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Abstract: The four-parameter logistic model is an Item Response Theory model for dichotomous
items that limit the probability of giving a positive response to an item into a restricted range, so that
even people at the extremes of a latent trait do not have a probability close to zero or one. Despite the
literature acknowledging the usefulness of this model in certain contexts, the difficulty of estimating
the item parameters has limited its use in practice. In this paper we propose a regularized estimation
approach for the estimation of the item parameters based on the inclusion of a penalty term in the
log-likelihood function. Simulation studies show the good performance of the proposal, which is
further illustrated through an application to a real-data set.
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1. Introduction

Item Response Theory (IRT) provides a framework for statistical modeling of the responses to
a test or questionnaire [1,2]. In IRT models, the probability of giving a certain response to an item
depends on one or more latent variables and on some parameters related to the items. The aim
of the analysis is usually to measure the latent variables and to study the properties of the items.
Different kinds of models have been proposed in the literature depending on the type of responses
that can be given to an item. In the case of binary responses (such as, for example, correct or incorrect,
agree or disagree, yes or no), the four-parameter logistic (4PL) model [3] constitutes the more flexible
option, since it is able to capture the relation of the responses with the latent variable allowing for some
randomness, so that people at a very low level of the latent trait have a nonzero probability of giving a
positive response and people at a very high level of the latent trait have a probability of giving a positive
response lower than 1. Guessing in a multiple-choice educational test is a typical example of the
necessity of modeling such behavior for examining at low ability levels. Likewise, people at high ability
levels could fail to give the correct response because of inattention and tiredness. Recently, the 4PL
model has received renewed interest. Reise and Waller [4] suggested that to completely characterize
the functioning of psychopathology items there is a need for a four-parameter model, which was later
confirmed by the authors [5]. The 4PL model was found to be useful also for computerized adaptive
testing [6–9]. However, the estimation of the parameters of the 4PL model is a difficult task [10,11],
which explains why this model was substantially ignored for a long time. Some recent contributions
to the literature employ a Bayesian approach for the estimation of the item parameters [5,10–12],
while another interesting work employs a mixture model formulation and prior distributions on the
parameters [13].

In recent years, statistical learning methods [14] have attracted increasing interest due to their
capacity of dealing with the complexity of the data. Of particular interest here are regularization
methods, which were first proposed for the linear regression model with the aim of shrinking the
coefficients toward zero and were also employed to obtain smoothing splines [14,15]. In general,
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these methods prevent overfitting, reduce the variability of the estimates and improve the predictive
capacity of the model. Regularization methods have then found application to a variety of models,
including categorical data [16,17]. Restricting our attention to IRT, a ridge-type penalty was used for
the two-parameter logistic (2PL) model [18], while a lasso penalty for the detection of differential item
functioning was employed for the Rasch model [19] and for generalized partial credit models [20].
A lasso penalty was also used for latent variable selection in multidimensional IRT models [21], while a
fused-lasso penalty was proposed for the nominal response model to group response categories and
perform variable selection [22]. Penalized estimation for the detection of DIF was implemented also
for a logistic regression model [23].

To deal with the complexity of the estimation of the 4PL model, in this paper we propose a
regularization approach based on the inclusion of a penalty term in the log-likelihood function.
The paper is structured as follows. Section 2 introduces the 4PL model and some regularization
methods. Section 3 describes our proposal, whose performance is assessed in Section 4 through some
simulation studies. Finally, Section 6 concludes with a discussion.

