
j −Λ−1

j Qj

(
Σ−1

b + Aj

)−1
Q′j Λ−1

j

= Λ−1
j −Λ−1

j Qj Bj Q′j Λ−1
j , (A2)

where the notation Aj = Q′jΛ
−1
j Qj and Bj =

(
Σ−1

b + Aj

)−1
has been used. The second

result is for V−1
j(yy)Qj as this calls for an application of the Woodbury push-through right

identity in (A27):

V−1
j(yy)Qj =

(
Λj + QjΣbQ′j

)−1
Qj

= Λ−1
j Qj

(
Σ−1

b + Aj

)−1
Σ−1

b

= Λ−1
j QjBj Σ−1

b . (A3)

Similarly, a third result is for Q′jV
−1
j(yy), for which we need the Woodbury push-through left

identity in (A29):

Q′jV
−1
j(yy) = Q′j

(
Λj + QjΣbQ′j

)−1

= Σ−1
b

(
Σ−1

b + Aj

)−1
Q′jΛ

−1
j

= Σ−1
b Bj Q′j Λ−1

j . (A4)

It follows that Q′jV
−1
j(yy)Qj can be written as

Q′jV
−1
j(yy)Qj = Q′jΛ

−1
j Qj Bj Σ−1

b

= AjBj Σ−1
b . (A5)

Psych 2021, 3 216

I can now proceed with finding an expression for Vzz
j . By using (A20), Vzz

j = V−1
j(z.y), where

Vj(z.y) can be written as:

Vj(z.y) = Vj(zz) −Vj(zy)V
−1
j(yy)Vj(zy)

= GjΣzzG′j −GjΣzyQ′j V−1
j(yy)QjΣyzG′j

= GjΣzzG′j −GjΣzyAjBjΣ
−1
b ΣyzG′j

= Gj

(
Σzz − ΣzyAjBjΣ

−1
b Σyz

)
G′j, (A6)

where (A5) has been used to get from the second to the third line. Using the following no-
tation:

Σj(z.y) = Σzz − ΣzyAjBjΣ
−1
b Σyz (A7)

Vzz
j can be written as

Vzz
j =

(
GjΣj(z.y)G

′
j

)−1
, (A8)

and the quadratic form qzz
j becomes

qzz
j = δ′jzVzz

j δjz

= δ′jz

(
GjΣj(z.y)G

′
j

)−1
δjz. (A9)

Next, I will seek an expression for Vyz
j . Consider (A20)

Vyz
j = −

(
Λj + QjΣbQ′j

)−1
Qj ΣyzG′j Vzz

j

= −Λ−1
j QjBj Σ−1

b ΣyzG′j Vzz
j , (A10)

wherein the result in (A3) was used to get from the first to the second line. The quadratic
form qzy

j is therefore derived from

qyz
j = δ′jyVyz

j δjz

= −δ′jyΛ−1
j QjBj Σ−1

b ΣyzG′jV
zz
j δjz

= −p′j BjΣ
−1
b g̃j, (A11)

where I have used
pj = QjΛ

−1
j δjy and g̃j = ΣyzG′jV

zz
j . (A12)

The tilde on g̃j should alert readers that this expression is similar, but not identical to gj,
as defined in (67). Finally, for the Vyy

j term, I will use (A20) once more to find

Vyy
j =

(
Λj + QjΣbQ′j

)−1

+

[(
Λj + QjΣbQ′j

)−1
QjΣyzG′j Vzz

j

GjΣzy Q′j
(

Λj + QjΣbQ′j
)−1

]
.

(A13)

Psych 2021, 3 217

The first line is the inverse of (A1) and can be rewritten as in (A2). The second line equals
(minus) the expression for Vyz

j in (A10). The last line corresponds to the result in (A4),
premultiplied by GjΣzy. Applying these results, (A13) may be rewritten as

Vyy
j = Λ−1

j −Λ−1
j QjBjQ′jΛ

−1
j + Λ−1

j QjBjΣ
−1
b ΣyzG′jV

zz
j GjΣzy Σ−1

b BjQ′jΛ
−1
j

= Λ−1
j −Λ−1

j Qj

[
Bj − BjΣ

−1
b ΣyzG′jV

zz
j GjΣzy Σ−1

b Bj

]
Q′jΛ

−1
j .

(A14)

As a side note, du Toit and du Toit [3] further simplify the last expression by writing the
term within the square brackets as −Hj, so that Vyy

j can be written more compactly as

Λ−1
j + Λ−1

j QjHjQ′jΛ
−1
j . The quadratic form qyy

j can be written as

qyy
j = δ′jyVyyδjy

= δ′jyΛ−1
j δjy − p′j

[
Bj − BjΣ

−1
b ΣyzG′jV

zz
j GjΣzy Σ−1

b Bj

]
pj. (A15)

To derive an expression for the determinant of Vj, this time using (A23), results in

|Vj| = |Vj(yy)| · |Vj(z.y)| (A16)

= |Vj(yy)| · |GjΣj(z.y)G
′|. (A17)

Recall that Vj(yy) = Λj + QjΣbQ′j. Using the determinant identity in (A32), results in

|Vj| = |Σ−1
b + Q′jΛ

−1
j Qj| · |Σb| · |Λj| · |GjΣj(z.y)G

′| (A18)

= |Σ−1
b + Aj| · |Σb| · |Λj| · |GjΣj(z.y)G

′|. (A19)

The only “large” matrix for which the determinant must be computed is Λj, but that is a
block diagonal matrix, so the determinant is easily obtained as in (A35). The final results
are summarized in Section 3.4.

Appendix B. Some Useful Formulas of Matrix Algebra

Appendix B.1. Inverse and Determinant of a Partitioned Matrix

There are two different but equivalent identities for the inverse of a partitioned matrix.
Identity 1 is given by(

A B
C D

)−1

=

(
M−1 −M−1BD−1

−D−1CM−1 D−1 + D−1CM−1BD−1

)
, (A20)

where
M = A− BD−1C,

and Identity 2 is given by(
A B
C D

)−1

=

(
A−1 + A−1BQ−1CA−1 −A−1BQ−1

−Q−1CA−1 Q−1

)
, (A21)

where
Q = D−CA−1B.

Psych 2021, 3 218

Similarly, the determinant of a partitioned matrix can be computed in two different ways:

|A| =
∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ (A22)

= |A22| |A11 −A12A−1
22 A21| (A23)

= |A11| |A22 −A21A−1
11 A12|. (A24)

Appendix B.2. The Woodbury Identity

The Woodbury identity gives an expression for the following inverse:

(A + UBV)−1,

where A (p × p) is square and nonsingular; U (p × r), B (r × s), and V (s × p) can be
rectangular (or square). Several variants and special cases exist. An overview can be found
in [16]. I only provide two identities. The first is the classic identity that is widely used in
the literature. It assumes that B is square and nonsingular so that its inverse B−1 exists:

(A + UBV)−1 = A−1 −A−1U(B−1 + VA−1U)−1VA−1. (A25)

The second identity is less known but is given in [16] for the general case and in [17] for the
symmetric case where V = U′. This version is more general and allows B to be singular:

(A + UBV)−1 = A−1 −A−1U(Ir + BVA−1U)−1BVA−1. (A26)

