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Abstract: Background: Researchers frequently use the responses of individuals in clusters to measure 

cluster-level constructs. Examples are the use of student evaluations to measure teaching quality, or 

the use of employee ratings of organizational climate. In earlier research, Stapleton and Johnson 

(2019) provided advice for measuring cluster-level constructs based on a simulation study with in-

advertently confounded design factors. We extended their simulation study using both Mplus and 

lavaan to reveal how their conclusions were dependent on their study conditions. Methods: We gen-

erated data sets from the so-called configural model and the simultaneous shared-and-configural 

model, both with and without nonzero residual variances at the cluster level. We fitted models to 

these data sets using different maximum likelihood estimation algorithms. Results: Stapleton and 

Johnson’s results were highly contingent on their confounded design factors. Convergence rates 

could be very different across algorithms, depending on whether between-level residual variances 

were zero in the population or in the fitted model. We discovered a worrying convergence issue 

with the default settings in Mplus, resulting in seemingly converged solutions that are actually not. 

Rejection rates of the normal-theory test statistic were as expected, while rejection rates of the scaled 

test statistic were seriously inflated in several conditions. Conclusions: The defaults in Mplus carry 

specific risks that are easily checked but not well advertised. Our results also shine a different light 

on earlier advice on the use of measurement models for shared factors. 
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1. Introduction 

To measure constructs at the cluster level—termed shared constructs [1,2]—research-

ers frequently use the responses of individuals in clusters. For example, students’ evalu-

ations may be used to measure the teaching quality of instructors, patient reports may be 

used to evaluate social skills of therapists, and residents’ ratings may be used to evaluate 

neighborhood safety.  

When multiple items are used to measure such cluster-level constructs, multilevel 

confirmatory factor analysis (CFA) models are useful. These models allow for the evalu-

ation of the factor structure at the cluster level (modeling the (co)variances among item 

means across clusters), and at the individual level (modeling the (co)variances across in-

dividuals within clusters).  

If the cluster-level construct, for example teacher quality, would be perfectly meas-

ured using the responses of students, all students evaluating the same teacher would 

agree, and provide exactly the same item scores. In that case, there will not be any sys-

tematic variance in the item scores within clusters (but there will still be variance due to 

sampling error). 

In practice, individuals within a cluster do not all provide the same responses to the 

items, leading to systematic variance (and covariance) to be explained at the individual 
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level. The question then arises how the variance within clusters should be modeled. Sta-

pleton et al. [1] proposed a model for cluster-level constructs with a saturated model at 

the individual level. This work was updated by proposing and evaluating several two-

level factor models in Stapleton and Johnson [2]. In this article, we will provide a simula-

tion study to evaluate under what scenarios the proposed models are able to provide sen-

sible results, partly by replicating the study by Stapleton and Johnson. A second aim is to 

investigate the types and frequency of estimation problems in the software packages 

Mplus [3] and lavaan [4], which have different default settings that could have important 

consequences for convergence problems and the quality of obtained results. 

1.1. Different Types of Two-Level Models 

Stapleton and Johnson [2] evaluated three different models for cluster-level con-

structs: the ‘configural model’, the ‘unconstrained model’, and the ‘simultaneous shared-

and-configural model’. We will introduce these three models in the next section. 

1.1.1. Configural Model 

Configural models are factor models in which the same factor structure is applied to 

the within and the between level, and the factor loadings are constrained to be equal 

across levels. The configural model decomposes the common factor(s) into a within-clus-

ter and a between-cluster part, meaning that the between- and within-components can be 

interpreted as stemming from the same latent variable. For example, one could have meas-

ured collaborative playing skills in children in different classrooms using several items, 

hypothesizing that the collaborative playing skills systematically vary within as well as 

across classrooms (for a teaching-quality example see [5]). The configural model would 

allow one to interpret the differences in the within-level common factor representing 

within-classroom differences in collaborative play, and the differences in the between-

level common factor representing between-classroom differences in collaborative play. 

The cross-level invariance of factor loadings is necessary for a meaningful interpre-

tation of factors at the two levels [1,6–12]. The left panel of Figure 1 shows a population 

configural model in which each indicator’s factor loading is equal across levels. 

  

Figure 1. Data generating models with parameter values. 

1.1.2. Unconstrained Model 

Unconstrained two-level factor models do not have cross-level invariance of factor 

loadings, implying that different constructs may be measured in each cluster, or that dif-

ferent structures altogether dictate covariation at each level. As a result, the common fac-

tors at the two levels do not reflect the within- and between component of the same latent 
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variable. Instead, the theoretical meaning of the latent variables is different at the two 

levels (as well as across clusters). An unconstrained model resembles the left panel of Fig-

ure 1, but without equality across levels of each indicator’s loading. 

In practice, it can be quite difficult to describe exactly how the interpretation of the 

factors varies across levels. For example, if the factor loading for a specific indicator is 

higher at the between level than at the within level, then the factor at the between level 

will represent more of the content of that specific indicator (and the other way around). If 

the pattern of higher and smaller factor loadings varies across items, it will become harder 

to appropriately label the common factor at each level. The unconstrained two-level 

model is therefore not a theoretically useful model. The model was still included in our 

(and Stapleton and Johnson’s) study because it is regularly applied in practice, and be-

cause we argue that an unconstrained two-level model is capable of fitting data generated 

from a simultaneous shared-and-configural model. 

1.1.3. Simultaneous shared-and-Configural Model 

The simultaneous shared-and-configural model was introduced by Stapleton et al. 

[1] and comprises a configural model with an added common factor at the between level 

(see the right panel of Figure 1). In this model, the configural factor represents a ‘nuisance’ 

factor, i.e., a common factor that is accidentally measured using the individual responses, 

and that also systematically varies over clusters. In the examples provided by Stapleton 

and Johnson [2], this nuisance factor could represent an individual’s tendency to always 

agree with statements (acquiescence), which could also have a cluster component (e.g., 

some clusters exhibit more acquiescence than others). The additional between-level factor, 

which is uncorrelated with the configural factor, then represents the objective shared con-

struct that was the focus of the research. This shared factor does not differ within clusters, 

and therefore has no within-level component. 

Stapleton and Johnson [2] constrained the intraclass correlation (ICC) of the configu-

ral factor to a specific value, for example by constraining the variance of the between-level 

factor to (0.05/0.95) times the within-level factor, leading to an ICC of 0.05 for the config-

ural factor. The authors argued that such a constraint was needed to identify the model. 

They seemed to have overlooked that the cross-level constraint on the factor loadings al-

ready identifies the factor variance of the configural factor on the between level. The 

shared factor can be identified by either fixing its variance to 1 or by fixing one of the 

factor loadings to 1. The additional constraint is therefore not necessary to identify the 

model.  

1.2. Estimation of Two-Level Models 

Different algorithms have been proposed to obtain maximum likelihood (ML) esti-

mates, and their availability and defaults vary across software. In this section we discuss 

four algorithms available in Mplus, two of which are also available in lavaan. We also 

discuss the estimation of between-level residual variances, which was confounded with 

model type in Stapleton and Johnson’s [2] simulation study. 

