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Abstract: Behavioral data are increasingly collected over the Internet. This is particularly useful
when participants’ own computers can be used as they are, without any modification that relies on
their technical skills. However, the temporal accuracy in these settings is generally poor, unknown,
and varies substantially across different hard- and software components. This makes it dubious
to administer time-critical behavioral tests such as implicit association, reaction time, or various
forms of temporal judgment/perception and production. Here, we describe the online collection and
subsequent data quality control and adjustment of reaction time and time interval production data
from 7127 twins sourced from the Swedish Twin Registry. The purposes are to (1) validate the data
that are already and will continue to be reported in forthcoming publications (due to their utility, such
as the large sample size and the twin design) and to (2) provide examples of how one might engage
in post-hoc analyses of such data, and (3) explore how one might control for systematic influences
from specific components in the functional chain. These possible influences include the type and
version of the operating system, browser, and multimedia plug-in type
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1. Introduction

The Internet provides the opportunity to collect information from human participants across
infinite distances, wherever there is an on-line computer. Compared to an investigator traveling to
where the participants are or participants traveling to a laboratory, web-based data collection tools can
reach more people at a lower cost. A large-scale transfer of behavioral data collection to the Internet
has consequently taken place over the last decades, and it has become established practice to collect
questionnaire and survey data through web interfaces. This is accompanied by an increasing availability
of online platforms and software tools that reduce the demands on researchers to design web-interfaces,
and to manage the technical intricacies of client-host communication, database management, and
multi-platform variability [1–15]. “Platform” here refers to the combination of technical alternatives
in any given console, including the computer type and performance, its input and output devices,
the operating system (OS), and, in the case of web-based measurements, the browser and its plug-in
applications, as well as the quality of the Internet connection.

Many types of measurements remain dependent on traveling, for obvious reasons, such as brain
imaging and physical performance tests. Between their high level of physical interaction and temporal
precision, and the corresponding low levels in a typical questionnaire, there is a range of measurements
that could in principle be made with the input and output devices and the versatility of a personal
computer connected over the Internet. Examples include memory, cognitive, and perceptual tests,
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ratings of audio or video material, and implicit association or so-called priming experiments, where
participants are exposed to images of such short duration that it is not consciously perceived. Such
types of measurements are less often administered over the Internet. One obvious reason is that they are
much more specific than is a questionnaire, so there is less chance that a generalized software will suit
the particular requirements. Another reason is that the ways in which visual and auditory stimulation
varies across platforms may be critical for test performance, whereas this is of no consequence for
corresponding in text in a questionnaire. A third reason is that many tests rely on temporal accuracy
in stimulus presentation or response measurement, which is known to be poor and to vary across
general-purpose computer systems [9–11,13,16]. Both temporal delay and variability that vary across
platforms decrease reliability and may even obliterate systematic participant effects. Web-based data
collection provides much less control than laboratory measurements. It is clear that keyboards, sound
cards, mice, and other involved hardware components also vary in the time delays and variances
they add to the behavioral measurements [7]. Web-based time-critical tests have nevertheless been
used with great success. They have enabled very large-scale cross-national studies, of which the BBC
Internet study of sex differences is perhaps the largest to date [17], featuring tests of mental rotation,
object location memory, line angle judgement, and category fluency, all of which include some aspect
of timing. However, the response times and time limits that these types of tests require are on the order
of seconds, while reaction time tests, for example, require a resolution in the range of up to a few tens
of milliseconds [18,19]. Here, we share the experience of a very large data collection of time-critical
reaction time and time interval production data obtained from 7127 adult twins, sourced from the
Swedish Twin Registry. The purpose is twofold.