The following identities give expressions for the setting where the original term is either
postmultiplied with U or premultiplied with V. Expressions are known as the Woodbury
push-through “right” identities when they are postmultiplied. Here are two versions: The
first version requires B to be nonsingular, but the second version does not:

(A + UBV)−1U = A−1U(B−1 + VA−1U)−1B−1 (A27)

(A + UBV)−1U = A−1U(Ir + BVA−1U)−1. (A28)

Expressions are known as Woodbury push-through “left” identities when they are premulti-
plied. Again, two versions are given, but only the first version requires B to be nonsingular:

V(A + UBV)−1 = B−1(B−1 + VA−1U)−1VA−1 (A29)

V(A + UBV)−1 = (Is + VA−1UB)−1VA−1. (A30)

Appendix B.3. Determinant Identities

A well-known determinant identity (e.g., [18], p. 420) is related to the Woodbury identity:

|A + UBV| = |B−1 + VA−1U| · |B| · |A|, (A31)

where A (p× p) and B (r× r) are square and nonsingular, whereas U (p× r) and V (r× p)
can be rectangular or square. Because |AB| = |A| · |B|, this identity can also be rewritten
as follows:

|A + UBV| = |B−1 + VA−1U| · |B| · |A|
= |(B−1 + VA−1U)B| · |A|
= |B−1B + VA−1UB| · |A|
= |Ir + VA−1UB| · |A|. (A32)

The latter expression has the advantage that it can be applied in settings where B is singular.

Psych 2021, 3 219

Appendix B.4. Block Diagonal Matrices

A block diagonal matrix is similar to a diagonal (square) matrix, but every diagonal
element is itself a (square) matrix. All other elements are zero. For example, a block
diagonal matrix with K blocks has the following form:

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AK

. (A33)

The inverse of a block diagonal matrix is again a block diagonal matrix where the diagonal
elements are the inverted blocks (assuming their inverses exist):

A−1 =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AK


−1

=


A−1

1 0 . . . 0
0 A−1

2 . . . 0
...

...
. . .

...
0 0 . . . A−1

K

. (A34)

The determinant of a block diagonal matrix is simply the product of the determinants of
the individual blocks:

|A| = |A1| × |A1| × . . . |AK|. (A35)

Appendix C. R Code

Appendix C.1. The main.R File

1 l i b r a r y (lavaan) # must be 0.6 −9 (or higher)
2
3 # read in two− l e v e l data with missing data a t both l e v e l s
4 Data <− read . t a b l e (" h t tps ://www. da . ugent . be/ d a t a s e t s /demo2_missing . dat " ,
5 na . s t r i n g s = " −999999")
6 names (Data) <− c (" y1 " , " y2 " , " y3 " , " y4 " , " y5 " , " y6 " , " y7 " , " y8 " , " y9 " , " y10 " ,
7 " x1 " , " x2 " , " x3 " , " z1 " , " z2 " , " z3 " , " z4 " , "w1" , "w2" , "w3" ,
8 " c l u s t e r ")
9

10 model <− ’
11 l e v e l : 1
12 # y1−y6 are s p l i t t e d
13 fw1 =~ y1 + y2 + y3
14 fw2 =~ y4 + y5 + y6
15 fw1 ~~ s t a r t (0 . 0 2) * fw2
16
17 # within −only f a c t o r
18 fa =~ y7 + y8 + y9 + y10
19 fa ~ s t a r t (0 . 3) * fw1 + s t a r t (0 . 4) * fw2
20
21 # r e g r e s s i o n
22 fw1 ~ s t a r t (0 . 1) * x1 + s t a r t (0 . 2) * x2 + s t a r t (0 . 3) * x3
23
24 l e v e l : 2
25 # y1−y6 are s p l i t t e d
26 fb1 =~ y1 + y2 + y3
27 fb2 =~ y4 + y5 + y6
28 fb1 ~~ s t a r t (0 . 0 1) * fb2
29
30 # between−only f a c t o r
31 fbz =~ z1 + z2 + z3 + z4
32
33 # r e g r e s s i o n with l a t e n t p r e d i c t o r s
34 fbz ~ s t a r t (0 . 1) * fb1 + s t a r t (0 . 2) * fb2
35
36 # r e g r e s s i o n with observed p r e d i c t o r s
37 fb1 ~ s t a r t (0 . 3) * w1 + s t a r t (0 . 4) * w2 + s t a r t (0 . 5) * w3

Psych 2021, 3 220

38 ’
39
40 # we run lavaan , but without f i t t i n g (do . f i t = FALSE)
41 # − we w i l l use the s t a r t i n g values only
42 # − lavaan w i l l compute the model implied s t a t i s t i c s f o r these s t a r t i n g values
43 # − lavaan w i l l a l s o analyze the missing p a t t e r n s
44 dummy. f i t <− sem (model , data = Data , c l u s t e r = " c l u s t e r " , do . f i t = FALSE ,
45 f i x e d . x = FALSE , missing = "ml " , h1 = FALSE)
46
47 # e x t r a c t parameter vec tor (npar = 83)
48 x <− coef (dummy. f i t)
49
50 # e x t r a c t some i n t e r n a l s l o t s (warning : don ’ t do t h i s in r e a l world
51 # R code t h a t you upload to CRAN!)
52 lavmodel <− dummy. fit@Model # i n t e r n a l model r e p r e s e n t a t i o n
53 Lp <− dummy. fit@Data@Lp [[1]] # information about the c l u s t e r i n g
54 Y1 <− dummy. fit@Data@X [[1]] # raw data
55 Y2 <− dummy. fit@SampleStats@YLp [[1]] [[2]] $Y2 # raw data l e v e l 2
56
57 # model implied s t a t i s t i c s (within and between)
58 implied <− lav_model_implied (lavmodel)
59
60 # model implied s t a t i s t i c s (smal ler components : sigma .w, sigma . b , sigma . yz . . .)
61 out <− lavaan : : : lav_mvnorm_cluster_implied22l (Lp = Lp , implied = implied)
62
63 # e x t r a c t some use fu l values from Lp
64 n c l u s t e r s <− Lp$nclusters [[2]]
65 c l u s t e r . s i z e <− Lp$c lus ter . s i z e [[2]]
66 c l u s t e r . idx <− Lp$c lus ter . idx [[2]]
67 between . idx <− Lp$between . idx [[2]]
68
69
70 # 1 . evaluate using o b j e c t i v e 1 () funct ion
71 source (" o b j e c t i v e 1 . R ")
72 p r i n t (. ob j1 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
73 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
74 sigma . yz = out$sigma . yz) , d i g i t s = 12)
75
76 # 2 . evaluate using o b j e c t i v e 2 () funct ion
77 source (" o b j e c t i v e 2 . R ")
78 p r i n t (. ob j2 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
79 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
80 sigma . yz = out$sigma . yz) , d i g i t s = 12)
81
82 # 3 . evaluate using o b j e c t i v e 3 () funct ion
83 source (" o b j e c t i v e 3 . R ")
84 p r i n t (. ob j3 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
85 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
86 sigma . yz = out$sigma . yz) , d i g i t s = 12)
87
88 # 4 . evaluate using o b j e c t i v e 4 () funct ion
89 source (" o b j e c t i v e 4 . R ")
90 # pre −compute information about missing p a t t e r n s per c l u s t e r
91 MP <− vector (" l i s t " , length = n c l u s t e r s)
92 f o r (j in seq_len (n c l u s t e r s)) {
93 Yw. j <− Y1 [c l u s t e r . idx == j , −between . idx , drop = FALSE]
94 MP[[j]] <− lavaan : : : l av_data_miss ing_pat terns (Yw. j)
95 }
96
97 p r i n t (. ob j4 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
98 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
99 sigma . yz = out$sigma . yz) , d i g i t s = 12)