1.2.1. Maximum Likelihood Estimation Algorithms 

Both lavaan [4] and Mplus [3] use normal-theory ML estimation by default for con-

tinuous variables, using the observed information matrix to derive SEs. Although also 

available in lavaan, only Mplus defaults to a χ2 statistic and SEs that are robust to nonnor-

mality. The robust χ2 statistic provided by lavaan and Mplus is asymptotically equivalent 

to Yuan and Bentler’s 𝑇2
∗ statistic [13]. This robust test statistic (with SEs) is requested in 

lavaan with the argument estimator = “MLR” (or equivalently, test = “yuan.bent-

ler.mplus” and se = “robust.sem”; see the ?lavOptions help page) and in Mplus with the 

ANALYSIS option ESTIMATOR = MLR [3] (chapter 16). 
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By default, lavaan maximizes the sum of log-likelihoods of the clusters—which 

Mplus refers to as the observed-data log-likelihood (ALGORITHM = ODLL)—using a 

quasi-Newton (QN) algorithm, which is the same algorithm used for ML estimation with 

single-level data. The expectation–maximization (EM) algorithm is also available in both 

( lavaan and Mplus to obtain ML estimates, although the implementation in lavaan is no-

tably slower. The EM algorithm can be requested by passing the argument optim.method 

= “em” to lavaan (), or with the ANALYSIS option ALGORITHM = EM in Mplus [3] (chap-

ter 16). Mplus also has an accelerated EM algorithm (ALGORITHM = EMA), achieved by 

switching to QN when EM does not optimize quickly enough (i.e., when relative or abso-

lute changes in log-likelihood do not decrease enough between iterations). Mplus can also 

switch between a Fisher-scoring (FS) algorithm and EM (with ALGORITHM = FS), but 

EMA is the default, and neither EMA nor FS are currently available in lavaan. Availability 

of current options and their default settings are listed for lavaan and Mplus in Table 1. 

Table 1. Availability of estimation options in lavaan and Mplus. 

Software Package Require θB ≥ 0? 
QN EM EMA FS 

ML MLR ML MLR ML MLR ML MLR 

Lavaan  D ✓ ✓ ✓     

Mplus ✓ (D = 0.14) ✓ ✓ ✓ ✓ ✓ D ✓ ✓ 

Note: ✓ indicates availability (or requirement). θB = between-level residual variances. QN = quasi-

Newton algorithm. EM = expectation–maximization algorithm. EMA = accelerated EM algorithm. 

FS = Fisher scoring algorithm. ML(R) = (robust) maximum likelihood. D = default setting. 

Convergence of the algorithm is determined by tracking criteria at each iteration—

namely, the log-likelihood function and its first derivative. After any of these algorithm’s 

convergence criteria (i.e., the rules for stopping the optimizer from iterating further) have 

been met, it must be verified that the optimizer in fact converged on a maximum. 

In Mplus, convergence for any optimization algorithm for ML estimation can be con-

trolled with ANALYSIS options, such as the ODLL derivative using CONVERGENCE (for 

QN) or MCONVERGENCE (for EM or EMA), as well as LOGCRITERION (absolute 

change in log-likelihood from previous iteration) and RLOGCRITERION (relative change 

in log-likelihood from previous iteration). The maximum number of iterations is set by 

ITERATIONS for QN and MITERATIONS for EM(A). The default optimizer used by 

lavaan is nlminb from the stats package, whose options can be set by passing a named list 

to the control = argument (see the ?lavOptions help page). lavaan’s defaults are list 

(iter.max = 10,000, abs.tol =.Machine$double.eps*10, rel.tol = 1e-10). When using EM, 

lavaan has its own parallel dedicated arguments, shown in the last example on the tutorial 

page: https://lavaan.ugent.be/tutorial/multilevel.html, accessed on 31 May 2021. 

Verifying that the optimizer converged on a maximum involves checking the first 

and second derivatives of the log-likelihood function with respect to the estimated param-

eters, respectively called the “gradient” and “Hessian.” If ML estimates were obtained, 

each element of the gradient vector should be effectively zero (the “first-order condition”). 

Upon finding a nonzero gradient element, lavaan warns that the optimizer did not find a 

ML solution and “estimates below are most likely unreliable.” Likewise, Mplus output 

will contain the message: “The model estimation did not terminate normally due to a non-

zero derivative of the observed-data loglikelihood,” referring to the first-order condition. 

Any nonzero element of the gradient indicates the corresponding parameter estimate is 

not a ML estimate. But the reverse is not necessarily true: if the gradient consists only of 

zeros, it could be a minimum or a saddle point rather than a maximum. In order to verify 

the solution is a maximum, the Hessian should be negative definite. Because the Hessian 

is intensive to compute, this “second-order condition” is rarely checked to simply verify 

convergence. However, multiplying the Hessian by −1 yields the information matrix, the 
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inverse of which is the asymptotic covariance matrix of the estimated parameters (the di-

agonal of which contains the squared SEs). Thus, if the information matrix is not positive 

definite (and so cannot be inverted), a warning is issued that SEs cannot be calculated. 

Because EMA is the default algorithm in Mplus, we describe one more computational 

detail about the acceleration aspect (which seems to be shared by the FS algorithm, but 

we did not focus on that). When the log-likelihood does not change fast enough between 

iterations, Mplus attempts to accelerate optimization by switching from EM to QN. This 

could backfire if the QN step overshoots its target, instead decreasing the log-likelihood 

at the next iteration. In such circumstances, Mplus will then restart the EM algorithm as 

though the user selected EM instead of the default EMA, because EM alone (without 

switching to QN) will always increase the log-likelihood between iterations. However, we 

discovered that apparent convergence with EM after EMA failed does not necessarily con-

verge when explicitly setting ALGORITHM = EM. Causes and potential consequences are 

provided in the Results section. 

1.2.2. Between-Level Residual Variances in Two-Level Models 

When strong factorial invariance across clusters holds, then in a two-level model, not 

only will factor loadings be equal across levels, residual variances at the between level 

will be zero [11,14–16]. For configural constructs (i.e., with cross-level invariance of factor 

loadings), any residual variance at the between level (θB) can therefore be interpreted as 

differences in intercepts across clusters (measurement bias, also called cluster bias by Jak, 

Oort and Dolan [14]. Nonzero residual variance at the between level (θB > 0) means that 

the cluster-level differences in the indicators are not all explained by cluster-level differ-

ences in the common factor. In other words, variables other than what was intended to be 

measured cause differences in the indicator scores across clusters. In practice, it may not 

be realistic to expect exactly zero cluster bias for all indicators, similar to how exact invar-

iance of intercepts generally does not hold [17]. That is, cluster invariance may hold only 

approximately, implying small θB instead of zero θB. Moreover, some indicators may be 

subject to cluster bias while other indicators are not (representing partial invariance [18]). 

Sample estimates of θB vary around the population values, so when they are (nearly) 

zero, estimates can frequently take negative values simply due to sampling error. Thus, if 

strong factorial invariance across clusters holds even approximately (θB ≅ 0), then estimat-

ing θB under non-negative constraints may lead to trouble with convergence in samples 

that would have contained at least one negative variance under unconstrained estimation. 