2. Preliminaries

2.1. The 4-Parameter Logistic Model

In the following, the terminology of educational testing is used as an example for introducing
the 4PL model, though this model is applicable to other contexts as well. Let the variable Xij be equal
to 1 if person i knows the correct answer to item j, and Yij be equal to 1 if the response is correct.
The probability of knowing the correct response response of item j according to the 2PL model is
given by

P(Xij = 1) =
eaj(θi−bj)

1 + eaj(θi−bj)
, (1)

where aj and bj are the parameters of the item usually referred to as discrimination and difficulty,
and θi is the ability of person i. In the 4PL model, the probability of giving the correct response does
not coincide with the probability of knowing it, and it is given by

P(Yij = 1) = P(Yij = 1|Xij = 0)P(Xij = 0) + P(Yij = 1|Xij = 1)P(Xij = 1)

= cj

[
1− eaj(θi−bj)

1 + eaj(θi−bj)

]
+ dj

eaj(θi−bj)

1 + eaj(θi−bj)
, (2)

where cj = P(Yij = 1|Xij = 0) is the probability of giving the correct response when it is not known,
and dj = P(Yij = 1|Xij = 1) is the probability of giving the correct response when it is known.
These two other item parameters are often referred to as guessing and inattention, or just as the lower
and upper asymptotes. Rewriting Equation (2) as follows:

P(Yij = 1) = cj + (dj − cj)
eaj(θi−bj)

1 + eaj(θi−bj)
(3)

returns the usual form of the 4PL model. The 3-parameter logistic model is obtained if dj is set to 1,
while the 2PL results when cj is also constrained to 0. See also [24] for a similar arguments about the
3PL model.

The item parameters are usually estimated using the marginal maximum likelihood method [25],
which treats the abilities as random variables with a standard normal distribution and integrates
them out of the likelihood function. A parameterization of the model more suitable for estimation is
the following:

P(Yij = 1) = F(β3j) +
[
F(β4j)− F(β3j)

] eβ1j+β2jθi

1 + eβ1j+β2jθi
, (4)
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where the function F(x) = ex/(1 + ex) constrains the parameters cj = F(β3j) and dj = F(β4j) to be in
the (0, 1) range, while bj = −β1j/β2j and aj = β2j.

2.2. Regularized Estimation

In order to achieve regularized parameter estimates and reduce their variability, a very common
strategy is based on the inclusion of a penalty term in the loss function, which is minimized to obtain
the parameter estimates [14,17].

Let β be a K× 1 vector of parameters. A very common penalty function is the ridge penalty:

J(β, λ) = λ
K

∑
k=1

β2
k, (5)

where λ is a tuning parameter that determines the amount of shrinkage. This penalty has the effect of
shrinking all the parameters toward zero proportionally [14]. If, instead, the purpose is setting some
parameters exactly at zero, a more effective penalty is the lasso [26,27]:

J(β, λ) = λ
K

∑
k=1
|βk|. (6)

A variant is given by the fused lasso penalty [28]

J(β, λ1, λ2) = λ1

K

∑
k=1
|βk|+ λ2

K

∑
k=2
|βk − βk−1|, (7)

which forces adjacent parameters to take the same value and is meaningful only if the parameters
present a natural order. Another penalty that requires an ordering of the coefficients was employed
in [29] to smooth the effects of an ordered predictor on the response variable and takes the
following form:

J(β, λ) = λ
K

∑
k=2

(βk − βk−1)
2. (8)

3. A New Proposal for the 4PL Model

Let β be the vector containing all the item parameters and `(β) be the marginal log-likelihood
function. Our proposal employs a penalty term on the item parameters in order to obtain regularized
estimates with limited variability. However, using the penalties that were originally proposed for
regression models that force the parameters toward zero is not particularly meaningful for IRT models.
Hence, the penalized log-likelihood function we propose takes the following form:

`p(β) = `(β)− λ

[
∑
j<k

(β1j − β1k)
2 + ∑

j<k
(β2j − β2k)

2 + ∑
j<k

(β3j − β3k)
2 + ∑

j<k
(β4j − β4k)

2

]
. (9)