100
101 # 5 . evaluate using o b j e c t i v e 5 () funct ion
102 source (" o b j e c t i v e 5 . R ")
103 # pre −compute information about missing p a t t e r n s f o r the f u l l d a t a s e t
104 Mp <− dummy. fit@Data@Mp [[1]]
105 Zp <− Mp$Zp
106

Psych 2021, 3 221

107 p r i n t (. ob j5 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
108 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
109 sigma . yz = out$sigma . yz) , d i g i t s = 12)
110
111
112 l i b r a r y (microbenchmark)
113 benchmark <− microbenchmark (
114 . ob j1 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
115 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
116 sigma . yz = out$sigma . yz) ,
117 . ob j2 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
118 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
119 sigma . yz = out$sigma . yz) ,
120 . ob j3 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
121 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
122 sigma . yz = out$sigma . yz) ,
123 . ob j4 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
124 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
125 sigma . yz = out$sigma . yz) ,
126 . ob j5 (mu. y = out$mu . y , mu. z = out$mu . z , sigma .w = out$sigma .w,
127 sigma . b = out$sigma . b , sigma . zz = out$sigma . zz ,
128 sigma . yz = out$sigma . yz) , t imes = 100
129)

Appendix C.2. The objective1.R File

1 # o b j e c t i v e funct ion 1
2 #
3 # t h i s i s the ’ naive ’ funct ion where we c o n s t r u c t the ’ f u l l ’ V_j matrix
4 # and compute the determinant and inverse of V_j
5
6 . ob j1 <− funct ion (mu. y = NULL, mu. z = NULL, sigma .w = NULL, sigma . b = NULL,
7 sigma . zz = NULL, sigma . yz = NULL, l o g l i k . = FALSE) {
8
9 sigma . zy <− t (sigma . yz)

10
11 l o g l i k <− numeric (n c l u s t e r s)
12 f o r (j in seq_len (n c l u s t e r s)) {
13
14 # c l u s t e r s i z e
15 n j <− c l u s t e r . s i z e [j]
16
17 i f (length (between . idx) > 0L) {
18 Yw. j <− Y1 [c l u s t e r . idx == j , −between . idx , drop = FALSE]
19 z . j <− as . numeric (Y2 [j , between . idx , drop = FALSE])
20
21 # c r e a t e G. j
22 G. j <− diag (length (between . idx))
23 na . idx <− which (i s . na (z . j))
24 i f (length (na . idx) > 0L) {
25 # remove na rows
26 G. j <− G. j [−na . idx , , drop = FALSE]
27 z . j <− z . j [−na . idx]
28 }
29 } e l s e {
30 Yw. j <− Y1 [c l u s t e r . idx == j , , drop = FALSE]
31 }
32
33 # c r e a t e Q. j i f o r each uni t
34 Q. j i <− vec tor (" l i s t " , length = n j)
35 W. j i <− vec tor (" l i s t " , length = n j)
36 f o r (i in seq_len (n j)) {
37 dtmp <− diag (ncol (Yw. j))
38 na . idx <− which (i s . na (Yw. j [i ,]))
39 i f (length (na . idx) > 0L) {
40 dtmp <− dtmp[−na . idx , , drop = FALSE]
41 }
42 Q. j i [[i]] <− dtmp

Psych 2021, 3 222

43 W. j i [[i]] <− Q. j i [[i]] %*% sigma .w %*% t (Q. j i [[i]])
44 }
45
46 # c r e a t e Q. j
47 Q. j <− do . c a l l (" rbind " , Q. j i)
48
49 # c r e a t e V. j
50 i f (length (between . idx) > 0L) {
51 V. zz <− G. j %*% sigma . zz %*% t (G. j)
52 V. zy <− G. j %*% sigma . zy %*% t (Q. j)
53 V. yz <− Q. j %*% sigma . yz %*% t (G. j)
54 V. yy <− Q. j %*% sigma . b %*% t (Q. j) + lav_matr ix_bdiag (W. j i)
55
56 V. j <− rbind (cbind (V. zz , V. zy) ,
57 cbind (V. yz , V. yy))
58 e s t . j <− c (as . numeric (G. j %*% mu. z) ,
59 u n l i s t (sapply (Q. j i , func t ion (x) x %*% mu. y)))
60 obs . j <− c (as . numeric (z . j) ,
61 as . numeric (na . omit (lav_matr ix_vecr (Yw. j))))
62 } e l s e {
63 V. j <− Q. j %*% sigma . b %*% t (Q. j) + lav_matrix_bdiag (W. j i)
64 e s t . j <− as . numeric (u n l i s t (sapply (Q. j i , func t ion (x) x %*% mu. y)))
65 obs . j <− as . numeric (na . omit (lav_matr ix_vecr (Yw. j)))
66 }
67
68 V. j . inv <− lavaan : : : lav_matr ix_symmetric_inverse (V. j , logdet = TRUE)
69 V. j . logdet <− a t t r (V. j . inv , " logdet ")
70
71 d e l t a . j <− obs . j − e s t . j
72 q . j <− sum(d e l t a . j %*% V. j . inv * d e l t a . j)
73
74 i f (l o g l i k .) {
75 P <− length (obs . j) ; LOG. 2 PI <− log (2 * pi)
76 l o g l i k [j] <− −(P * LOG. 2 PI + V. j . logdet + q . j)/2
77 } e l s e {
78 l o g l i k [j] <− V. j . logdet + q . j
79 }
80
81 }
82
83 out <− sum(l o g l i k)
84
85 out
86 }

Appendix C.3. The objective2.R File

1 # o b j e c t i v e funct ion 2
2 #
3 # This i s a stra ighforward implementation of the ’McDonald ’ so lut ion ,
4 # adapted to handle the case where sigma . b can be s i n g u l a r
5
6 . ob j2 <− funct ion (mu. y = NULL, mu. z = NULL, sigma .w = NULL, sigma . b = NULL,
7 sigma . zz = NULL, sigma . yz = NULL, l o g l i k . = FALSE) {
8
9 sigma . zy <− t (sigma . yz)

10
11 l o g l i k <− numeric (n c l u s t e r s)
12 f o r (j in seq_len (n c l u s t e r s)) {
13
14 # c l u s t e r s i z e
15 n j <− c l u s t e r . s i z e [j]
16
17 i f (length (between . idx) > 0L) {
18 Yw. j <− Y1 [c l u s t e r . idx == j , −between . idx , drop = FALSE]
19 z . j <− as . numeric (Y2 [j , between . idx , drop = FALSE])
20
21 # c r e a t e G. j