By default, lavaan does not restrict θB estimates to be positive when using QN, while 

Mplus does. The EM algorithm requires θB > 0 in both packages, because the EM algorithm 

requires the between-level model-implied covariance matrix to be positive definite. The 

minimum-variance requirement (set with the ANALYSIS option VARIANCE) must be 

between 0 and 1, so negative values for θB are not permitted in Mplus. This requirement 

may therefore result in nonconvergence for populations with θB ≅ 0. 

In applications of (shared-and-)configural-construct models, it can be valuable to as-

sess cluster bias to establish whether Level-2 residual variances should be constrained to 

zero, which could avoid negative-variance estimates. However, nonconvergence under 

minimum-variance-constrained estimation when θB ≅ 0 would prevent the ability to com-

pare that model to one with strong factorial invariance across clusters (θB = 0). In our sim-

ulation study, we explicitly crossed these design factors: zero vs. nonzero θB in the popu-

lation model and fixed vs. estimated θB in the fitted model. We focus on conditions where 

population θB is exactly zero, representing exact invariance, but we will show some results 

based on conditions with θB = 0.01 and θB = 0.0001 as well. Chen, Bollen, Paxton, Curran 

and Kirb [19] describe the possible causes of, consequences of, and possible strategies to 

handle inadmissible solutions in more detail. Negative variance estimates could result 

from either model misspecification or sampling error. So before fixing negative variance 

estimates to zero, one should first test the null hypothesis that the parameter is an admis-

sible solution. For example, if the 95% confidence interval for a residual variance includes 
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positive values, then one cannot reject the null hypothesis (using α = 0.05) that the true 

population value is indeed positive; in this case, if the model fits well and there are no 

other signs of misspecification, one could conclude that the true parameter is simply close 

enough to zero that sampling error occasionally yields a negative estimate. For more dis-

cussion about negative variance parameters and estimates see [20–22]. 

1.3. Overview of the Study 

In this article, we will provide an extensive simulation study to evaluate two-level 

models for measuring cluster-level constructs. We will replicate the analyses of Stapleton 

and Johnson [2] with slight alterations. The differences in the models to be evaluated are 

that we will evaluate a simultaneous shared-and-configural model with unconstrained 

ICC instead of unnecessarily fixing the ICC of the configural factor to various specific 

values. In addition, we will generate data with zero or nonzero between-level residual 

variances, and we fit models with freely estimated or with fixed (to zero) between-level 

residual variances. We justify our design choices and provide our expectations following 

the description of our design factors in Section 2. 

2. Materials and Methods 

We generated all data using R [15] (version 4.0.4). We used both lavaan [4] (Version 

0.6-7 and Mplus [3] (Version 8.5) to fit all models to those data. R syntax to generate and 

analyze the Monte Carlo results are available from the Open Science Framework: 

https://osf.io/sdwam/. 

2.1. Data Generating Models 

Stapleton and Johnson [1] generated data from two population models, being a con-

figural model with θB = 0, and a shared model with θB > 0. As this confounding of factor 

structure and presence of θB is not apparent from the article, their results are easily mis-

interpreted. We generated data from four different population models. These are models 

with or without the existence of an additional between-level construct, and with or with-

out cluster bias (indicated by θB > 0). 

Where possible, we use the same population values for parameters as reported in 

Stapleton and Johnson [2]. Figure 1 shows the population models with (left panel) and 

without (right panel) the additional between-level factor. All population factor variances 

were 1. For the configural factor, all factor loadings at the within and between levels were 

0.70. The factor loadings for the shared factor all were 0.40. The θB values were either fixed 

to zero or chosen to standardize the between-level factor loadings (e.g., 1 − (0.402 + 0.702) 

= 0.35 in the model with the shared factor). Stapleton and Johnson only generated data 

from the shared-and-configural model with θB = 0 and from the configural-only model 

with θB > 0, so these factors were confounded in their study design. 

These parameter values led to item intra class correlations (ICCs) of .50 in all condi-

tions with θB > 0. In conditions with θB = 0, item ICCs were .32 for the configural model 

conditions, and item ICCs were .39 for the shared model conditions. The ICC of the con-

figural factor was .50 in all conditions. 

2.2. Sample Size Conditions 

We generated data for 50, 100, and 200 clusters with a fixed size of 20 individuals per 

cluster. These are the same sample size conditions as Stapleton and Johnson [2], but with-

out the 300-cluster condition. 

2.3. Fitted Models 

We fitted three different models (unconstrained, configural, shared-and-configural) 

to each simulated dataset, both with freely estimated θB and fixed θB = 0. The uncon-

strained model is a two-level CFA model with one factor at each level and with freely 
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estimated factor loadings at both levels. The factor variances of the unconstrained model 

are fixed at one at both levels. This model has df = 10 in the condition with freely estimated 

θB, and df = 15 in the condition with fixed θB = 0. 

The configural model adds cross-level invariance constraints to the unconstrained 

model. With factor loadings constrained to be equal across levels, the factor variance at 

the between level can be freely estimated. The configural model therefore has df = 14 in 

the condition with freely estimated θB, and df = 19 in the condition with fixed θB = 0.  

The shared-and-configural model adds to the configural model an orthogonal be-

tween-level common factor. In this model, the factor variance of the shared factor is fixed 

at 1, and the factor loadings of the shared factor are freely estimated. For the configural 

part of the model, the factor loadings are again constrained to be equal across levels, the 

variance of the within-level configural factor is fixed at one, and its variance at the be-

tween level is freely estimated. The shared-and-configural model has df = 9 in the condi-

tions with freely estimated θB, and df = 14 in the condition with fixed θB = 0.  

2.4. Estimation Options 

In all sample-size conditions, we fit all models to data from all populations using ML 

estimation with the QN algorithm and an observed information matrix in lavaan and 

Mplus. In a follow-up study holding the number of clusters constant at 100, we also com-

pared QN to EMA (the default algorithm in Mplus) and EM in Mplus. A third study used 

MLR (the default in Mplus) to compare the rejection rates reported by Stapleton and John-

son [2]. 

2.5. Number of Conditions and Replications 

The primary study design consisted of 2 (configural or shared-and-configural popu-

lation model) × 2 (θB = 0 or θB > 0 in the population) × 3 (sample size) = 12 data conditions. 

We generated 1000 datasets per condition. For all 12,000 datasets, 3 (unconstrained, con-

figural, or shared) × 2 (θB = 0 or θB > 0) = 6 models were fitted with ML estimation using 

the QN algorithm in both software packages. In the first follow-up study, the subset of 

4000 datasets with 100 clusters were analyzed using ML estimation for the same six mod-

els in both software packages, but additionally using EMA and EM in Mplus. The second 

follow-up study used MLR, again with only QN in lavaan but QN and EMA in Mplus. 

2.6. Expectations Regarding Convergence and Rejection Rates 

Multilevel structural equation modeling is very susceptible to estimation problems. 