First, these data have already been reported in about a dozen publications, and will continuously
be used in future studies. It is therefore important to validate them through providing a more
comprehensive and detailed description of the data processing than is possible in reports focused
on their relation to some other variable(s). These data will furthermore, in all likelihood, be used
repeatedly for many years to come, because of the large number of participants, that they belong to a
twin population, the very wide range of variables, and the fact that they can be linked to any other
individual data available in Swedish registers. The Swedish Twin Registry collects data in several
waves across their twin participants’ life time, some of which may be linked from other registers and
some obtained directly from the twins. This means that novel research questions can be applied to
the same individuals, given that the relevant data are already in the database, can be added through
new data collections, or can be linked from other registers. For example, current income, number of
children, or marital status could be compiled from census data. In the present study, we addressed the
so-called STAGE-cohort of Swedish twins born 1959–1985. About one-third agreed to participate in
this data collection wave, which was entirely administered online. Data from this wave have been
utilized in some two dozen studies [20–43].

Second, our efforts to collect also time-critical data online faced us with several problems, some
of which were quite unexpected. Although the technical preconditions constantly change, similar
problems will occur in future on-line collections of time-critical data. These include differences in time
delay or variability between respondents’ computers, which may be related to their hardware and
software configurations. They may be attributed to types and versions of the computer, OS, browser,
browser multimedia plug-ins, and installed device drivers, as well as interactions between these. The
present study provides several examples of such problems, and how they were dealt with. A further
complication is confounds between these aspects and demographic categories, such as the level of
education. Indeed, it is conceivable that having and using an Apple or PC, laptop or smartphone,
iOS or Android, and so forth, varies along the lines of age, sex, occupation, and so on. For example,
reaction times increase with age and tend to be longer for women [18,44], and age and sex might
therefore be confounded with the effects of platform per se. This phenomenon causes more severe
problems than if the variation were merely random, as the demographic categories may, and are even
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likely to, co-vary with critical variables in the research design. We provide examples of how to deal
also with these problems.

The time-critical data analyzed here consist of simple reaction time (SRT) and serial time interval
production (ISIP), which have been reported in four studies so far [18,45–47]. The analysis is augmented
by direct measurements on model platforms, and is segmented by various platform properties obtained
from user-strings from each participant’s computer. In addition, we provide results on attrition rates, the
frequencies of various platform configurations in the data, and their relation to demographic properties.

2. Method

2.1. Participants

Data were collected from October 2012 to May 2013 from the STAGE cohort of twins born between
1959 and 1985 [48]. This cohort is part of the Swedish Twin Registry (STR), and has been involved in
one previous data collection wave that took place in 2005–2006 [48,49]. The full sample that completed
the present wave consisted of 11,543 twins—5651 singletons and 5892 that were part of a complete twin
pair. The sample comprised 5651 females and 5792 males, with ages between 27 and 54 at the time of
responding to the survey (M = 40.7, SD = 7.75). The study was approved by the Regional Ethics Review
Board in Stockholm (Dnr 2011/570-31/5, 2011/1425-31, and 2012/1107/32). We approached all twins
in the cohort (N = 32,005) by a letter sent to their residence addresses, containing a brief description
of the study, and a statement that their participation was voluntary and may be discontinued at any
time and that their commencing the web survey would constitute giving informed consent. The letter
contained an individual pass code that the participants used to log in to the web survey.

2.2. Instruments: Overview and Instructions

The data collection comprised dozens of instruments (e.g., intelligence tests, personality inventories,
clinical evaluation scales) and hundreds of other survey items in total. Many of the latter were
customized, concerning, e.g., musical behaviors and experiences, and others were obtained through
standardized instruments adapted for the online survey. Here, we have focused on the time-critical
tasks, and mention other variables only when they were actually used for the present analyses. Those
variables are age, sex, level of education, and intelligence. The two latter are described in Section 2.2.4
below. Age and sex were determined from the STR records.

The time-critical tasks were implemented both as Flash and Shockwave media players, the user
interfaces of which were identical. It appeared as a white box in the centre of the browser window,
approximately 100 mm tall and 150 mm wide, depending on screen size and resolution. General
instructions appeared in black font in the left part of the application window. They were preceded
by a Flash application that tested the sound and user input, and managed installation of the media
players. In-house experimentation and pilot testing revealed that Shockwave was superior in timing
performance, but that it was less commonly installed on users’ computers. Hence, we could not hope
to gather even close to all the data with our preferred software, but we still did not want to sacrifice
its superior performance by mandating the use of Flash. It was, on the one hand, undesirable to
allow this source of variation, but there were substantial advantages in that Shockwave could provide
asynchronies (see Section 2.2.3) and more accurate timing, and the consequences were, on the other
hand, manageable, as the user strings would tell us which application was used. We therefore settled
for a five-tier procedure, which is described in Section 2.5.