Psych 2021, 3 223

22 G. j <− diag (length (between . idx))
23 na . idx <− which (i s . na (z . j))
24 i f (length (na . idx) > 0L) {
25 # remove na rows
26 G. j <− G. j [−na . idx , , drop = FALSE]
27 z . j <− z . j [−na . idx]
28 }
29 } e l s e {
30 Yw. j <− Y1 [c l u s t e r . idx == j , , drop = FALSE]
31 }
32
33 # c r e a t e Q. j i f o r each uni t
34 Q. j i <− vec tor (" l i s t " , length = n j)
35 W. j i <− vec tor (" l i s t " , length = n j)
36 A. j i <− vec tor (" l i s t " , length = n j)
37 f o r (i in seq_len (n j)) {
38 dtmp <− diag (ncol (Yw. j))
39 na . idx <− which (i s . na (Yw. j [i ,]))
40 i f (length (na . idx) > 0L) {
41 dtmp <− dtmp[−na . idx , , drop = FALSE]
42 }
43 Q. j i [[i]] <− dtmp
44 W. j i [[i]] <− Q. j i [[i]] %*% sigma .w %*% t (Q. j i [[i]])
45 A. j i [[i]] <− t (Q. j i [[i]]) %*% solve (W. j i [[i]]) %*% Q. j i [[i]]
46 }
47
48 # c r e a t e Q. j
49 Q. j <− do . c a l l (" rbind " , Q. j i)
50
51 A. j <− Reduce (" + " , A. j i)
52 bdiag_sigma .w. j <− lav_matrix_bdiag (W. j i)
53 bdiag_sigma .w. j . inv <− lav_matrix_bdiag (lapply (W. j i , so lve))
54
55
56 i f (length (between . idx) > 0L && nrow (G. j) > 0L) {
57 sigma . j . zz . inv <− solve (G. j %*% sigma . zz %*% t (G. j))
58 sigma . j . b . z <−
59 (sigma . b −
60 sigma . yz %*% t (G. j) %*% sigma . j . zz . inv %*% G. j %*% sigma . zy)
61 } e l s e {
62 sigma . j . b . z <− sigma . b
63 }
64 IBZA . j <− diag (ncol (sigma . j . b . z)) + sigma . j . b . z %*% A. j
65 IBZA . j . inv <− solve (IBZA . j)
66
67
68 i f (length (between . idx) > 0L && nrow (G. j) > 0L) {
69
70 e s t . j <− c (as . numeric (G. j %*% mu. z) ,
71 u n l i s t (sapply (Q. j i , func t ion (x) x %*% mu. y)))
72
73 obs . j <− c (as . numeric (z . j) ,
74 as . numeric (na . omit (lav_matr ix_vecr (Yw. j))))
75
76 d e l t a . j <− obs . j − e s t . j
77 z . idx <− seq_len (nrow (G. j))
78 y . idx <− seq_len (length (e s t . j) − length (z . idx)) + length (z . idx)
79
80 d e l t a . z <− obs . j [z . idx] − e s t . j [z . idx]
81 d e l t a . y <− obs . j [y . idx] − e s t . j [y . idx]
82 p . j <− t (Q. j) %*% bdiag_sigma .w. j . inv %*% d e l t a . y
83 g . j <− sigma . yz %*% t (G. j) %*% sigma . j . zz . inv %*% d e l t a . z
84
85 q . zz <− drop (t (d e l t a . z) %*% sigma . j . zz . inv %*% d e l t a . z +
86 t (g . j) %*% A. j %*% IBZA . j . inv %*% g . j)
87
88 q . yz <− −1 * drop (t (p . j) %*% IBZA . j . inv %*% g . j)
89
90 q . yy <− drop (t (d e l t a . y) %*% bdiag_sigma .w. j . inv %*% d e l t a . y −

Psych 2021, 3 224

91 t (p . j) %*% IBZA . j . inv %*% sigma . j . b . z %*% p . j)
92
93 q . j <− q . yy + 2*q . yz + q . zz
94
95 } e l s e {
96 e s t . j <− as . numeric (u n l i s t (sapply (Q. j i , func t ion (x) x %*% mu. y)))
97 obs . j <− as . numeric (na . omit (lav_matr ix_vecr (Yw. j)))
98 d e l t a . y <− obs . j − e s t . j
99 p . j <− t (Q. j) %*% bdiag_sigma .w. j . inv %*% d e l t a . y

100 q . j <− drop (t (d e l t a . y) %*% bdiag_sigma .w. j . inv %*% d e l t a . y −
101 t (p . j) %*% IBZA . j . inv %*% sigma . j . b . z %*% p . j)
102 }
103
104 # determinant
105 i f (length (between . idx) > 0L && nrow (G. j) > 0L) {
106 Yw. j <− sum(sapply (W. j i , funct ion (x) { log (det (x)) }))
107 tmp2 <− log (det (IBZA . j))
108 tmp3 <− log (det (G. j %*% sigma . zz %*% t (G. j)))
109 V. j . logdet <− Yw. j + tmp2 + tmp3
110 } e l s e {
111 Yw. j <− sum(sapply (W. j i , funct ion (x) { log (det (x)) }))
112 tmp2 <− log (det (IBZA . j))
113 V. j . logdet <− Yw. j + tmp2
114 }
115
116 i f (l o g l i k .) {
117 P <− length (obs . j) ; LOG. 2 PI <− log (2 * pi)
118 l o g l i k [j] <− −(P * LOG. 2 PI + V. j . logdet + q . j)/2
119 } e l s e {
120 l o g l i k [j] <− V. j . logdet + q . j
121 }
122 }
123
124 out <− sum(l o g l i k)
125
126 out
127 }

Appendix C.4. The objective3.R File

1 # o b j e c t i v e funct ion 3
2 #
3 # − avoid Q. j i , W. j i , A. i j , G. j , and other minor improvements
4 # − update inverse/determinant of sigma .w and sigma . zz
5 # − t r e a t complete cases/ c l u s t e r s more e f f i c i e n t l y
6
7 . ob j3 <− funct ion (mu. y = NULL, mu. z = NULL, sigma .w = NULL, sigma . b = NULL,
8 sigma . zz = NULL, sigma . yz = NULL, l o g l i k . = FALSE) {
9

10 LOG. 2 PI <− log (2 * pi)
11
12 sigma .w. inv <− solve (sigma .w)
13 sigma .w. logdet <− log (det (sigma .w))
14
15 # y
16 ny <− NCOL(sigma .w)
17 ny . diag . idx <− lav_matr ix_diag_idx (ny)
18
19 # z
20 nz <− length (between . idx)
21 i f (nz > 0L) {
22 sigma . zy <− t (sigma . yz)
23 sigma . zz . inv <− solve . d e f a u l t (sigma . zz)
24 sigma . zz . logdet <− log (det (sigma . zz))
25 sigma . z i . zy <− sigma . zz . inv %*% sigma . zy
26 sigma . b . z <− sigma . b − sigma . yz %*% sigma . z i . zy
27 }
28