Especially with small numbers of clusters, and/or little variance at the between level, non-

converged and inadmissible solutions are frequently observed [19–22]. Overall, we ex-

pected more convergence problems in conditions with fewer clusters [2,8]. Table 2 depicts 

the four data-generating models (irrespective of sample size) in the rows, and the six fitted 

models in the columns. The grey cells represent the six conditions that were evaluated by 

Stapleton and Johnson [2]. We expected that when the correct model was fitted (cells la-

beled with ‘T’), models would converge for nearly 100% of samples (with lower conver-

gence in smaller samples), and rejection rates would be close to the nominal α level. When 

θB > 0 was not taken into account (i.e., by fixing θB = 0 in the analysis), we expected high 

rejection rates (cells labeled ‘R’ in Table 2). In conditions with an overparameterized 

model (cells labeled ‘O’ in Table 2), such as when θB = 0 but was freely estimated, we 

expected more convergence problems, but nominal rejection rates for the converged cases.  
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Table 2. Overview of the four data generation conditions (rows), and the six fitted models (col-

umns). 

Data-Generating Model  

Fitted Model 

Uncon Conf Shared 

θB > 0 θB = 0 θB > 0 θB = 0 θB > 0 θB = 0 

Configural θB > 0 O R T R O R 

 θB = 0 O O O T O a O 

Shared θB > 0 S R S R T a R 

 θB = 0 S S S S O T 

Note: Uncon = Unconstrained model, Conf = Configural model. Shared = Simultaneous shared-

and-configural model. θB = between-level residual variances. T = True model fitted, R = Theta be-

tween not taken into account, O = Overparameterized model, S = Shared factor not explicitly mod-

eled. Grey cells represent conditions evaluated by Stapleton and Johnson [1]. a In contrast to Sta-

pleton and Johnson [1], we did not fix the ICC of the configural factor. 

In the remaining cells (labeled ‘S’ in Table 2), the shared factor was omitted from the 

model. Because the ratio of between-level population cross-loadings was proportional 

across indicators (i.e., they were all 0.70 for the configural factor and all 0.40 for the shared 

factor), the two between-level factors were perfectly confounded in Stapleton and John-

son’s [2] population (which we replicated). Shared-factor loadings were only identified 

because the configural loadings were constrained to equality across levels. As a result, the 

shared-factor variance would have been absorbed by the single factor at the between level 

(inflating its variance), so the unconstrained and configural models should have fit per-

fectly to data generated from the shared-and-configural model. Therefore, we expected 

that rejection rates in these conditions would still be nominal, in contrast to the 100% re-

jection rates reported by Stapleton and Johnson [2] (p. 319), which they attributed to omit-

ting the shared factor rather than to fixing θB = 0 when data were generated with θB > 0.  

Stapleton and Johnson [2] (Table 1) also reported that when data were generated from 

a configural-model population, fitting the unconstrained model yielded around 50% re-

jection rates, which should not be the case because it is an overparameterized model, as 

our Table 2 shows. They also reported 0% convergence when fitting the shared-and-con-

figural model to data generated from a configural-model population, which they at-

tributed merely to “no between-cluster covariance to be modeled above that explained by 

the configural” factor [2] (p. 319). Because overparameterization did not prevent conver-

gence in their unconstrained model, we expected their 0% convergence could be at least 

partly related to the unnecessary constraint on the configural construct’s ICC in the 

shared-and-configural models. Since Stapleton and Johnson used the Mplus defaults 

(MLR + EMA), we will only compare the rejection rates we find with their findings in a 

follow up study, and not in our primary study in which we apply ML with QN.  

3. Results 

3.1. Convergence Rates in the Primary Study 

Nonconvergence in lavaan only occurred when fitting the shared-and-configural 

models to datasets. Regardless of θB in the data-generating model, convergence was con-

sistently >95% when estimating θB. When θB = 0 in the population, oddly, convergence 

problems only occurred in lavaan when appropriately fixing θB = 0, but convergence was 

still approximately 80% and improved in larger samples, whereas convergence in the 

same conditions was notably lower in Mplus and varied erratically across sample sizes.  

Regardless of the fitted model (unconstrained, configural, or shared), Mplus addi-

tionally had convergence problems (nearly 0% convergence) when estimating θB despite 

θB = 0 in the population. In contrast, lavaan had 100% convergence in the same conditions 

(except the conditions described in the previous paragraph). In order to evaluate the ef-

fects of generating data with exact or approximate cluster invariance, we also evaluated 
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the conditions with 100 clusters while fixing θB to 0.0001 (the minimum value for a vari-

ance parameter in Mplus) or 0.01 (a small but realistic amount of variance). Table A1 

shows that the convergence problems when estimating θB freely persisted in conditions 

with approximate instead of exact cluster invariance, with 0–0.5% convergence in condi-

tions with generated θB = 0.0001, and 12.4–43.1% convergence in conditions with gener-

ated θB = 0.01. 

As expected, nonconvergence was generally exacerbated by fewer clusters (except 

when Mplus fitted shared models with θB = 0 in the population and analysis models). For 

all conditions in Table 3 lavaan either converged more often than Mplus or both packages 

converged in 100% of samples. 

Table 3. Convergence rates for the six models in the four data conditions and three sample size 

conditions. 

 50 Clusters 100 Clusters 200 Clusters 

Data Model Fitted Model Lavaan Mplus Lavaan Mplus Lavaan Mplus 

Config  θB > 0  Uncon θB > 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Uncon θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Config θB > 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Config θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Shared θB > 0 0.969 0.681 0.998 0.793 1.000 0.938 

  Shared θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

Config θB = 0 Uncon θB > 0 1.000 0.002 1.000 0 1.000 0 

  Uncon θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Config θB > 0 1.000 0.002 1.000 0.001 1.000 0.003 

  Config θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Shared θB > 0 0.955 0 0.970 0 0.989 0 

  Shared θB = 0 0.787 0.199 0.863 0.227 0.968 0.218 

Shared θB > 0 Uncon θB > 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Uncon θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Config θB > 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Config θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Shared θB > 0 0.957 0.699 0.991 0.772 1.000 0.918 

  Shared θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

Shared θB = 0 Uncon θB > 0 1.000 0 1.000 0 1.000 0 

  Uncon θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Config θB > 0 1.000 0 1.000 0 1.000 0.003 

  Config θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Shared θB > 0 0.960 0 0.970 0 0.987 0 

  Shared θB = 0 0.821 0.358 0.868 0.215 0.938 0.254 

Note: Uncon = Unconstrained model, Conf = Configural model. Shared = Simultaneous shared-

and-configural model. θB = between-level residual variances. Italicized = conditions in which the 

true model was fitted. 

3.2. Rejection Rates in the Primary Study 

Rejection rates using α = 0.05 are provided in Table 4. In populations with θB > 0, 

rejection rates were as expected in both Mplus and lavaan. In fact, the rates are mostly 

identical in conditions where convergence rates were 100% for both lavaan and Mplus, 

reinforcing the expectation the two software packages provide the same results when fit-

ting the same model to the same data, using the same estimation routine and calculating 

the normal-theory χ2 test statistic. In the other conditions, differences in convergence rates 

cause small differences between the results obtained with lavaan and Mplus with ML. 
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Table 4. Rejection rates of the χ2 test at α = 0.05 with ML estimation using QN algorithm. 