The time-critical tasks appeared about 3/4 in the full survey, and were preceded by a test of
sound and keyboard functions, as well as of their understanding of the interface. The description and
instructions that the participants were given at this point can be found in Appendix A: Instructions for
sound and keyboard test. Confirming that all this worked moved them on to the first practice trial. If
they instead clicked the button saying that the sound and keyboard did not work properly, they were
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given the option of running the sound test again (presuming that they made some changes to their
set-up).

The stimulus sound files were 250 ms in duration and occupied about 10 kb in wave format, with
22,050 Hz sampling rate. The SRT and ISIP tasks used the same cowbell sound, which had a 2 ms
attack before reaching the maximum amplitude, which waned off to about half after 25 ms. The CRT
task had sounds of breaking glass and a car horn, both with an attack shorter than 5 ms and a 200
ms sustain. The sound files were pre-buffered when the application started, to avoid delays when
reading the sample into the sound card buffer. Timing data were recorded as inter-onset intervals
(IOI), computed as the difference between the current master clock time stamp and a previous one,
defined by the task at hand. No filtering was applied or needed at the recording stage. In the RT tasks,
responses occurring before the stimulus were not registered at all, and missing responses in the ISIP
task simply added the preceding duration to the one before the next response.

2.2.1. Simple Reaction Time (SRT) Application

The instructions for this task were: “Your task is to press the space bar as fast as possible after
each sound. Use your best/dominant hand. Wait until you hear the sound, and then press the space
bar. Click ‘Start’ to begin the test”. When the participant started the first trial there was a silent interval
randomly varied from a rectangular distribution from 1.5 to 3.5 seconds before the stimulus was
presented through the computer’s speaker or headphones, whichever was connected. The stimulus
consisted of a cow-bell sound, whose loudness depended on the equipment and the participant’s
settings in the previous set-up stage. A green box with the text “Waiting for your response!” appeared
simultaneously with the sound in the middle of the application window, approximately 20 mm tall
and 60 mm wide depending on screen size and resolution. This box disappeared when the bar was
pressed, which issued the next random interval, and so forth. The application recorded the time
interval from the stimulus presentation to the space bar response and stored it in temporary memory
until the application ended, when RTs from all blocks of trials were sent to the server. The application
was run twice, as detailed in Table 1, the durations of which were about 30 s for the first and 75 s for
the second task. The instructions were repeated between blocks.

Table 1. Summary characteristics of the timing tasks.

Number of
Responses Number of Data Used for Analysis

Task Block IOI (ms) RT/ISMS ISIP RT ISMS/ASYNC ISIP

SRT training 1 1500–3500 10 10
SRT 2 1500–3500 25 25

CRT training 3 1500–3500 12 0
CRT 4 1500–3500 25 25

ISMS/ISIP training 5 581 12 20
ISMS/ISIP 6 524 30 35 28 * 33
ISMS/ISIP 7 819 30 35 28 * 33
ISMS/ISIP 8 655 30 35 28 * 33
ISMS/ISIP 9 1024 30 35 28 * 33
ISMS/ISIP 10 655 12 30 28
ISMS/ISIP 11 524 12 30 28

Sum 228 220 60 112 188

Note. * = only for the Shockwave media player.

2.2.2. Choice Reaction Time (CRT) Application

This two-alternative choice reaction time (CRT) was identical to the SRT application, except that it
produced one of two sounds, and the task was to press a key on the right side of the keyboard if it was
a car horn or a key of the left side if it was the sound of breaking glass. Before the CRT task there was a
training block with 12 trials, which also established in the participant the correct association between
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each hand with each of the two sounds. The data from the CRT task were not used for correction,
because they were produced under identical conditions as the SRT data and are therefore redundant
for this purpose.

