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Abstract: Bohrnstedt’s (1969) attempt to derive a formula to compute the partial correlation coefficient
and simultaneously correct for attenuation sought to simplify the process of performing each task
separately. He suggested that his formula, developed from algebraic and psychometric manipulations
of the partial correlation coefficient, produces a corrected partial correlation value. However, an
algebraic error exists within his derivations. Consequently, the formula proposed by Bohrnstedt does
not appropriately represent the value he intended it to estimate. By correcting the erroneous step
and continuing the derivation based upon his proposed procedure, the steps outlined in this paper
ultimately produce the formula that Bohrnstedt desired.

Keywords: classical test theory; classical true score theory; correction for attenuation; partial correla-
tion coefficient

1. Introduction

Psychometricians have long acknowledged the presence and impact of measurement
error. The very first principle of Classical Test Theory dictates that X = T + E. This equation
suggests that an observed score (X) represents not only a measurement of the entity of
interest, or the true score (T), but also some level of error (E) that distorts the researcher’s
observation. If researchers could determine the portion of an observed score that consists
of the true score and of error, they could simply focus their analyses upon true-score values
to obtain actual representations of the conditions they study. However, because error scores
exist as latent components of observed scores, researchers cannot determine the exact
extent to which they affect their data and the statistics computed from those data.

Despite the lack of such detailed information, some general understanding of the
consequences that error scores can have upon statistics exists. Psychometricians know, for
instance, that the presence of measurement error causes the correlation between observed
scores to fall below that of true scores, a phenomenon known as attenuation [1]. However,
the inability to obtain an actual true score or error score makes it impossible to determine
the exact degree to which the observed score correlation underestimates the true score
correlation.

This attenuation effect was first recognized by Spearman in 1904 [2]. Spearman,
resigned to only estimate the correlation between true scores, proposed a formula to
theoretically counteract the effects of attenuation on pairwise correlation coefficients. In
his formula, ρTxTY represents an estimate of the Pearson correlation coefficient between
true scores, the numerator contains the observed correlation coefficient, and the primed
values in the denominator represent reliabilities. Applying the formula produces a value
that exceeds the observed score correlation.

ρTxTY=
ρXY

ρXX′ρYY′
(1)

Spearman’s correction for attenuation was groundbreaking with regard to Classical
Test Theory. It provided increased accuracy in estimates of the relationship between
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variables because it eliminated the effects of measurement error to the greatest extent
possible. Consequently, esteemed statisticians and research analysts have given much
credibility to Spearman’s correction for attenuation [3].

One limitation of Spearman’s formula, though, is its application only to pairwise
situations. To address partial, part, or multiple correlations, one must apply the correction
to each individual pairwise coefficient before inserting it into the relevant formula. This
process becomes extremely tedious and time-consuming.

In response, Bohrnstedt [4] proposed a formula for a partial correlation coefficient
containing an implicit correction for attenuation. (The partial correlation coefficient al-
lows for consideration of the linear relationship between the independent and dependent
variables, exclusive of any confounding effects that other factors may have upon these
variables.) He had intended for his formula to allow the computation of an estimate for the
partial correlation between true scores in a single step and his published explanations of
his formula describe it as such. However, an algebraic mistake in Bohrnstedt’s derivation
makes the resulting formula incorrect.

2. Bohrnstedt’s Derivation

Bohrnstedt bases his derivation on two psychometric equivalences. One states that
dividing the covariance between two datasets by the product of the datasets’ standard
deviations produces the pairwise correlation coefficient, as shown in Equation (2).

This formula is one of many commonly used to calculate pairwise correlation coeffi-
cients.

ρXY =
σXY

σXσY
(2)

The other equivalence used by Borhnstedt allows him to adapt Equation (2) to partial
correlations. It follows the leads of others [5,6], by focusing upon residuals between
variables (e.g., σXZ). Simply, the covariances and standard deviations that appear in
Equation (2) become covariances and standard deviations of residuals between these same
variables and the potential confounding variable (Z). Bohrnstedt, therefore, defines the
corrected partial correlation as the ratio between the covariance of estimated residuals
and the square root of the product of the residuals’ variances. These residuals, defined by
relevant simple linear regressions, X-bxzZ and Y-bYZZ, become parts of Equation (3).

ρTX TY .TZ =
σ(X−bXZ Z)(Y−bYZ Z)√

σ2
X−bXZ Z σ2

Y−bYZ Z

(3)

The insertion of these expressions into the existing subscripts, as shown in Equation (3),
indicates the consideration of multiple independent variables.