 50 Clusters 100 Clusters 200 Clusters 

Data Model Fitted Model Lavaan Mplus Lavaan Mplus Lavaan Mplus 

Config  θB > 0  Uncon θB > 0 0.072 0.072 0.062 0.062 0.050 0.050 

  Uncon θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Config θB > 0 0.072 0.072 0.057 0.057 0.058 0.058 

  Config θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Shared θB > 0 0.041 0.034 0.037 0.026 0.056 0.046 

  Shared θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

Config θB = 0 Uncon θB > 0 0.003 - 0.006 - 0.006 - 

  Uncon θB = 0 0.001 0.001 0.001 0.001 0.006 0.004 

  Config θB > 0 0.007 - 0.005 - 0.01 - 

  Config θB = 0 0.003 0.003 0.003 0.003 0.009 0.009 

  Shared θB > 0 0.002 - 0.003 - 0.008 - 

  Shared θB = 0 0 0 0 0 0.002 0.005 

Shared θB > 0 Uncon θB > 0 0.071 0.071 0.044 0.044 0.044 0.044 

  Uncon θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Config θB > 0 0.068 0.068 0.049 0.049 0.050 0.050 

  Config θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

  Shared θB > 0 0.024 0.016 0.038 0.026 0.058 0.051 

  Shared θB = 0 1.000 1.000 1.000 1.000 1.000 1.000 

Shared θB = 0 Uncon θB > 0 0.002 - 0.004 - 0.003 - 

  Uncon θB = 0 0.003 0.003 0.003 0.003 0.002 0.002 

  Config θB > 0 0.004 - 0.006 - 0.005 - 

  Config θB = 0 0.005 0.004 0.004 0.004 0.001 0.001 

  Shared θB > 0 0 - 0.003 - 0.004 - 

  Shared θB = 0 0.001 0 0 0 0.001 0 

Note: Uncon = Unconstrained model, Conf = Configural model. Shared = Simultaneous shared-

and-configural model. θB = between-level residual variances. Italicized = conditions in which the 

true model was fitted. 

Fixing θB = 0 yielded 100% power to reject the model, and freely estimating θB yielded 

rejection rates that did not appreciably differ from the nominal 5% and were closer in 

larger samples. In populations with θB = 0, however, rejections rates were nearly 0% across 

conditions and software (except when they could not be calculated in conditions where 

Mplus did not converge). 

3.3. Follow-Up Study Comparing ML Algorithms 

Table 5 includes the same convergence and rejection rates for the 100-cluster condi-

tions reported in Tables 3 and 4 (i.e., using the QN algorithm), as well as the EM(A) algo-

rithms in Mplus. Convergence rates of EMA and QN were very similar in populations 

with θB > 0. When θB = 0 in the population, EMA converged in all samples, including the 

conditions that fitted θB > 0 (for which QN failed in all samples). Convergence rates for 

EM were consistently zero for fitted models with θB = 0, regardless of the population 

model. This implies some counter-intuitive results with EM. For example, fitting the cor-

rect configural model with θB = 0 leads to 0% convergence, while fitting the overparame-

tarized configural model with θB > 0 (while θB = 0 in the population) converged in 90,4% 

of the replications. In addition, EM convergence rates were particularly low in conditions 

where the shared model with θB > 0 was fitted to data generated with θB = 0. For the con-

verged cases, there were no notable differences in rejection rates across the different algo-

rithms.  
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Table 5. Convergence and rejection rates with 100 clusters across ML estimation algorithms. 

 

 Convergence Rates Rejection Rates 

Algorithm: QN QN EMA EM QN QN EMA EM 

Software: Lavaan Mplus Mplus Mplus Lavaan Mplus Mplus Mplus 

Data Model Fitted Model  

Config  θB > 0  Uncon θB > 0 1.000 1.000 1.000 1.000 0.062 0.062 0.062 0.062 

  Uncon θB = 0 1.000 1.000 1.000 0 1.000 1.000 1.000 - 

  Config θB > 0 1.000 1.000 1.000 1.000 0.057 0.057 0.057 0.057 

  Config θB = 0 1.000 1.000 1.000 0 1.000 1.000 1.000 - 

  Shared θB > 0 0.998 0.793 0.741 0.730 0.037 0.026 0.022 0.025 

  Shared θB = 0 1.000 1.000 1.000 0 1.000 1.000 1.000 - 

Config θB = 0 Uncon θB > 0 1.000 0 1.000 0.897 0.006 - 0.009 0.008 

  Uncon θB = 0 1.000 1.000 1.000 0 0.001 0.001 0.001 - 

  Config θB > 0 1.000 0.001 1.000 0.904 0.005 - 0.009 0.009 

  Config θB = 0 1.000 1.000 1.000 0 0.003 0.003 0.003 - 

  Shared θB > 0 0.970 0 1.000 0.028 0.003 - 0.007 - 

  Shared θB = 0 0.863 0.227 1.000 0 0 0 0 - 

Shared θB > 0 Uncon θB > 0 1.000 1.000 1.000 1.000 0.044 0.044 0.044 0.044 

  Uncon θB = 0 1.000 1.000 1.000 0 1.000 1.000 1.000 - 

  Config θB > 0 1.000 1.000 1.000 1.000 0.049 0.049 0.049 0.049 

  Config θB = 0 1.000 1.000 1.000 0 1.000 1.000 1.000 - 

  Shared θB > 0 0.991 0.772 0.667 0.659 0.038 0.026 0.022 0.023 

  Shared θB = 0 1.000 1.000 1.000 0 1.000 1.000 1.000 - 

Shared θB = 0 Uncon θB > 0 1.000 0 1.000 0.907 0.004 - 0.012 0.009 

  Uncon θB = 0 1.000 1.000 1.000 0 0.003 0.003 0.003 - 

  Config θB > 0 1.000 0 1.000 0.909 0.006 - 0.012 0.009 

  Config θB = 0 1.000 1.000 1.000 0 0.004 0.004 0.004 - 

  Shared θB > 0 0.970 0 0.998 0.019 0.003 - 0.010 - 

  Shared θB = 0 0.868 0.215 1.000 0 0 0 0.003 - 

Note: Uncon = Unconstrained model, Conf = Configural model. Shared = Simultaneous shared-and-configural model. θB = 

between-level residual variances. QN = quasi-Newton algorithm. EM = expectation–maximization algorithm. EMA = ac-

celerated EM algorithm. ML(R) = (robust) maximum likelihood. Italicized = conditions in which the true model was fitted. 

Nonconvergence Anomaly with Mplus 

Different Mplus estimation algorithms had similar rejection rates but different con-

vergence rates in Table 5. In order to further investigate this finding, we focus on one 

condition from Table 5, where the population model is a shared model with θB = 0, but θB 

is freely estimated in the fitted model. In this condition, EM failed to converge in 98,1% of 

the replications, QN failed to converge in 100% of the replications, yet EMA converged 

for each sample. We inspected the TECH8 output, which prints the optimization history 

for each replication, and found that all 998 converged replications using EMA contained 

the message: “The optimization algorithm has changed to the em algorithm”. As noted in 

Section 1.2.1, this occurs when a QN step (used to accelerate convergence with EM) fails 

to improve the log-likelihood.  