2.2.3. Isochronous Serial Interval Production (ISIP) Application

This application implemented the commonly called “synchronization-continuation task”, which
consists of isochronous sensorimotor synchronization (ISMS) to a series of sounds that introduces
the pace with which to continue producing intervals (ISIP) when the sounds cease. This task has a
long history and has been used to discover many different aspects of timing behavior [50–56]. The
ISMS data will not be considered here because they were, being attained through the same time-critical
processes, assumed to have the same timing characteristics as the ISIP data. The instructions were:
“Your task is to synchronize to the sounds by tapping the space bar. Use your best/dominant hand.
When the sounds cease, continue tapping as before until you hear the word ‘stop’. Click ‘Start’ to begin
the test”. The stimulus consisted of a cow-bell sound, whose properties and presentation were the
same as for the RT tasks. The application recorded the IOI between each pair of successive taps, and
stored them in temporary memory until the application ended, when IOIs from all blocks were sent
to the server. The Shockwave version also recorded the so-called asynchronies, that is, the intervals
between the stimuli and the taps during the synchronization phase, whereas the Flash version could
not do this due to too long computation times that caused the application to lag. The ISIP application
was run seven times, with IOIs as shown in Table 1.

2.2.4. WMT Application and Education Level

Intelligence was measured with the Wiener Matrizen Test (WMT) [57], a 24-item matrix reasoning
test, which was implemented in Flash and appeared about mid-point in the full survey. A more detailed
description of this implementation is found in Mosing and colleagues [27,28,45]. Education was
self-reported, the item appearing about 30 items after the WMT. Participants responded by choosing
one of the following options from a bullet list, with the question “Which is your highest level of
education?”: (1) Primary school (not completed), (2) Primary school (completed), (3) high school (not
completed), (4) high school (completed), (5) tertiary education beneath university (not completed), (6)
tertiary education beneath university (completed), and (7) university education (not completed), while
8, 9, and 10 denote completed university degree, licentiate, and doctoral degree, respectively.

2.3. Overview of Time-Critical Task Data

Table 1 lists the time-critical tasks in the order that they were administered, and describes their
parameters and the number and type of data that they generated. Either the Shockwave or Flash
application was used to generate the data, according to the procedure described in Section 2.5.

The whole suite of 11 time-critical tests consisted of two blocks of SRT trials, two blocks of CRT
trials, and seven blocks of ISMS/ISIP trials with different inter-onset intervals (IOI). As indicated
in Table 1, each participant generated 508 unique time intervals in total, 360 or 248 of which were
analyzed. This means that the 7121 participants nominally generated about 3.6 million intervals in total,
of which ~751 thousand from the Flash application and ~1.4 million from the Shockwave application
were analyzed.

The first of the SRT, CRT, and ISMS/ISIP blocks were for training, and data from the CRT training
block were not recorded. The two last of the ISMS/ISIP blocks were for replication of the 524 and
655 ms ISIP. These blocks had few ISMS responses, which were not analyzed for ISMS/ASYNC.
The four longer blocks (6–9) thus yielded three types of data: IOIs of taps on the space bar during
synchronization (ISMS), during production (ISIP), and asynchronies during synchronization (ASYNC).
However, ASYNC data were available only for the Shockwave application. This means that a complete
session yielded three reaction time, seven ISIP, four ISMS, and zero or four ASYNC data blocks; that is,
14 or 18 blocks per participant.
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2.4. Direct Measurements on Model Platforms