Expanding the covariance in Equation (4) and calculating the squared value of the
terms in the denominator produces

ρTX TY .TZ =
σXY − bYZ σXZ − bXZ σYZ + bYZ bXZ σ2

Z√
(σ2

X − 2bXZ σXZ+ σ2
Zb2

XZ)(σ
2
Y − 2bYZ σYZ+ σ2

Zb2
YZ)

(4)

Once again, following psychometric theory, Bohrnstedt redefines bxz as ρXZσX/ρZZ′σZ
and makes the comparable change for byz. This manipulation, along with restatement
of each covariance as the product of the relevant correlation coefficient and standard
deviations (e.g., σXY = σXσYρXY), produces

ρTX TY .TZ =
σXσYρXY−

ρYZσY
ρZZ′σZ

σXσZρXZ − ρXZσX
ρZZ′σZ

σYσZρYZ + ( ρYZσY
ρZZ′σZ

)( ρXZσX
ρZZ′σZ

)σ2
Z√

(σ2
X −

2ρ2
XZσ2

X
ρZZ′

+
ρ2

XZσ2
X

ρ2
ZZ′

)(σ2
Y −

2ρ2
YZσ2

Y
ρZZ′

+
ρ2

YZσ2
Y

ρ2
ZZ′

)

(5)
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A simplified version, results from adding and multiplying terms in Equation (5).

ρTX TY .TZ =
σXσYρXY−

2ρXZρYZσXσY
ρZZ′

+ ρXZρYZσXσY
ρ2

ZZ′√
(σ2

X −
2ρ2

XZσ2
X

ρZZ′
+

ρ2
XZσ2

X
ρ2

ZZ′
)(σ2

Y −
2ρ2

YZσ2
Y

ρZZ′
+

ρ2
YZσ2

Y
ρ2

ZZ′
)

(6)

Further algebraic simplifications involve three steps of factoring and combining terms.
First, the standard deviations are factored within the numerator and the variances are
factored within the denominator. Second, the existing terms within the numerator and
within the denominator are added. The final step involves factoring reliabilities within
the numerator and denominator as well as removing variances from beneath radical signs,
making them standard deviations. These steps respectively appear as

ρTX TY .TZ =
σXσY(ρXY−

2ρXZρYZ
ρZZ′

+ ρXZρYZ
ρ2

ZZ′
)√

σ2
X(1−

2ρ2
XZ

ρZZ′
+

ρ2
XZ

ρ2
ZZ′

) σ2
Y (1− 2ρ2

YZ
ρZZ′

+
ρ2

YZ
ρ2

ZZ′
)

(7)

ρTX TY .TZ =
σXσY(

ρXYρ2
ZZ′−2ρXZρYZρZZ′+ ρXZρYZ

ρ2
ZZ′

)√
σ2

X(
ρ2

ZZ′− 2ρ2
XZ ρZZ′+ ρ2

XZ
ρ2

ZZ′
) σ2

Y (
ρ2

ZZ′− 2ρ2
YZ ρZZ′+ ρ2

YZ
ρ2

ZZ′
)

(8)

and

ρTX TY .TZ =

ρZZ′ (ρXYρZZ′−2ρXZρYZ)+ ρXZρYZ
ρ2

ZZ′√[
ρZZ′ (ρZZ′− 2ρ2

XZ )+ ρ2
XZ

ρ2
ZZ′

][
ρZZ′ (ρZZ′− 2ρ2

YZ )+ ρ2
YZ

ρ2
ZZ′

] (9)

It is this point in the derivation at which Bohrnstedt errs. His canceling of standard
deviations within the numerator and denominator of Equation (9) is appropriate. However,
he incorrectly cancels the reliability ρZZ′ from the numerator and denominator, producing
Equation (10).

ρTX TY .TZ “ = ”

(ρXYρZZ′−2ρXZρYZ)+ ρXZρYZ
ρZZ′√[

ρZZ′− 2ρ2
XZ + ρ2

XZ
ρZZ′

] [
ρZZ′− 2ρ2

YZ + ρ2
YZ

ρZZ′

] (10)

Had ρZZ′ appeared in all terms within the numerators of the general numerator and
the general denominator, then he would have cancelled correctly. However, because only
the first of the terms in these numerators contained ρZZ′ , such factoring and, consequently,
such cancelling should not have occurred. Without realizing the flaws in Equation (10),
Bohrnstedt continued with his derivation. He added components within the numerator
and the denominator and then cancelled reliabilities from each. The equations

ρTX TY .TZ =

ρXYρZZ′− ρXZρYZ
ρZZ′√[

ρZZ′− ρ2
XZ

ρZZ′

] [
ρZZ′− ρ2

YZ
ρZZ′

] (11)

and
ρTX TY .TZ =

ρXYρZZ′ − ρXZρYZ√
(ρZZ′ − ρ2

XZ)(ρZZ′ − ρ2
YZ)

(12)

respectively, result.
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The algebraic error leading to Equation (10) devalues Equation (12), proposed as the
formula to compute a partial correlation coefficient corrected for attenuation. However, the
equations presented before Equation (10) remain valid and can serve as a basis for fulfilling
Bohrnstedt’s original goal.