Psych 2021, 3 225

29 l o g l i k <− numeric (n c l u s t e r s)
30 f o r (j in seq_len (n c l u s t e r s)) {
31
32 # c l u s t e r s i z e
33 n j <− c l u s t e r . s i z e [j]
34
35 # y
36 Yw. j <− Y1 [c l u s t e r . idx == j , −between . idx , drop = FALSE]
37 obs . y <− lav_matr ix_vecr (Yw. j)
38 y . na . idx <− which (i s . na (obs . y))
39 i f (length (y . na . idx) > 0L) {
40 obs . y <− obs . y[−y . na . idx]
41 }
42
43 # compute within − l e v e l q u a n t i t i e s
44 W. logdet . j <− 0
45 A. j <− matrix (0 , ny , ny)
46 p . j <− matrix (0 , ny , 1L)
47 q . yy . a <− 0
48 f o r (i in seq_len (n j)) {
49 na . idx <− which (i s . na (Yw. j [i ,]))
50 i f (length (na . idx) > 0L) {
51 wi j <− sigma .w[−na . idx , −na . idx , drop = FALSE]
52 wi j . inv <−
53 lavaan : : : lav_matrix_symmetric_inverse_update (
54 S . inv = sigma .w. inv ,
55 rm . idx = na . idx , logdet = TRUE,
56 S . logdet = sigma .w. logdet)
57 wi j . logdet <− a t t r (wi j . inv , " logdet ")
58 W. logdet . j <− W. logdet . j + wi j . logdet
59 A. j [−na . idx , −na . idx] <−
60 A. j [−na . idx , −na . idx , drop = FALSE] + wi j . inv
61 d e l t a . i <− (Yw. j [i , − na . idx] − mu. y[−na . idx])
62 wi . d e l t a . i <− wi j . inv %*% d e l t a . i
63 p . j [−na . idx , 1L] <− p . j [−na . idx , 1L] + wi . d e l t a . i
64 q . yy . a <− q . yy . a + sum(wi . d e l t a . i * d e l t a . i)
65 } e l s e {
66 # complete case
67 W. logdet . j <− W. logdet . j + sigma .w. logdet
68 A. j <− A. j + sigma .w. inv
69 d e l t a . i <− (Yw. j [i ,] − mu. y)
70 wi . d e l t a . i <− sigma .w. inv %*% d e l t a . i
71 p . j <− p . j + wi . d e l t a . i
72 q . yy . a <− q . yy . a + sum(wi . d e l t a . i * d e l t a . i)
73 }
74 }
75
76 # between
77 i f (nz > 0L) {
78 obs . z <− as . numeric (Y2 [j , between . idx , drop = FALSE])
79 e s t . z <− mu. z
80 z . na . idx <− which (i s . na (obs . z))
81
82 # three p o s s i b i l i t i e s :
83 # − a l l z are missing −> sigma . j . b . z = sigma . b , no between
84 # − some z are missing −> update sigma . j . zz . { inv/logdet }
85 # − z i s comlete −> j u s t use sigma . zz
86 i f (length (z . na . idx) == nz) {
87 sigma . j . b . z <− sigma . b
88 obs . z <− obs . z[−z . na . idx] # f o r P
89 } e l s e i f (length (z . na . idx) > 0L) {
90 obs . z <− obs . z[−z . na . idx]
91 e s t . z <− e s t . z [−z . na . idx]
92 d e l t a . z <− obs . z − e s t . z
93 sigma . j . zz . inv <− lavaan : : : lav_matrix_symmetric_inverse_update (
94 S . inv = sigma . zz . inv ,
95 rm . idx = z . na . idx , logdet = TRUE,
96 S . logdet = sigma . zz . logdet)
97 sigma . j . zz . logdet <− a t t r (sigma . j . zz . inv , " logdet ")

Psych 2021, 3 226

98 sigma . j . z i . zy <−
99 sigma . j . zz . inv %*% sigma . zy[−z . na . idx , , drop = FALSE]

100 sigma . j . b . z <− (sigma . b −
101 sigma . yz [, −z . na . idx , drop = FALSE] %*% sigma . j . z i . zy)
102 } e l s e { # no missings f o r z
103 d e l t a . z <− obs . z − e s t . z
104 sigma . j . zz <− sigma . zz
105 sigma . j . zz . inv <− sigma . zz . inv
106 sigma . j . zz . logdet <− sigma . zz . logdet
107 sigma . j . z i . zy <− sigma . z i . zy
108 sigma . j . b . z <− sigma . b . z
109 }
110 }
111
112 # IBZA . j
113 IBZA . j <− sigma . j . b . z %*% A. j
114 IBZA . j [ny . diag . idx] <− IBZA . j [ny . diag . idx] + 1
115 IBZA . j . inv <− solve (IBZA . j) # NOT symmetric !
116 IBZA . j . logdet <− log (det (IBZA . j))
117
118 # quadrat ic form
119 i f (nz > 0L && length (z . na . idx) != nz) {
120
121 A. IBZA . j . inv <− A. j %*% IBZA . j . inv
122 IBZA . j . inv . BZ <− IBZA . j . inv %*% sigma . j . b . z
123 g . j <− drop (d e l t a . z %*% sigma . j . z i . zy)
124 p . j <− drop (p . j)
125
126 q . zz . a <− sum(colSums (d e l t a . z * sigma . j . zz . inv) * d e l t a . z)
127 q . zz . b <− sum(colSums (g . j * A. IBZA . j . inv) * g . j)
128 q . zy <− −1 * sum(colSums (p . j * IBZA . j . inv) * g . j)
129 q . yy . b <− sum(colSums (p . j * IBZA . j . inv . BZ) * p . j)
130
131 q . j <− (q . yy . a − q . yy . b) + 2*q . zy + (q . zz . a + q . zz . b)
132
133 } e l s e {
134 IBZA . j . inv . BZ <− IBZA . j . inv %*% sigma . j . b . z
135 p . j <− drop (p . j)
136
137 q . yy . b <− sum(colSums (p . j * IBZA . j . inv . BZ) * p . j)
138 q . j <− (q . yy . a − q . yy . b)
139 }
140
141 # determinant
142 i f (nz > 0L && length (z . na . idx) != nz) {
143 V. j . logdet <− W. logdet . j + IBZA . j . logdet + sigma . j . zz . logdet
144 } e l s e {
145 V. j . logdet <− W. logdet . j + IBZA . j . logdet
146 }
147
148 i f (l o g l i k .) {
149 P <− length (obs . y) + length (obs . z)
150 l o g l i k [j] <− −(P * LOG. 2 PI + V. j . logdet + q . j)/2
151 } e l s e {
152 l o g l i k [j] <− V. j . logdet + q . j
153 }
154 }
155
156 out <− sum(l o g l i k)
157
158 out
159 }

Appendix C.5. The objective4.R File

1 # o b j e c t i v e funct ion 4
2 #
3 # − use missing p a t t e r n s per c l u s t e r

Psych 2021, 3 227

4
5 . ob j4 <− funct ion (mu. y = NULL, mu. z = NULL, sigma .w = NULL, sigma . b = NULL,
6 sigma . zz = NULL, sigma . yz = NULL, l o g l i k . = FALSE) {
7
8 LOG. 2 PI <− log (2 * pi)
9