We investigated further by fitting the model to the first generated dataset from this 

condition (i.e., as a single analysis, not using the MONTECARLO feature). The analysis 

yielded an apparently converged solution, with a scaled χ2(9) = 2.817, p = 0.971. But indeed 

the optimization history showed that the default EMA algorithm failed after 111 itera-

tions, at which point Mplus switched to EM and appeared to converge after 243 iterations. 

However, when we explicitly selected ALGORITHM = EM in the Mplus input file, we saw 

that the MCONVERGENCE criterion of the EM algorithm was not fulfilled, despite hav-

ing apparently converged when EM was used following the failure of EMA to converge. 



Psych 2021, 3, 2 145 
 

Close inspection of each interation in the optimization history for this data set reveals that 

Iteration 243 of explicitly requested EM had the same log-likelihood as the final (appar-

ently converging) Iteration 243 of EM following failure of EMA; however, when explicitly 

requested, the EM continued iterating until the maximum number of m-iterations (500) 

was reached and eventually failed to converge. When we ran the MONTECARLO analysis 

on all 1000 datasets in this condition with ALGORITHM = EM, the model converged on a 

solution in none of the data sets. 

After requesting help from the Mplus support team about this anomaly, we learned 

that the employed convergence criteria for EM after failure of EMA differ from the EM 

defaults. Specifically, for EM after EMA, Mplus does not check the first order condition 

(i.e., whether the gradient consists of zero’s). As a result, any model seems to converge, 

including those that do not with EM (or ODLL), after which the gradient is checked. Ef-

fectively, this means that for the results obtained with EM-after-EMA, it is not verified 

that the obtained parameter estimates are actual ML estimates. It is important to note that 

this issue is not detectable from the Mplus output file. First, there is no indication of the 

change in convergence criteria. The Mplus output will list a minimum derivative value of 

0.0001 as one of the convergence criteria, while in reality this criterium is ignored. Users 

may verify this by setting the mconvergence criterium to a large number (like 1000) in an 

explicit EM analysis. This will lead to the same results as obtained with an EMA analysis 

in which Mplus switched to EM. Second, Mplus does not provide any warning about the 

switch from EMA to EM. Table A2 (first column) shows the number of replications across 

conditions for which the algoritm changed from EMA to EM. 

3.4. Follow-Up Study Comparing ML Algorithms with Robust Corrections 

The final follow-up study was conducted to reveal under what conditions Stapleton 

and Johnson’s [2] inflated rejection rates could be replicated, given that they used the de-

fault estimation options (MLR with EMA) in Mplus. Because MLR simply begins with ML 

estimation, the convergence rates were the same for MLR as reported for ML in Table 5. 

Robust corrections are calculated after convergence of the algorithm on ML estimates. Ta-

ble 6 reports rejection rates of the scaled χ2 statistic in the 100-cluster conditions using the 

QN and EMA algorithms in Mplus and QN in lavaan. The results obtained with MLR 

show that the rejections rates of the default test statistic in Mplus can be seriously inflated 

under certain conditions that we examined in this simulation study—namely, in popula-

tions for which there is strong invariance across clusters (θB = 0). The same inflation is not 

apparent when using MLR (with QN) in lavaan. However, the same inflation is apparent 

when using QN in Mplus, except in conditions where models did not converge, in which 

case rejection rates cannot be calculated. Because interpreting these differential results in-

volves quite some detail across software packages, we focus first on how our results com-

pare to the results presented by Stapleton and Johnson [2], and then discuss the differences 

between software packages. 
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Table 6. Rejection rates of scaled χ2 statistic (MLR) with 100 clusters across estimation algorithms. 

 
 

Algorithm  

QN QN EMA  

Software Lavaan Mplus Mplus S&J 

Data Model Fitted Model  

Config  θB > 0  Uncon θB > 0 0.070 0.070 0.070  

  Uncon θB = 0 NA 1.000 1.000  

  Config θB > 0 0.065 0.065 0.065  

  Config θB = 0 NA 1.000 1.000  

  Shared θB > 0 0.041 0.049 0.049  

  Shared θB = 0 NA 1.000 1.000  

Config θB = 0 Uncon θB > 0 0.006 - 0.512 0.54 

  Uncon θB = 0 0.004 0.131 0.131  

  Config θB > 0 0.006 - 0.365  

  Config θB = 0 0.004 0.111 0.111 0.11 

  Shared θB > 0 0.014 - 0.445 - 

  Shared θB = 0 0.011 0.132 0.190  

Shared θB > 0 Uncon θB > 0 0.052 0.052 0.052 0.09 

  Uncon θB = 0 NA 1.000 1.000  

  Config θB > 0 0.058 0.058 0.058  

  Config θB = 0 NA 1.000 1.000 1.000 

  Shared θB > 0 0.043 0.040 0.037 0.09  

  Shared θB = 0 NA 1.000 1.000  

Shared θB = 0 Uncon θB > 0 0.005 - 0.515  

  Uncon θB = 0 0.007 0.122 0.122  

  Config θB > 0 0.006 - 0.357  

  Config θB = 0 0.008 0.104 0.104  

  Shared θB > 0 0.006 - 0.430  

  Shared θB = 0 0.018 0.126 0.170  

Note: Uncon = Unconstrained model, Conf = Configural model. Shared = Simultaneous shared-

and-configural model. θB = between-level residual variances. QN = quasi-Newton algorithm. EM = 

expectation–maximization algorithm. EMA = accelerated EM algorithm. MLR = robust maximum 

likelihood. S&J = Rejection rates reported by Stapleton & Johnson [1]. Italicized = conditions in 

which the true model was fitted. NA = Test statistic not available. 

3.4.1. Comparison with Stapleton and Johnson (2019) 

The last column of Table 6 shows the rejection rates reported by Stapleton and John-

son [2]. Their inflated rejection rates with 100 clusters were replicated with Mplus using 

EMA (the default, used in their simulation), but only in the conditions where population 

θB = 0 in the configural model. That is, when the correct model was fitted to data generated 

under the configural model with no residual variance, rejection rates were 11%. Also, 

when fitting the overparameterized unconstrained model to the same data, rejection rates 

were as highly inflated as Stapleton and Johnson reported, but only when the model was 

additionally overparameterized by freely estimating θB. When appropriately fixing θB = 

0, the rejection rates were not nearly as inflated (i.e., 13% rather than 51%). Furthermore, 

the same pattern of results just described (for fitting the unconstrained model to configu-

ral-model data) can be seen not only when fitting the configural or shared models to the 

same data, but also when fitting any model to data from populations with a shared con-

struct (but again, only when population θB = 0). 