The web-based Flash timing applications were run on eight computers with different configurations
to obtain direct measurements of timing delays and variability. The purposes of this were to (1) obtain
ballpark values of what variation we could expect from the data collection proper, (2) identify possible
errors or weaknesses in our code, as it interacts with different hard- and software configurations, and
(3) obtain specific values for certain hard- or software versions that could be used for error correction
in the real data. The Shockwave applications were not developed at the time of this testing. The PC
computers were all HP Compaq dx2000 with 2.4 GHz clock frequency and 533 MHz bus frequency,
and the Apple computer was an iMac 27” (A1312) with 2.66 GHz clock frequency. Testing employed a
customized computer keyboard that simulated a space bar press when an electric signal was received
through a cable. This cable was connected to the audio output of the tested computer, thus creating a
stimulus-response loop. The hardware latency in this loop was negligible (below 100 us). The SRT
application was tested by configuring it to collect 400 responses, and once the operator clicked on
“start”, the application would produce random foreperiods ending with a sound, which immediately
created a response whose latency from the sound was recorded, which also started the next foreperiod,
etc. The choice reaction time application was not tested because it used the same time-critical code and
was therefore assumed to have the same timing characteristics as the SRT. The ISIP app was tested by
configuring it to 1 synchronization response and 400 continuation responses. The operator started
an electronic metronome connected to the customized keyboard and then clicked on “start”, and the
application then recorded the intervals between each pair of subsequent sounds. The means and SDs
of these data are listed in Table 6.

2.5. Procedure

In total, the survey had 343 verbal or rating scale items, the intelligence test with 24 items, the
11 blocks of time-critical trials listed in Table 1, and also four music ability tests for rhythm, melody,
and pitch discrimination, as well as absolute pitch naming. The music-related tests are not described
here, as they have been reported in detail elsewhere [21,22,28,32,36,41,58,59]. However, only those
respondents who played a musical instrument and had been active in sports, and who had done this
throughout their childhood, responded to all of these items. There was a considerable amount of
branching, such that if one had not received music lessons or been involved in a sport during any of
four age ranges (0–5, 6–11, 12–17, and 18 until the present), items relating to those activities during
those age periods were skipped. This is why the number of items varies in the following description.

The survey began with an opportunity to install Shockwave, if it was not detected on the
computer. Then followed 17–59 items about music experience and possible music training, depending
on branching due to responses to earlier items about music experiences, then 20 items related to
motivation, 1 to handedness, and 1–9 to sports activities, depending on branching due to a response on
involvement in sports activities. Then followed up to 40 items about flow experiences, depending on
branching by music and occupational involvement, and 56 items related to personality, which makes a
total of up to 185 items. After this came the WMT, followed by 46 items about occupational status
and preferences and further personality traits, 20 items about emotional reactions, and 11 items about
health. Then followed the timing and musical ability tests, the instructions to which can be found in
Appendix A: Instructions for timing and musical ability test.

After this, a Flash application tested the sound reproduction and the key functions of the computer,
and branched further to various routes for installing the Shockwave or Flash software, if required.
Shockwave was presented first in the web questionnaire, as it was found to have superior temporal
accuracy. If the computer did not have Shockwave installed, participants were again given the option
to download and install it. Those who declined, or if the installation failed, were branched to the
Flash application instead. If Flash was not installed, the participant was given the option to download
and install it. Those who declined, or if the installation failed, were branched to the next item in the
questionnaire, and continued responding to the next 139 items, comprising 49 about creative activities,
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20 about psychological experiences, and 1–12 about work environment, depending on branching due
to a response on occupational involvement. After completing the last verbal and rating scale items, a
third attempt was made to complete the time-critical tests, and to install a media player if needed.

2.6. Design and Analysis

The following analyses were based on the timing data from the SRT and ISIP tasks and the so-called
user strings obtained from the system through the browser, which provides codes that designate,
amongst other things, the operating system (OS), browser, and multimedia plug-in type (media player),
and version numbers. These system properties can be considered as several independent variables
that might affect the timing accuracy and hence the validity of time-critical measurements at the same
time, as there may be other variables not covered by the user string, such as computer hardware
properties. The number of levels in each of the variables used in the following analyses varied from
two, for the type of media player (Flash or Shockwave), three operating systems (OS), up to nine OS
versions, and about 50 media player versions. These variables were considered nominal, i.e., we did
not expect any particular relationship between levels, such as OS or other software types or versions,
and were estimated through mean differences and test that were appropriate, such as t-test or Analysis
of Variance (ANOVA).