10 sigma .w. inv <− solve (sigma .w)
11 sigma .w. logdet <− log (det (sigma .w))
12
13 # y
14 ny <− NCOL(sigma .w)
15 ny . diag . idx <− lav_matr ix_diag_idx (ny)
16 Y1w <− Y1 [, −between . idx , drop = FALSE]
17 Y1w. c <− t (t (Y1w) − mu. y)
18
19 # z
20 nz <− length (between . idx)
21 i f (nz > 0L) {
22 Z <− Y2 [, between . idx , drop = FALSE]
23 Z . c <− t (t (Z) − mu. z)
24 sigma . zy <− t (sigma . yz)
25 sigma . zz . inv <− solve (sigma . zz)
26 sigma . zz . logdet <− log (det (sigma . zz))
27 sigma . z i . zy <− sigma . zz . inv %*% sigma . zy
28 sigma . b . z <− sigma . b − sigma . yz %*% sigma . z i . zy
29 }
30
31 l o g l i k <− numeric (n c l u s t e r s)
32 f o r (j in seq_len (n c l u s t e r s)) {
33
34 # c l u s t e r s i z e
35 n j <− c l u s t e r . s i z e [j]
36
37 # centered data Y1
38 Yw. j <− Y1w. c [c l u s t e r . idx == j , , drop = FALSE]
39
40 # missing p a t t e r n s f o r t h i s c l u s t e r
41 Mp. j <− MP[[j]]
42
43 # f o r each Y1 pattern , compute within − l e v e l q u a n t i t i e s
44 NY <− 0L ; A. j <− matrix (0 , ny , ny) ; p . j <− numeric (ny)
45 W. logdet . j <− 0 ; q . yy . a <− 0
46 f o r (p in seq_len (Mp. j $ n p a t t e r n s)) {
47
48 f r e q <− Mp. j $ f r e q [p] ; na . idx <− which (!Mp. j $ p a t [p ,])
49
50 # s t o r e number of observed values (only needed i f l o g l i k . = TRUE)
51 i f (l o g l i k .) {
52 NY <− NY + (sum(Mp. j $ p a t [p ,]) * f r e q)
53 }
54
55 i f (length (na . idx) > 0L) {
56 wp <− sigma .w[−na . idx , −na . idx , drop = FALSE]
57 wp. inv <− lavaan : : : lav_matrix_symmetric_inverse_update (
58 S . inv = sigma .w. inv , rm . idx = na . idx ,
59 logdet = TRUE, S . logdet = sigma .w. logdet)
60 wp. logdet <− a t t r (wp. inv , " logdet ")
61 W. logdet . j <− W. logdet . j + (wp. logdet * f r e q)
62 A. j [−na . idx , −na . idx] <−
63 A. j [−na . idx , −na . idx , drop = FALSE] + (wp. inv * f r e q)
64
65 t h i s . y <− Yw. j [Mp. j $ c a s e . idx [[p]] , −na . idx , drop = FALSE]
66 wi . d e l t a . p <− t h i s . y %*% wp. inv
67 p . j [−na . idx] <− p . j [−na . idx] + colSums (wi . d e l t a . p)
68 q . yy . a <− q . yy . a + sum(wi . d e l t a . p * t h i s . y) # TR
69
70 } e l s e {
71 # complete case
72 W. logdet . j <− W. logdet . j + (sigma .w. logdet * f r e q)

Psych 2021, 3 228

73 A. j <− A. j + (sigma .w. inv * f r e q)
74
75 t h i s . y <− Yw. j [Mp. j $ c a s e . idx [[p]] , , drop = FALSE]
76 wi . d e l t a . p <− t h i s . y %*% sigma .w. inv
77 p . j <− p . j + colSums (wi . d e l t a . p)
78 q . yy . a <− q . yy . a + sum(wi . d e l t a . p * t h i s . y)
79 }
80 }
81
82 # between
83 g . j <− numeric (ny) ; q . zz . a <− 0
84 i f (nz > 0L) {
85 z . na . idx <− which (i s . na (Z . c [j , , drop = FALSE]))
86 NZ <− nz − length (z . na . idx)
87
88 # three p o s s i b i l i t i e s :
89 # − a l l z are missing −> sigma . j . b . z = sigma . b , no between
90 # − some z are missing −> update sigma . j . zz . { inv/logdet }
91 # − z i s complete −> j u s t use sigma . zz
92 i f (length (z . na . idx) == nz) {
93 sigma . j . b . z <− sigma . b
94 } e l s e i f (length (z . na . idx) > 0L) {
95 d e l t a . z <− Z . c [j , −z . na . idx , drop = TRUE]
96 sigma . j . zz . inv <− lavaan : : : lav_matrix_symmetric_inverse_update (
97 S . inv = sigma . zz . inv ,
98 rm . idx = z . na . idx , logdet = TRUE,
99 S . logdet = sigma . zz . logdet)

100 sigma . j . zz . logdet <− a t t r (sigma . j . zz . inv , " logdet ")
101 q . zz . a <− sum(colSums (d e l t a . z * sigma . j . zz . inv) * d e l t a . z)
102 sigma . j . z i . zy <−
103 sigma . j . zz . inv %*% sigma . zy[−z . na . idx , , drop = FALSE]
104 g . j <− drop (d e l t a . z %*% sigma . j . z i . zy)
105 sigma . j . b . z <− (sigma . b −
106 sigma . yz [, −z . na . idx , drop = FALSE] %*% sigma . j . z i . zy)
107 } e l s e { # no missings f o r z
108 d e l t a . z <− Z . c [j , , drop = TRUE]
109 sigma . j . zz <− sigma . zz
110 sigma . j . zz . inv <− sigma . zz . inv
111 q . zz . a <− sum(colSums (d e l t a . z * sigma . j . zz . inv) * d e l t a . z)
112 sigma . j . zz . logdet <− sigma . zz . logdet
113 g . j <− drop (d e l t a . z %*% sigma . z i . zy)
114 sigma . j . b . z <− sigma . b . z
115 }
116 }
117
118 # IBZA . j
119 IBZA . j <− sigma . j . b . z %*% A. j
120 IBZA . j [ny . diag . idx] <− IBZA . j [ny . diag . idx] + 1
121 IBZA . j . inv <− solve (IBZA . j) # NOT symmetric !
122 IBZA . j . logdet <− log (det (IBZA . j))
123 IBZA . j . inv . BZ <− IBZA . j . inv %*% sigma . j . b . z
124
125 # quadrat ic form
126 i f (nz > 0L && length (z . na . idx) != nz) {
127 A. IBZA . j . inv <− A. j %*% IBZA . j . inv
128 q . zz . b <− sum(colSums (g . j * A. IBZA . j . inv) * g . j)
129 q . zy <− −1 * sum(colSums (p . j * IBZA . j . inv) * g . j)
130 q . yy . b <− sum(colSums (p . j * IBZA . j . inv . BZ) * p . j)
131
132 q . j <− (q . yy . a − q . yy . b) + 2*q . zy + (q . zz . a + q . zz . b)
133 } e l s e {
134 q . yy . b <− sum(colSums (p . j * IBZA . j . inv . BZ) * p . j)
135 q . j <− (q . yy . a − q . yy . b)
136 }
137
138 # determinant
139 i f (nz > 0L && length (z . na . idx) != nz) {
140 V. j . logdet <− W. logdet . j + IBZA . j . logdet + sigma . j . zz . logdet
141 } e l s e {

Psych 2021, 3 229

142 V. j . logdet <− W. logdet . j + IBZA . j . logdet
143 }
144
145 i f (l o g l i k .) {
146 P <− NY + NZ
147 l o g l i k [j] <− −(P * LOG. 2 PI + V. j . logdet + q . j)/2
148 } e l s e {
149 l o g l i k [j] <− V. j . logdet + q . j
150 }
151 }
152
153 out <− sum(l o g l i k)
154
155 out
156 }