3. Correcting the Derivation

Using Bohrnstedt’s reasoning and making the changes necessary to correct Equation
(11) allows for the development of the formula that Bohrnstedt desired. Beginning the
corrected derivation with Equation (9), squared reliabilities in the denominators of the
general denominator can be removed from the radical sign. Cancelling this ρ2

ZZ′ value with
the same value in the denominator of the general numerator forms the single fraction

ρTX TY .TZ =

ρZZ′ (ρXYρZZ′−2ρXZρYZ)+ ρXZρYZ
ρ2

ZZ′√[
ρZZ′ (ρZZ′− 2ρ2

XZ )+ ρ2
XZ

ρ2
ZZ′

] [
ρZZ′ (ρZZ′− 2ρ2

YZ )+ ρ2
YZ

ρ2
ZZ′

] (13)

Distribution produces the final version of the formula:

ρTX TY .TZ =
ρXYρ2

ZZ′ − 2ρXZρYZρZZ′ + ρXZρYZ√[
(ρ2

ZZ′ − 2ρ2
XZ ρZZ′ + ρ2

XZ)
] [

(ρ2
ZZ′ − 2ρ2

YZ ρZZ′ + ρ2
YZ)
] (14)

Equation (14) does exactly what Borhnstedt had suggested his formula would do.
By inserting correlation and reliability coefficients into the appropriate positions, one can
simultaneously compute a partial correlation coefficient and correct for attenuation.

4. Example

Evidence of Equation (14)’s effectiveness comes in the form of an example. Sabermetric
data introduced by Wetcher-Hendricks (2006) in a different approach to calculating a partial
correlation coefficient corrected for attenuation easily lend themselves to such an example.
The data include values for walks (X), at bats (Y), and batting averages (Z) for key players
on the New York Mets baseball team during the 2000 season. In particular, the observed
correlation values, ρXY = 0.811, ρ = 0.395, and ρYZ = 0.550, and the reliability value of
ρXX′ = 0.650 from these data, fit into Equation (14). Then, a partial correlation coefficient
corrected for attenuation of 0.7831 emerges through arithmetic simplification.

ρTX TY .TZ = (0.811)(0.6502)−2(0.395)(0.550)(0.650)+(0.395)(0.550)√
[(0.6502)−2(0.3952)(0.650)+(0.3952)][(0.6502)−2(0.5502)(0.650)+(0.5502)]

(15)

ρTX TY .TZ =
0.2775√

(0.3757)(0.3317)
= 0.7861 (16)

This analysis used career means for walks, at bats, and batting averages as true scores,
allowing for calculation of a true score partial correlation. A comparison between the
corrected coefficient produced by Equation (14), the true-score partial correlation coefficient
of 0.8983, and the observed score partial correlation coefficient of 0.7734 (Wetcher-Hendricks
2006) demonstrates the effectiveness of Equation (14). The observed score value differs
from the true score value more than the value produced by Equation (14) does, indicating
Equation (14)’s superiority in estimating ρTX TY .TZ .

Interestingly and importantly, in addition to lying closer to ρTX TY .TZ than ρXY.Z does,
the value produced by Equation (14) improves upon the estimate obtained using the process
described by Wetcher-Hendricks [7]. Thus, this equation provides the most effective means
of estimating the partial correlation between true scores.
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5. Conclusions

With Equation (14), Bohrnstedt has, albeit indirectly, achieved the goal of accounting
for measurement error while estimating the partial correlation. He deserves credit for
establishing the structure for the derivation of this equation; his minor algebraic oversight
does not diminish the importance of his work.

This formula also has the same limitations as that offered by Bohrnstedt, and any
formula that corrects for attenuation, does. Even Spearman’s original correction for atten-
uation [2], which serves as a component in the derivation of Equation (14), relies upon
reliability values. However, reliabilities generally remain unknown. Statisticians can do
no better than to estimate these values. One must remember, therefore, that, like other
equations that correct for attenuation, Equation (14) provides estimation, not exactness,
with respect to the linear relationship it describes.

Nevertheless, the estimate produced by Equation (14) represents the true score partial
correlation more accurately than the uncorrected correlation coefficient does. This improve-
ment proves extremely valuable in applied research. For example, Gustafson [8] discusses
its relevance in the field of epidemiology. He notes that those in this field often encounter
mismeasured polychotomous variables, which includes continuous variables appropriate
for regression analysis. Even small differences between a true score and an observed score
can have dire consequences in the context of healthcare and medicine. Therefore, the
ability to correct, as much as possible, for mismeasurement is extremely appealing. In
fact, continued development of the formula in Equation (14) can further its usefulness in
epidemiology as well as in other fields. Reasonable goals for future endeavors include
deriving similar formulas for part and multiple correlations as well as adjusting these
formulas to make them applicable to situations involving more than three variables.

Given the similarity between the partial and part correlation formulas, the procedure
needed to derive a comparable formula for part correlations is likely very similar to that
followed to obtain Equation (14). A formula to compute multiple correlation coefficients
corrected for attenuation would not resemble the corrected partial coefficient quite as
closely as the corrected part coefficient formula would. However, the existing derivation
certainly suggests a general framework.

Expanding these formulas to manage more than three variables could follow patterns
similar to those used in deriving the formulas for three-variable situations. However, as
more variables become involved, the number of relationships between variables grows
and, obviously, the complexity of the resulting formulas would increase with the addition
of each variable.

Optimally, these developments could lead to formulas that correct for attenuation
while computing partial, part, and multiple correlation coefficients for any number of
variables. The generalizability of such formulas would make them highly useful for
researchers wishing to analyze complex data.
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