The pattern of Mplus EMA results in Table 6 challenges the conclusions offered by 

Stapleton and Johnson [2]. First, the highly inflated rejection rates of the unconstrained 
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model (fitted to configural-model data) should not have been attributed to overparame-

terization. Stapleton and Johnson [2] (p. 319) contended that unnecessarily estimating ad-

ditional parameters “used unnecessary degrees of freedom, and the χ2 test criterion was 

lowered,” perhaps forgetting that the χ2 test statistic itself would also lower in this case 

(on average, as much as the df decrease). Table 6 shows that the unconstrained model’s 

rejection rates were not substantially larger than α = 5% when appropriately estimating 

θB > 0, matching Stapleton and Johnson’s results when fitting an unconstrained model to 

data from a population with a shared construct. Note that this is also consistent with our 

prediction that even the configural model (which is similar to but more constrained than 

the unconstrained model) should have rejection rates near the α level. When fitting the 

unconstrained model to data from a population without a shared construct, Stapleton and 

Johnson’s high rejection rates were instead due to unnecessarily fixing θB = 0. 

Finally, Stapleton and Johnson [2] observed 100% power to reject a configural model 

when the population includes a shared factor, which we predicted should yield rejection 

rates close to the α level. However, Table 6 shows that result is only consistent with fixing 

θB = 0 when the population θB > 0. Appropriately estimating θB yielded 5% rejection rates, 

supporting our claim that the shared and configural factors would be confounded due to 

proportionally equivalent loadings across indicators. All in all, Stapleton and Johnson’s 

results are not generalizable because they did not hold constant whether θB = 0 either in 

the population or in the fitted model. Note that all of these inflated error rates occurred 

only when using the Mplus default setting (i.e., a scaled test statistic) because the same 

patterns were not found in Table 5. We will elaborate more on the inflated error rates 

found with the scaled test statistic in the discussion. 

3.4.2. Comparison of MLR Results with Lavaan and Mplus 

Looking at the results of lavaan with MLR in Table 6, six conditions stand out where 

models were seriously misspecified because population θB > 0 but fitted θB = 0. In these 

conditions, lavaan did not provide a test statistic. Closer inspection of these results indi-

cated that the scaled test statistis was actually not defined due to a negative trace involved 

in calculating the scaling factor (i.e., the trace of UΓ [23]). Users can obtain this quantity 

from lavaan using the function lavInspect(), with the second argument as “UGamma”, as 

well as the U or Γ matrix separately using “UfromUGamma” or “gamma”. Naturally, the 

same issue occurs for Mplus. However, instead of providing a warning, Mplus reports the 

unscaled test statistic and indicates ‘Undefined’ for the scaling correction factor. The 

MONTECARLO output of Mplus does not contain any information pointing to the scaled 

test statistic being undefined, so we only discovered this was happening because of our 

comparison of results reported by lavaan. Given that the models are severely misspecified 

in these conditions, the uncorrected test statistics are very high and will not lead to wrong 

conclusions in practice. The second column in Table A1 indicates the number of samples 

for which lavaan indicated that the test statistic was not available per condition. 

In the conditions where θB > 0 and in the fitted model θB > 0, the results obtained with 

lavaan (with QN) and Mplus were identical. For population conditions with θB = 0 and 

fitted θB = 0, the rejection rates obtained with Mplus with QN are somewhat larger than 

the rejection rates obtained with lavaan. For example, the rejection rate was 0.004 in lavaan 

and 0.111 in Mplus when fitting the correct configural model with θB = 0. Since the rejec-

tion rates did not differ across lavaan and Mplus with QN or EMA for the uncorrected 

test statistic (reported in Table 5), the difference in results must be rooted in how the scaled 

test statistics are calculated. In this condition there were 3 samples for which the scaling 

correction factor was not defined, implying that the results for Mplus are partly based on 

unscaled test statistics. This may explain a small part of the difference across packages. 

Another source of differences may be found in how the packages proceed when the (aug-

mented) observed information matrix is near-singular. Near-singularity of the observed 

information matrix often happens, and usually this it not a reason for concern. Both lavaan 

and Mplus do not print out a warning when (equality or inequality) constraints are part 
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of the model, and both programs probably use a different approach to handle these near-

singular cases. While lavaan uses a generalized inverse, the solution of Mplus is less clear. 

In some cases Mplus gives the warning: “An adjustment to the estimatioon of the infor-

mation matrix has been made”. The last column in Table A3 shows the number of repli-

cations per condition for which Mplus provided this warning.  

In the conditions where population θB = 0 and in the fitted model θB > 0, lavaan 

showed low rejection rates as expected. The 100% nonconvergence of Mplus with QN 

prevents comparison of results across software packages using the same QN algorithm. 

Mplus with EMA however resulted in severely inflated Type 1 error rates, ranging from 

0.365 to 0.515. In Table A3 one can see that the rejection rates are also inflated in conditions 

where θB is freely estimated while population θB is not exactly zero, but 0.0001 or 0.01, 

although the inflation is less severe (but still around 12%) in the conditions with θB = 0.01. 

4. Discussion 

4.1. Summary of the Results 

For all conditions in the primary study (comparing ML with QN across packages), 

lavaan either converged more often than Mplus or both packages converged in 100% of 

samples. Mplus never converged in conditions with population θB = 0 but fitted θB > 0. 

Rejection rates of the normal-theory χ2 test statistic were identical across packages. Our 

comparison of ML algorithms in Mplus showed that using EM did not converge in any 

condition for which fitted θB = 0. With the default Mplus settings for two-level models 

(MLR + EMA), Mplus often switches to the EM algorithm. When this switch is made, Mplus 

ignores one of the main convergence criteria (i.e., whether the algorithm in fact converged 

on a ML estimate, as revealed by the first derivative), meaning that the obtained results 

may be based on a non-converged solution. Users are not notified that convergence crite-

ria are ignored, nor are they notified of this switch being made (unless they specifically 

request and pay attention to the TECH8 output, which seems unlikely to be common prac-

tice). In our second follow up study, we found seriously inflated scaled test statistics in 

Mplus in populations with θB = 0. 

Based on the comparison of our results with those of Stapleton and Johnson [2], we 

showed that their advice is not generalizable because they did not independently vary 

whether θB = 0 either in the population or in the fitted model. In all conditions in which 

they reported high rejection rates, this was the result of incorrectly fixing θB = 0, or of 

inflated scaled test statistics obtained by using the default settings in Mplus. 

4.2. Recommendation for Practice 

Our investigation reveals that the defaults in the most popular multilevel SEM soft-

ware (Mplus) carry specific risks that are easily checked but not well advertised. When 

using Mplus with the default settings for two-level models, it is strongly recommended to 

check Mplus’ TECH8 output to verify convergence of the solution. Specifically, when the 

algorithm switched from EMA to EM, we recommend to verify whether the derivative 

criterion in the TECH8 output is sufficiently close to zero; one can also run the model 

again, explicitly requesting ALGORITHM = EM. If running the model with EM and the 

default convergence criteria does not lead to a converged solution, then one should be 

suspicious of the output obtained using EMA that switches to EM. Using the default set-

tings in lavaan does not carry the same risks, given that the convergence rates were good, 

rejection rates appropriate, and one can be sure that there are no hidden changes of con-

vergence checks or test statistics. Therefore, when Mplus users find evidence that their 

apparently converged model might not have actually converged on a maximum, we rec-

ommend fitting their model (when possible) with lavaan, whose defaults do not cause the 

same rates of convergence problems, nor are lavaan’s test statistics (and Type I error rates) 

inflated in the very conditions when Mplus results are dubious (Table 6; see also the Ap-

pendix A). 