The penalty added to the log-likelihood function has the effect of forcing each different type of item
parameter toward a common value. This means that the intercepts β1j of all items are forced toward a
common value, as well as the slopes β2j and the parameters that determine the lower and upper bonds
β3j and β4j. The penalty used here is similar to (8); however, in this case, there is not a natural order of
the parameters, so it is necessary to consider all the pairs of parameters pertaining to different items.
The same type of penalty was also employed in [18] to shrink the slopes in the 2PL model. It is
worth noting that the penalty employed here does not force the parameters to assume exactly the
same value as induced by the penalty (7) but rather it forces the parameters toward a common value.
The assumption that underlies this penalty is that the upper asymptotes assume similar values, as
well as the lower asymptotes, the intercepts and the slopes. The amount of similarity between the
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parameters is determined using a data-driven procedure, as explained in the following of this paper,
and this procedure could possibly lead to preferring the unpenalized estimates.

Including a penalty of the form of a density function in the log-likelihood function for each type
of item parameter is, for example, implemented in the R package mirt [30]. However, it requires
the choice of the parameters of such density, which is not trivial or irrelevant. It is possible to show
that the penalties included in Equation (9) are equivalent to the logarithm of the normal density
(see Appendix A for the proof). The great advantage of the penalty employed in this paper it that
it does not require choosing or estimating the mean of the distribution. Instead, the selection of the
tuning parameter λ, which plays the same role of the variance, should be performed on the basis of a
data-driven procedure. To this end, K-fold cross-validation represents an effective approach. Data are
divided into K groups, and the parameters of the model are estimated on K-1 folds leaving one fold
out to evaluate the error. This is performed leaving one fold out in turn and for each value of λ. In our
application, the error was evaluated using the negative log-likelihood function as suggested in [31].
Hence, the cross-validation error is given by −K−1 ∑K

k=1 `(β−k(λ); yk), where β−k is the vector of item
parameter estimates obtained excluding the k-th group of data, which is denoted by yk. The minimum
cross-validation error determines the choice of λ.

4. Simulation Studies

In order to assess the performance of our proposal in comparison to maximum likelihood
estimation (MLE), we conducted a simulation study. In the first setting, the true item parameters were
taken to be equal to the estimates reported in Table 4 in [10], who followed a Bayesian approach to fit
a 4PL model to a dataset with 14 items to assess delinquency. In this setting, the items were rather
difficult (all the difficulties were above zero with a mean of 1.51) and with high discriminations (the
mean of the discrimination parameters was 2.13), lower asymptotes close to zero (their mean was 0.03),
and upper asymptotes ranging from 0.72 to 0.89. Hence, we also considered a second setting with true
parameters more similar to a typical educational test and which were obtained by random generation.
The number of item parameters in this setting is 30. The difficulties bj were generated from a standard
normal distribution, the discriminations aj were generated from a normal distribution with mean 1
and standard deviation 0.2, the lower asymptote cj were generated from a uniform distribution in
the [0.1, 0.3] range, and the upper asymptote dj were generated from a uniform distribution in the
[0.8, 1] range. In both cases, the latent variables θ were generated from a standard normal distribution
and the number of examinations was taken to be equal to n = 500, 1000 and 5000. All results are based
on 500 replications.

All statistical analyses were performed in R [32] and C++, employing the Rcpp [33] and
RcppArmadillo [34] packages to integrate the code. The Reg4PL package developed to implement
the methods is available as supplementary material to this paper. The MLE values were computed
using the estimates provided by the mirt package [30] as initial values of the maximization of the
log-likelihood function by means of the optim function of the R software. The same function was
employed to obtain the penalized estimates.