The analyses of platform effects on timing accuracy were conducted in two main steps. Because
we already know about systematic effects of demographic variables such as age and sex, but we do not
know if there are any systematic associations between these variables and possible undocumented
system properties, it made more sense to correct for these on as broad a level as possible before both
investigating, and correcting for, effects on more narrow levels. The results were therefore analyzed for
each OS separately in the first step, controlling for age and sex, since these variables entail direct effects
on timing not confounded with OS versions. Age is a continuous ratio scale variable, and was therefore
analyzed with linear regression. Based on these corrections for individual demographic variables, the
data were, in the second step, corrected for the differences in intelligence (WMT) and education level
between users of different OSs, in order to enable assessment of possible interactions between all types
of method variables. The rationale for this is that the present design had no control over these variables,
that is, the equipment that the participants chose for responding to the survey, and any systematic
interaction between the system properties and any properties of the participants that may affect their
performance thus constitutes an inherent confound. Note that this latter correction is indirect, in
that it involves the correction of timing variables on the basis of (1) the relationships between human
timing and WMT and human timing and education level, and (2) extant group differences in WMT
and education level between operating systems.

3. Results

For the time-critical tests, we computed so-called derived variables for each block of intervals,
thus reducing the 10–35 data to 2 data, one central tendency and one dispersion measure. The ISIP
and ISMS data were thus described by the mean (M) and standard deviation (SD) and the reaction
time data by the median (Md) and the inter-quartile range (IQR). Using non-parametric moments
eliminates the influence of possible occasional long delays that typically appear in multi-tasking
computer systems [16]. The ISIP/ISMS means were not considered, because they typically reflect
the stimulus IOIs accurately, and therefore do not provide information relevant for timing problems
incurred by the computer system. For the present purposes, ISIP/ISMS variability was furthermore
aggregated across blocks to obtain more stable estimates. Because this variability increases with the
IOI, it was standardized to the dimensionless coefficient of variation (CV) × 100 before computing the
mean across the six ISIP blocks (6–11). In other words, CV expresses dispersion as a percentage of the
mean. Finally, the mean ASYNC was computed as the mean across the four ISMS (6–9) blocks of the
mean across the 28 time intervals in each block. Derived variables that reflect dispersion/variability are
denoted by a trailing V, and the final list of variables for the following analyses was therefore SRT,
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SRTV, ISIPV, ISMSV, and ASYNC, that is, four or five data per participant, depending on whether Flash
or Shockwave was used.

3.1. Completeness of Data

There were 6916 complete timing files, 3029 of which were made with the Flash application and
so lacked asynchrony data, and 3887 made with the Shockwave application. Another 36 data files had
minor errors that could be repaired without data loss, such as too many data in some series, which
increased the total number of complete timing tests to 6952. There was at least one complete block
of trials from a total of 7127 participants, and the missing data were distributed as follows. A total
of 8 participants had 9 complete blocks, 15 had 8 complete blocks, 13 had 7 complete blocks, 18 had
6 complete blocks, 9 had 5 complete blocks, 5 had 4 complete blocks, 19 had 3 complete blocks (i.e.,
only SRT), 68 had 2 complete blocks, and 21 had only the first RT training block. There were thus
data from at least one block for 3941 participants collected with the Shockwave and 3186 with the
Flash application. This total of 7127 cases was used in following analyses, while their total of 1089
missing blocks of data were ignored. We have no explanation for why some blocks were missing. It is
probably because of randomly occurring errors in the chain of operation from the user computer to the
downloading of data files from the server. It is also possible that some participant behavior caused the
application to proceed without recording any data, although there was no explicit option to skip a
survey item.