Psych 2021, 3, 2 149 
 

Researchers should be aware that the scaled χ2 statistic can be seriously inflated. This 

is in line with earlier findings [24,25]. Moreover, there exist many computational options 

for (scaled) test statistics, and more research is needed to evaluate which of those work 

best in which conditions. Also, the default implementations differ across packages. Savalei 

and Rosseel [23] provide an overview of computational variations and how to apply them 

using lavaan. 

4.3. Future Research 

In this study we only focused on the statistical performance (convergence rates and 

rejection rates of standard and scaled test statistics) of the models proposed and evaluated 

in Stapleton and Johnson [2]. From a theoretical perspective, we also have some concerns 

with respect to the simultaneous shared-and-configural model. The goal of the proposed 

model is to disentangle the ‘objective’ shared construct from the shared part of what Sta-

pleton and Johnson described as a nuisance factor. We find it hard to imagine a realistic 

situation in which one would want to measure an objective shared construct using indi-

vidual responses. If an objective property of a cluster (for example a neighborhood or a 

school class) should be operationalized for a study, we think one should look at objective 

variables at the cluster level. For example, the crime rate per neighborhood, the size of the 

school class, or the gender of the teacher—Stapleton and Johnson similarly proposed 

measuring strictly Level-2 indicators in addition to the Level-1 indicators, but to be used 

as additional indicators of the shared factor (p. 325). From our perspective, as soon as one 

asks individuals in the cluster to rate a cluster-level object, one will most probably be 

measuring subjective perceptions of the construct (for example, perceived neighborhood 

safety, perceived teaching quality) for which within-cluster differences would be ex-

pected. Future research may therefore focus on the theoretical meaning and practical ap-

plications of the models evaluated in the current research. 

It was known from earlier research that the scaled χ2 as implemented in Mplus over-

rejects models when the sample size is not large enough, especially with large models [25]. 

In line with earlier findings based on two-level models [14,26], our simulation study 

shows that over-rejection by this test statistic is exacerbated when between-level residual 

variances are zero (or small, see Table A2) in the population. Because θB = 0 is to be ex-

pected when strong factorial invariance across clusters holds (i.e., when there is no cluster 

bias, even approximately), it is reasonable to assume that θB ≅ 0, at least for some of the 

indicators in a substantial part of research settings. In our study, we did not evaluate con-

ditions with partial cluster invariance. Future research may investigate the performance 

of the scaled χ2 as implemented in Mplus when population residual variances are zero for 

some indicators but nonzero for others. 

Several Bayesian approaches have been proposed and evaluated for estimating two-

level factor models [21,22,27,28]. Bayesian methods with (weakly) informative priors may 

be able to avoid some of the estimation problems that occur with ML estimation, specifi-

cally when sample sizes are relatively small [28]. Alternatively, factor score regression 

methods [29,30] could be a solution to avoid certain estimation problems For future re-

search, it would be interesting to evaluate the performance of these alternative methods 

under the conditions of our simulation study. 
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Appendix A 

Table A1. Convergence rates with 100 clusters for ML estimation with QN in Mplus with popula-

tion θB being zero, 0.0001, and 0.01. 

 Population Value θB 

Data Model Fitted Model 0 0.0001 0.01 

Config  Uncon θB > 0 0 0.005 0.401 

 Uncon θB = 0 1.000 1.000 1.000 

 Config θB > 0 0.001 0.004 0.431 

 Config θB = 0 1.000 1.000 1.000 

 Shared θB > 0 0 0.001 0.245 

 Shared θB = 0 0.227 0.237 0.722 

Shared Uncon θB > 0 0 0.005 0.200 

 Uncon θB = 0 1.000 1.000 1.000 

 Config θB > 0 0 0.002 0.383 

 Config θB = 0 1.000 1.000 1.000 

 Shared θB > 0 0 0 0.124 

 Shared θB = 0 0.215 0.446 0.952 

Note: Uncon = Unconstrained model, Conf = Configural model. Shared = Simultaneous shared-

and-configural model. θB = between-level residual variances. 

Table A2. Frequency (in 1000 samples) of Mplus switch from EMA to EM, undefined scaling cor-

rections and saddle point warnings. 

Data Model Fitted Model 
Switch EMA 

to EM 

Scaling  

Factor Undefined 
Saddle Point 

Config  θB > 0  Uncon θB > 0 0 0 0 

  Uncon θB = 0 0 1000 0 

  Config θB > 0 0 0 0 

  Config θB = 0 0 1000 0 

  Shared θB > 0 0 9 11 

  Shared θB = 0 0 1000 0 

Config θB = 0 Uncon θB > 0 985 4 0 

  Uncon θB = 0 0 3 0 

  Config θB > 0 981 3 0 

  Config θB = 0 0 3 0 

  Shared θB > 0 998 11 0 

  Shared θB = 0 518 7 0 

Shared θB > 0 Uncon θB > 0 0 0 0 

  Uncon θB = 0 0 1000 0 

  Config θB > 0 0 0 0 

  Config θB = 0 0 1000 0 

  Shared θB > 0 3 10 13 

  Shared θB = 0 0 1000 0 

Shared θB = 0 Uncon θB > 0 987 2 0 

  Uncon θB = 0 0 2 0 

  Config θB > 0 984 2 0 
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  Config θB = 0 0 1 0 

  Shared θB > 0 998 10 407 

  Shared θB = 0 518 11 0 

Note: Uncon = Unconstrained model, Conf = Configural model. Shared = Simultaneous shared-

and-configural model. θB = between-level residual variances. Saddle point = Mplus with EMA 

warns that “The model estimation has reached a saddle point or a point where the observed and 

the expected information matrices do not match. An adjustment to the estimation of the infor-

mation matrix has been made”. 

Table A3. Rejection rates with 100 clusters for MLR estimation with EMA in Mplus with popula-

tion θB being zero, 0.0001, and 0.01. 

 Population Value θB 

Data Model Fitted Model 0 0.0001 0.01 

Config  Uncon θB > 0 0.512 0.522 0.124 

 Uncon θB = 0 0.131 0.127 0.940 

 Config θB > 0 0.365 0.338 0.118 

 Config θB = 0 0.111 0.108 0.905 

 Shared θB > 0 0.445 0.450 0.123 

 Shared θB = 0 0.190 0.161 0.719 

Shared Uncon θB > 0 0.515 0.498 0.119 

 Uncon θB = 0 0.122 0.135 0.927 

 Config θB > 0 0.357 0.353 0.103 

 Config θB = 0 0.104 0.112 0.899 

 Shared θB > 0 0.430 0.403 0.127 

 Shared θB = 0 0.170 0.160 0.713 

Note: Uncon = Unconstrained model, Conf = Configural model. Shared = Simultaneous shared-

and-configural model. θB = between-level residual variances. Reported convergence rates for these 

conditions were all higher than 0.973, but across θB conditions, the frequencies of Mplus switching 

to the EM algorithm (and ignoring one of the convergence criteria) are very similar to the frequen-

cies reported in the first column of Table A2, so convergence status is effectively unknown. 
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