Table 1 displays the results in the first setting. The root mean square error (RMSE) reported in the
table is the average over the 14 items. The bias (B) is the root of the average of the squared bias of the
estimates of each item. The bias and the RMSE of MLE are particularly large for the discrimination
parameters. The penalized estimates consistently present smaller values of bias and RMSE than MLE
for the aj parameters, though for n = 500 they are not negligible. In comparison with the discrimination
parameters, the RMSE and the bias of the maximum likelihood estimates are located on smaller values
when considering the difficulty parameters. However, the penalized estimates perform better for all
the sample sizes. Considering the lower asymptotes, there is only one exception where the penalized
estimates present a larger bias than MLE, which is for n = 1000. In all other cases, penalized estimation
performs better. Finally, the estimates of the upper asymptote present good properties both using MLE
and penalized estimation, sometimes showing a slight prevalence of one or of the other.
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Table 1. Results of the simulation study in the first setting.

aj bj cj dj

Method n RMSE B RMSE B RMSE B RMSE B

MLE 500 39.30 8.66 0.50 0.20 0.24 0.08 0.03 0.01
Penalized 500 11.59 2.46 0.49 0.15 0.19 0.10 0.05 0.01
MLE 1000 9.14 3.14 0.38 0.12 0.20 0.05 0.02 0.00
Penalized 1000 2.85 0.46 0.26 0.12 0.13 0.08 0.02 0.01
MLE 5000 1.23 0.61 0.22 0.11 0.12 0.06 0.02 0.00
Penalized 5000 0.51 0.21 0.14 0.07 0.08 0.05 0.01 0.00

The results in the second setting are reported in Table 2. The most difficult parameters to
estimate are the discriminations. Penalized estimation always performs better than MLE for the
discrimination parameters. The difficulty parameters generally benefit of penalized estimation too,
with the only exception of the bias when n = 5000, which is slightly increased. The RMSE is always
smaller for the penalized estimates, while the bias of the lower and upper asymptotes is at the same
level or increased.

Table 2. Results of the simulation study in the second setting.

aj bj cj dj

Method n RMSE B RMSE B RMSE B RMSE B

MLE 500 9.15 5.21 0.81 0.40 0.15 0.07 0.18 0.05
CVridge 500 1.71 0.12 0.54 0.32 0.10 0.07 0.17 0.11
MLE 1000 4.39 1.99 0.68 0.30 0.13 0.05 0.16 0.04
CVridge 1000 0.37 0.17 0.42 0.24 0.09 0.06 0.12 0.07
MLE 5000 0.59 0.22 0.37 0.10 0.08 0.03 0.10 0.02
CVridge 5000 0.19 0.12 0.24 0.20 0.05 0.04 0.06 0.05

5. A Real-Data Example

The method was then applied to the Second International Self-Report Delinquency Study (ISRD-2),
a large-scale study on delinquency of 12 to 15 years old students [35]. The dataset is publicly available at
https://www.icpsr.umich.edu/web/NACJD/studies/34658. The questions used in this paper are
reported in Table 3. These items are all dichotomous, since the responses can either be yes or no.
After selecting students from Switzerland and deleting the cases with missing responses, our dataset is
composed of 3247 students.

The mirt package [30] was used to compare the fit of the 2PL, 3PL and 4PL models to these data.
Table 4 reports the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) and the
p-value of the likelihood ratio (LR) test. According to these results, the 3PL model does not provide a
better fit to these data than the 2PL model. However, the 4PL is the preferred one since it presents the
lowest AIC and BIC and the LR test indicates that the upper asymptotes should be included in the model.

Figure 1 shows the cross-validation error as a function of λ. The vertical dashed line corresponds
to the minimum value, which is for λ = 0.005. Figure 2 shows the item parameter estimates at
different values of λ. The MLE estimates and the penalized estimates at the selected value of λ are
reported in Table 5. The parameter estimates were obtained using the reg4PL package available as
supplementary material to this paper. Since in this example the sample size is rather large, the value
of λ determined by cross-validation is small. Nonetheless, some resultant parameter estimates are
noticeably reduced, such as the discrimination parameters of item BEERLTP, which was extremely high
using MLE. As already observed in self-reported delinquency studies [10,11], the lower asymptotes of
the 4PL model are nearly zero, while some items present an upper asymptote lower than one. In this
application, only item BEERLTP has a lower asymptote considerably greater than zero, probably due
to the fact that this behavior is not completely unusual for teenagers with a low level of delinquency.