Appendix C.6. The objective5.R File

1 # o b j e c t i v e funct ion 5
2 #
3 # use missing p a t t e r n s f o r Y and Z (not per c l u s t e r , but f o r the complete data)
4
5 . ob j5 <− funct ion (mu. y = NULL, mu. z = NULL, sigma .w = NULL, sigma . b = NULL,
6 sigma . zz = NULL, sigma . yz = NULL, l o g l i k . = FALSE) {
7
8 LOG. 2 PI <− log (2 * pi)
9

10
11 sigma .w. inv <− solve (sigma .w)
12 sigma .w. logdet <− log (det (sigma .w))
13
14 # y
15 ny <− NCOL(sigma .w)
16 ny . diag . idx <− lav_matr ix_diag_idx (ny)
17 Y1w <− Y1 [, −between . idx , drop = FALSE]
18 Y1w. c <− t (t (Y1w) − mu. y)
19
20 # z
21 nz <− length (between . idx)
22 i f (nz > 0L) {
23 Z <− Y2 [, between . idx , drop = FALSE]
24 Z . c <− t (t (Z) − mu. z)
25 sigma . zy <− t (sigma . yz)
26 sigma . zz . inv <− solve (sigma . zz)
27 sigma . zz . logdet <− log (det (sigma . zz))
28 sigma . z i . zy <− sigma . zz . inv %*% sigma . zy
29 sigma . b . z <− sigma . b − sigma . yz %*% sigma . z i . zy
30 }
31
32 # c o n t a i n e r s per c l u s t e r
33 q . yy . b <− q . zy <− q . zz . b <− numeric (n c l u s t e r s)
34 IBZA . j . logdet <− numeric (n c l u s t e r s)
35 ALIST <− rep (l i s t (matrix (0 , ny , ny)) , n c l u s t e r s)
36
37 # Z per missing pat tern
38 i f (nz > 0L) {
39 SIGMA. B . Z <− vector (" l i s t " , length = Zp$npatterns + 1L) # +1 f o r empty
40 ZPAT2J <− i n t e g e r (n c l u s t e r s) # which SIGMA. B . Z per c l u s t e r
41
42 sigma . j . zz . logdet <− q . zz . a <− 0
43 GJ <− matrix (0 , nrow = n c l u s t e r s , ncol = ny)
44 f o r (p in seq_len (Zp$npatterns)) {
45 f r e q <− Zp$freq [p] ; na . idx <− which (! Zp$pat [p ,])
46 j . idx <− Zp$case . idx [[p]] # c l u s t e r i n d i c e s with t h i s pat te rn
47 ZPAT2J [j . idx] <− p
48
49 i f (length (na . idx) > 0L) {
50 zp <− sigma . zz [−na . idx , −na . idx , drop = FALSE]

Psych 2021, 3 230

51 zp . inv <− lavaan : : : lav_matrix_symmetric_inverse_update (
52 S . inv = sigma . zz . inv , rm . idx = na . idx ,
53 logdet = TRUE, S . logdet = sigma . zz . logdet)
54 zp . logdet <− a t t r (zp . inv , " logdet ")
55 sigma . j . zz . logdet <− sigma . j . zz . logdet + (zp . logdet * f r e q)
56
57 t h i s . z <− Z . c [Zp$case . idx [[p]] , −na . idx , drop = FALSE]
58 z i . d e l t a . p <− t h i s . z %*% zp . inv
59 q . zz . a <− q . zz . a + sum(z i . d e l t a . p * t h i s . z)
60
61 sigma . j . z i . zy <− zp . inv %*% sigma . zy[−na . idx , , drop = FALSE]
62 SIGMA. B . Z [[p]] <− (sigma . b −
63 sigma . yz [, −na . idx , drop = FALSE] %*% sigma . j . z i . zy)
64 GJ [j . idx ,] <− z i . d e l t a . p %*% sigma . zy[−na . idx , , drop = FALSE]
65 } e l s e {
66 # complete case
67 sigma . j . zz . logdet <−
68 sigma . j . zz . logdet + (sigma . zz . logdet * f r e q)
69
70 t h i s . z <− Z . c [Zp$case . idx [[p]] , , drop = FALSE]
71 z i . d e l t a . p <− t h i s . z %*% sigma . zz . inv
72 q . zz . a <− q . zz . a + sum(z i . d e l t a . p * t h i s . z)
73
74 SIGMA. B . Z [[p]] <− sigma . b . z
75 GJ [j . idx ,] <− t h i s . z %*% sigma . z i . zy
76 }
77 } # p
78
79 # add empty p a t t e r n s (i f any)
80 i f (length (Zp$empty . idx) > 0L) {
81 j . idx <− Zp$empty . idx
82 ZPAT2J [j . idx] <− p + 1L
83 SIGMA. B . Z [[p+1L]] <− sigma . b
84 GJ [j . idx ,] <− numeric (ny)
85 }
86
87 } e l s e { # no between z
88 SIGMA. B . Z <− l i s t (sigma . b)
89 ZPAT2J <− rep (1L , n c l u s t e r s)
90 }
91
92
93 # Y per missing pat tern
94 q . yy . a <− W. logdet <− 0
95 PJ <− matrix (0 , nrow = n c l u s t e r s , ncol = ny)
96 f o r (p in seq_len (Mp$npatterns)) {
97 # missing pat tern i n f o
98 f r e q <− Mp$freq [p] ; na . idx <− which (! Mp$pat [p ,])
99 j . idx <− Mp$j . idx [[p]] ; j 1 . idx <− Mp$j1 . idx [[p]]

100 n p a t j <− i n t e g e r (n c l u s t e r s) ; n p a t j [j 1 . idx] <− Mp$j . f r e q [[p]]
101
102 # compute sigma .w. inv f o r t h i s pat te rn
103 i f (length (na . idx) > 0L) {
104 wp <− sigma .w[−na . idx , −na . idx , drop = FALSE]
105 wp. inv <− lavaan : : : lav_matrix_symmetric_inverse_update (
106 S . inv = sigma .w. inv , rm . idx = na . idx ,
107 logdet = TRUE, S . logdet = sigma .w. logdet)
108 wp. logdet <− a t t r (wp. inv , " logdet ")
109 W. logdet <− W. logdet + (wp. logdet * f r e q)
110
111 t h i s . y <− Y1w. c [Mp$case . idx [[p]] , −na . idx , drop = FALSE]
112 wi . d e l t a . p <− t h i s . y %*% wp. inv
113 q . yy . a <− q . yy . a + sum(wi . d e l t a . p * t h i s . y)
114
115 PJ [j 1 . idx , −na . idx] <− (PJ [j 1 . idx , −na . idx , drop = FALSE] +
116 rowsum . d e f a u l t (wi . d e l t a . p , j . idx , reorder = FALSE))
117
118 A. j <− matrix (0 , ny , ny)
119 A. j [−na . idx , −na . idx] <− wp. inv