Some blocks with many outlier values were also excluded. For ISIP 138 blocks of data were
excluded because they had more than 50% outliers, according to an automatic outlier elimination
procedure. The purpose of this procedure was to exclude clearly non-representative values due to
technical triggering problems or failure to perform the task, such as if the participant missed one or a
few beats due to fatigue or confusion. Such gross errors would increase the SD dramatically, and it
would therefore not make sense to use SD as a criterion. Instead, the outlier elimination procedure
replaced values that differed more than 50% from a seven-point running average with the running
average excluding the outlier itself. For example, if the nominal value was 524 ms and the running
average was 578 ms, a value of 321 ms would be replaced by 578 because 321 + (524/2) = 577, which
is less than 578. A too large value would in this case be larger than 578 + (524/2) = 834. Also, SRT
blocks were excluded if their median was less than 100 ms (N = 41) or their IQR was greater than
1560 ms (N = 36). Table 2 lists how the total 113,496 data points, after 358 such outlier blocks had
been excluded, were distributed across the five derived variables. Thus, excluding a whole response
sequence with 10-35 data was very rare, constituting less than 0.5% of all blocks. This small number of
instances made it impossible to assess if there was any possible systematic relationship between this
phenomenon and any platform or participant properties.

3.2. Demographic Analyses

First, we examined whether there were any systematic differences in demographic properties
amongst users with different operating systems or platforms. Because reaction times increase with age
and tend to be longer for women [18,44], such differences might confound the effects of platform per se
if proportions of sex or age differ amongst users of OSs. Windows users (N = 7314, 41.2 yrs) were three
years older than Mac OS (N = 1139, 38.3 yrs) and four years older than Linux (N = 52, 37.2 yrs) users.
Women were somewhat more likely to use Mac OS than were men (13.7% vs. 13.0%), while the opposite
pattern was found for Windows users (84.8% women vs. 86.4% men). The largest platform difference
was that Flash yielded about 100 ms longer reaction times than did Shockwave, but there were no
systematic age or sex differences in the proportions of users across media players. Simple regressions
with age as predictor, the parameters of which are listed in Table 3, showed substantial and statistically
significant effects for SRT and SRTV. Comparisons of means across the sexes revealed highly statistically
significant effects, according to which the women’s values were greater; 2.0 ms longer for SRT (t = 9.46,
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p < 0.00001), 1.06 for SRTV (t = 13.82, p < 0.00001), and 0.4 for ISIPV (t = 11.89, p < 0.00001). Women
were also 7.6 ms earlier in their synchronization (−29.1 ms) than were men (−21.5 ms, t = 4.54, d = 0.15).

Table 2. Numbers of data points for each of the five derived timing variables.

RT and RTV * ISMSV ISIPV ASYNC

Task Block IOI (ms) Comp Out Comp Out Comp Out Comp Out

SRT
training 1 7105 16

SRT 2 7108 2
CRT 4 7035 2

ISMS/ISIP
training 5 581 6913 105

ISMS/ISIP 6 524 6990 24 6990 27 3935 3
ISMS/ISIP 7 819 6978 27 6976 27 3932 0
ISMS/ISIP 8 655 6964 24 6960 26 3921 0
ISMS/ISIP 9 1024 6953 21 6956 16 3910 2
ISMS/ISIP 10 655 6941 18
ISMS/ISIP 11 524 6928 18

Sum 21,248 20 27,886 96 48,664 237 15,698 5

Note. Comp = complete blocks after possible correction. Out = outlier blocks that were not used. * Either the
central measure (M or Md) or dispersion (SD or IQR) was used for all derived variables except RT, from which both
were used.

Table 3. Regression results for age.