https://www.icpsr.umich.edu/web/NACJD/studies/34658
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It is also worth noting that the lower asymptote of item GFIGLTP is slightly greater than zero, likely
because one could participate in a fight against their will. Various items have an upper asymptote lower
than one, such as for example items HASHLTP and DRUDLTP, showing that some behaviors are not
necessarily pursued by teenagers at high levels of delinquency. However, it is worth noting that these
items are related to the latent variable, as indicated by the highly positive discrimination parameters.

Table 3. Questions of the ISRD-2 Study used for the analysis.

Label Question

BEERLTP Did you ever drink beer, breezers or wine?

SPIRLTP Did you ever drink strong spirits (gin, rum, vodka, whisky)?

HASHLTP Did you ever use weed, marijuana or hash?

XTCLTP Did you ever use drugs such as XTC or speed?

LHCLTP Did you ever use drugs such as LSD, heroin or coke?

VANDLTP Did you ever damage something on purpose, such as a bus shelter, a window, a car or a seat in
the bus or train?

SHOPLTP Did you ever steal something from a shop or a department store?

BURGLTP Did you ever break into a building with the purpose to steal something?

BICTLTP Did you ever steal a bicycle, moped or scooter?

CARTLTP Did you ever steal a motorbike or car?

DOWNLTP When you use a computer did you ever download music or films?

HACKLTP Did you ever use your computer for "hacking"?

CARBLTP Did you ever steal something out of or from a car?

SNATLTP Did you ever snatch a purse, bag or something else from a person?

WEAPLTP Did you ever carry a weapon, such as a stick, knife, or chain (not a pocket-knife)?

EXTOLTP Did you ever threaten somebody with a weapon or to beat them up, just to get money or other
things from them?

GFIGLTP Did you ever participate in a group fight on the school playground, a football stadium, the
streets or in any public place?

ASLTLTP Did you ever intentionally beat up someone, or hurt him with a stick or knife, so bad that he
had to see a doctor?

DRUDLTP Did you ever sell any (soft or hard) drugs or act as an intermediary?
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Table 4. Comparison of model specifications.

Model Log-Likelihood AIC BIC LR Test

2PL −21,923.17 43,922.34 44,170.24 (3PL vs. 2PL) p-value = 0.239
3PL −21,911.69 43,937.38 44,309.22 (4PL vs. 3PL) p-value < 0.001
4PL −14,832.06 29,816.13 30,278.62 (4PL vs. 2PL) p-value < 0.001

Table 5. Item parameter estimates of the ISRD-2 study.

MLE Penalized

âj b̂j ĉj d̂j âj b̂j ĉj d̂j

BEERLTP 55.90 −0.35 0.24 0.97 7.12 −0.33 0.15 0.98
SPIRLTP 8.42 0.12 0.00 0.82 7.41 0.15 0.00 0.84
HASHLTP 3.94 0.66 0.00 0.62 4.20 0.66 0.00 0.62
XTCLTP 2.71 2.63 0.00 0.77 2.54 2.77 0.00 0.87
LHCLTP 2.31 2.92 0.00 1.00 2.32 2.89 0.00 0.92
VANDLTP 3.08 1.37 0.03 0.97 3.10 1.37 0.03 0.96
SHOPLTP 1.44 1.14 0.03 0.92 1.38 1.17 0.02 0.93
BURGLTP 3.50 2.41 0.00 1.00 3.17 2.46 0.00 0.97
BICTLTP 2.76 1.89 0.00 1.00 2.74 1.89 0.00 0.98
CARTLTP 3.71 2.68 0.00 0.88 3.10 2.83 0.00 0.94
DOWNLTP 1.47 −0.87 0.00 0.89 1.32 −0.85 0.00 0.90
HACKLTP 1.02 2.95 0.00 1.00 1.04 2.88 0.01 0.95
CARBLTP 2.70 2.38 0.00 1.00 2.71 2.35 0.00 0.93
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Table 5. Cont.