Psych 2021, 3 231

120 f o r (j in j 1 . idx) {
121 ALIST [[j]] <− ALIST [[j]] + (A. j * n p a t j [j])
122 }
123 } e l s e {
124 # complete case
125 W. logdet <− W. logdet + (sigma .w. logdet * f r e q)
126
127 t h i s . y <− Y1w. c [Mp$case . idx [[p]] , , drop = FALSE]
128 wi . d e l t a . p <− t h i s . y %*% sigma .w. inv
129 q . yy . a <− q . yy . a + sum(wi . d e l t a . p * t h i s . y) # TR
130
131 PJ [j 1 . idx ,] <− (PJ [j 1 . idx , , drop = FALSE] +
132 rowsum . d e f a u l t (wi . d e l t a . p , j . idx , reorder = FALSE))
133
134 f o r (j in j 1 . idx) {
135 ALIST [[j]] <− ALIST [[j]] + (sigma .w. inv * n p a t j [j])
136 }
137 }
138 } # p
139
140 # per c l u s t e r
141 f o r (j in seq_len (n c l u s t e r s)) {
142 i f (nz > 0L) {
143 g . j <− GJ [j ,] ; p . j <− PJ [j ,]
144
145 sigma . j . b . z <− SIGMA. B . Z [[ZPAT2J [j]]]
146 IBZA . j <− sigma . j . b . z %*% ALIST [[j]]
147 IBZA . j [ny . diag . idx] <− IBZA . j [ny . diag . idx] + 1
148
149 IBZA . j . inv . g <− solve . d e f a u l t (IBZA . j , g . j)
150 IBZA . j . inv . BZ <− solve . d e f a u l t (IBZA . j , sigma . j . b . z)
151 tmp <− determinant . matrix (IBZA . j , logarithm = TRUE)
152 IBZA . j . logdet [j] <− tmp$modulus * tmp$sign
153 A. IBZA . j . inv . g <− ALIST [[j]] %*% IBZA . j . inv . g
154
155 q . zz . b [j] <− sum(g . j * A. IBZA . j . inv . g)
156 q . zy [j] <− −sum(p . j * IBZA . j . inv . g)
157 q . yy . b [j] <− sum(p . j * (IBZA . j . inv . BZ %*% p . j))
158
159 } e l s e {
160 p . j <− PJ [j ,]
161 IBZA . j <− sigma . b %*% ALIST [[j]]
162 IBZA . j [ny . diag . idx] <− IBZA . j [ny . diag . idx] + 1
163 IBZA . j . inv . B <− solve . d e f a u l t (IBZA . j , sigma . b)
164 tmp <− determinant . matrix (IBZA . j , logarithm = TRUE)
165 IBZA . j . logdet [j] <− tmp$modulus * tmp$sign
166
167 q . yy . b [j] <− sum(p . j * (IBZA . j . inv . B %*% p . j))
168 }
169 }
170
171 i f (nz > 0L) {
172 q . j <− (q . yy . a − sum(q . yy . b)) + 2*sum(q . zy) + (q . zz . a + sum(q . zz . b))
173 LOGDET <− W. logdet + sum(IBZA . j . logdet) + sigma . j . zz . logdet
174 i f (l o g l i k .) {
175 P <− sum (! i s . na (Y1w. c)) + sum (! i s . na (Z . c))
176 l o g l i k <− −(P * LOG. 2 PI + LOGDET + q . j)/2
177 } e l s e {
178 l o g l i k <− q . j + LOGDET
179 }
180 } e l s e {
181 q . j <− (q . yy . a − sum(q . yy . b))
182 LOGDET <− W. logdet + sum(IBZA . j . logdet)
183 i f (l o g l i k .) {
184 P <− sum (! i s . na (Y1w. c))
185 l o g l i k <− −(P * LOG. 2 PI + LOGDET + q . j)/2
186 } e l s e {
187 l o g l i k <− q . j + LOGDET
188 }

Psych 2021, 3 232

189 }
190
191 out <− l o g l i k
192 out
193 }

References
1. Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36.
2. McDonald, R.P. A general model for two-level data with responses missing at random. Psychometrika 1993, 58, 575–585.
3. Du Toit, S.H.; Du Toit, M. Multilevel structural equation modeling. In Handbook of Multilevel Analysis; de Leeuw, J., Meijer, E.,

Eds.; Springer: New York, NY, USA, 2008; Chapter 12, pp. 435–478.
4. Jöreskog, K.G.; Sörbom, D. LISREL 8: User’s Reference Guide; Scientific Software International: Chicago, IL, USA, 1997.
5. Bentler, P.M.; Weeks, D.G. Linear Structural Equations with Latent-Variables. Psychometrika 1980, 45, 289–308.
6. McArdle, J.J.; McDonald, R.P. Some algebraic properties of the Reticular Action Model for moment structures. Br. J. Math. Stat.

Psychol. 1984, 37, 234–251.
7. Browne, M.W.; Arminger, G. Specification and Estimation of Mean- and Covariance-Structure Models. In Handbook of Statistical

Modeling for the Social and Behavioral Sciences; Arminger, G., Clogg, C.C., Sobel, M.E., Eds.; Plenum Press: New York, NY, USA,
1995; pp. 311–359.

8. Rubin, D.B. Inference and missing data. Biometrika 1976, 63, 581–592.
9. Rockwood, N.J. Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent

Covariates. Psychometrika 2020, 85, 275–300.
10. McDonald, R.P.; Goldstein, H. Balanced versus unbalanced designs for linear structural relations in two-level data. Br. J. Math.

Stat. Psychol. 1989, 42, 215–232.
11. Lee, S.Y. Multilevel analysis of structural equation models. Biometrika 1990, 77, 763–772.
12. Muthén, B.O. Mean and covariance structure analysis of hierarchical data, 1990. In Proceedings of the Psychometric Society

Meeting, Princeton, NJ, USA, 10 June 1990.
13. Jak, S.; Oort, F.J.; Dolan, C.V. A test for cluster bias: Detecting violations of measurement invariance across clusters in multilevel

data. Struct. Equ. Model. A Multidiscip. J. 2013, 20, 265–282.
14. Jak, S.; Jorgensen, T.D. Relating measurement invariance, cross-level invariance, and multilevel reliability. Front. Psychol. 2017,

8, 1640.
15. Neale, M.C.; Hunter, M.D.; Pritikin, J.N.; Zahery, M.; Brick, T.R.; Kirkpatrick, R.M.; Estabrook, R.; Bates, T.C.; Maes, H.H.; Boker,

S.M. OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika 2016, 81, 535–549, doi:10.1007/s11336-
014-9435-8.

16. Henderson, H.V.; Searle, S.R. On deriving the inverse of a sum of matrices. Siam Rev. 1981, 23, 53–60.
17. Harville, D.A. Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc.

1977, 72, 320–338.
18. Harville, D.A. Matrix Algebra from a Statistician’s Perspective; Springer: New York, NY, USA, 2008.

	Introduction
	SEM for Single-Level Data
	Complete Data
	Missing Data
	Implementation in lavaan

	SEM for Two-Level Data
	Complete Data
	Missing Data
	The McDonald (1993) Solution
	The du Toit and du Toit (2008) Solution
	An Extension to Allow b to Be Singular

	Implementation in R Code
	The Main.R File
	The Objective1.R File
	The Objective2.R File
	The Objective3.R File
	The Objective4.R File
	The Objective5.R File
	Stochastic Versus Fixed Covariates

	Conclusions
	Derivation of the du Toit and du Toit Solution
	Some Useful Formulas of Matrix Algebra
	Inverse and Determinant of a Partitioned Matrix
	The Woodbury Identity
	Determinant Identities
	Block Diagonal Matrices

	R Code
	The main.R File
	The objective1.R File
	The objective2.R File
	The objective3.R File
	The objective4.R File
	The objective5.R File

	References