MLE Penalized

âj b̂j ĉj d̂j âj b̂j ĉj d̂j

SNATLTP 2.32 2.64 0.01 1.00 2.27 2.64 0.01 0.95
WEAPLTP 2.50 1.61 0.01 1.00 2.57 1.58 0.01 0.97
EXTOLTP 3.54 2.35 0.00 0.69 2.94 2.52 0.00 0.80
GFIGLTP 3.82 1.20 0.06 0.77 3.49 1.25 0.06 0.79
ASLTLTP 2.64 2.35 0.01 0.90 2.54 2.39 0.01 0.90
DRUDLTP 3.33 1.83 0.00 0.68 3.27 1.85 0.00 0.69

6. Discussion

In this paper we have proposed a regularization method for the 4PL model based on penalized
maximum likelihood estimation. While penalized estimation of the linear regression model always
introduces bias to reduce the variability of the estimates, in the case under study in this paper the
penalty introduced in many cases does not increase the bias and always reduces the root mean square
error. In this respect, it is worth noting that the least square estimator used for linear regression
provides unbiased estimates of the coefficients, while MLE of nonlinear models is known to be
consistent but biased in finite samples. It is also interesting to observe that the values of bias and mean
square error reported in this paper are the average over all the items. Thus, considering a single item,
it is possible to observe an increment of the bias.

Our approach shares some similarities with the marginalized maximum a posteriori estimation
proposed in [13], where some prior distributions are assumed on the parameters and an EM algorithm
is then implemented. The main difference between the two approaches lies in the treatment of the
parameters of the prior distributions. While in [13] the parameters of the prior distributions are
fixed, in our approach the parameter λ is estimated by K-fold cross-validation. In this respect, it is
important to have only one parameter to estimate, since cross-validation would become impractical
for more parameters. Despite there being only one parameter that determines the amount of shrinkage
induced by the penalty term, the parameters are shrunk by varying magnitudes, depending on the
log-likelihood function. In like manner, the shrinkage of the coefficients of a regression model is
governed by a single tuning parameter, when the usual ridge or lasso penalties are employed. It is
important to note that the cross-validation error as a function of λ, as shown for example in Figure 1,
suggests that the estimation of the tuning parameter is fundamental, since different values of λ can lead
to a cross-validation error larger than the one obtained with MLE. The simulation studies show that
our proposal is always able to reduce the RMSE and, in many cases, to lower the bias, hence supporting
the usefulness of this approach for the 4PL model.
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RMSE root mean square error

Appendix A

In this appendix we show that the penalty used in Equation (9) is equivalent to the log-density of
a normal distribution, omitting the terms that depend only on the tuning parameters. For simplicity of
notation, the index related to the type of item parameter was omitted. Since

J

∑
j=1

J

∑
k=1

(β j − βk)
2 = ∑

j
∑
k
(β j − µ + µ− βk)

2

= ∑
j

∑
k
(β j − µ)2 + ∑

j
∑
k
(βk − µ)2 + 2 ∑

j
∑
k
(β j − µ)(µ− βk) (A1)

= J ∑
j
(β j − µ)2 + J ∑

k
(βk − µ)2 + 2 ∑

j
(β j − µ)∑

k
(µ− βk)

= 2J ∑
j
(β j − µ)2,

with µ = ∑j β j/J, the penalty terms in (9) are equal to

− 1
2

λ
J

∑
j=1

J

∑
k=1

(β j − βk)
2 = −λJ

J

∑
j=1

(β j − µ)2 = − 1
2σ2

J

∑
j=1

(β j − µ)2, (A2)

for σ2 = 1/(2Jλ).
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