Dependent Variable Intercept B β p N

SRT 298.72 −0.3535 −0.026 0.0281 6963
SRTV 41.04 0.186 0.030 0.0108 6963
ISIPV 4.97 −0.0036 −0.020 0.092 6963

ASYNC 3.03 0.0057 0.004 0.156 3880

Intelligence and education levels were also considered as possible confounds. According to
one-way ANOVAs, there were no significant effects of the Windows versions (F6, 6083 = 1.69, p = 0.116)
or Mac OS versions (F17, 929 = 1.47, p = 0.096) listed in Table 4 on the level of on education. Information
about Linux distributions was not provided by the user string. No significant relationship was found
between intelligence and Windows version (F6, 6066 = 1.61, p = 0.140) or Mac OS version (F17, 926 = 0.63,
p = 0.86). However, there were highly significant differences between the three OSs in both WMT
(F2, 6992 = 18.6, p < 0.0000001) and level of education (F2, 6991 = 52.01, p < 0.0000001; all contrasts p
< 0.005 according to Tukey’s LSD test, the only exception being between Windows and Linux for
education level. Mean WMT scores were 12.92 for Windows (N = 5997), 14.10 for Mac OS (N = 936),
and 15.49 for Linux (N = 45). With a grand mean WMT of 12.89 and a SD of 5.31 in the whole sample
that took the test correctly (N = 8404), these differences correspond to 3.33 IQ points between Windows
and Mac OS, and 4.71 IQ points between Mac OS and Linux. The mean level of education was 6.31 for
Windows (N = 5997), 7.18 for Mac OS (N = 935), and 6.62 for Linux (N = 45).
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Table 4. Means and standard deviations for each operating system, operating system version, and type
of media player (Flash or Shockwave) across participants, corrected for age and sex. Values involving
significant differences between OS versions are marked grey.

ISIPV ASYNC SRT SRTV

Windows Using Flash a OS ver N
(2345) M SD M SD M SD M SD

XP 383 4.810 1.399 362.08 106.87 53.13 54.57
Vista 312 4.592 1.378 358.57 129.49 56.45 88.58

7 1578 4.654 1.515 345.40 111.07 48.15 42.05
8 54 4.578 1.145 362.47 122.35 44.60 16.15

Windows Using
Shockwave b OS N

(3727) M SD M SD M SD M SD

XP 696 4.649 1.387 −40.54 49.85 232.31 104.05 50.473 90.04
Vista 639 4.598 1.466 −13.40 52.29 259.46 41.90 41.339 47.33

7 2326 4.574 1.265 −20.32 49.98 253.40 69.16 44.637 49.23
8 53 4.470 1.157 −12.18 54.32 256.11 38.98 44.780 32.92

Mac OS Using Flash c OS ver N
(697) M SD M SD M SD M SD

10.5 15 4.438 0.949 241.05 47.15 39.46 14.12
10.5.8 24 4.460 1.161 240.62 36.79 46.07 33.03
10.6 65 4.598 1.509 245.15 38.93 43.00 21.14

10.6.8 171 4.346 1.156 260.88 84.14 44.33 33.62
10.7 41 4.189 1.595 247.17 38.40 41.84 23.84

10.7.4 26 4.104 1.068 280.21 112.27 42.25 18.17
10.7.5 138 4.289 1.120 267.67 83.48 42.42 18.28
10.8 28 4.601 2.026 245.24 35.50 50.55 23.83

10.8.2 157 4.465 1.267 273.36 86.78 49.20 30.38

Mac OS Using
Shockwave d OS ver N

(234) M SD M SD M SD M SD

10.5 9 4.108 1.283 −2.20 71.84 255.54 68.71 41.00 15.65
10.5.8 14 6.602 2.527 17.45 36.92 268.35 106.56 125.39 311.71
10.6 21 4.244 1.226 2.76 35.24 241.77 31.31 46.51 22.47

10.6.8 60 4.287 1.239 −0.96 47.12 250.82 39.06 40.42 17.88
10.7 12 3.826 1.110 −3.54 68.50 250.86 34.12 38.84 14.53

10.7.5 43 4.323 1.029 −1.85 46.17 247.14 34.22 43.51 22.56
10.8.2 51 4.334 1.156 −15.03 48.74 240.89 40.86 49.49 28.37

Linux Using Flash OS ver N M SD M SD M SD M SD

44 5.092 1.947 654.63 151.10 56.92 49.44
a Three cases were omitted with unknown version, 1 case with Windows 2000, and 13 cases with XP 64-bit (5.2). b

Five cases were omitted with unknown version and eight cases with XP 64-bit (5.2). c Five cases were omitted with
10.4, 8 w. 10.4.11, 3 w. 10.6.3, 3 w. 10.6.7, 4 w. 10.7.2, 4 w. 10.7.3, and 3 w. 10.8.1. d Two cases were omitted with 10.4,
2 w. 10.4.11, 1 w. 10.6.3, 1 w. 10.6.6, 3 w. 10.6.7, 1 w. 10.7.1, 2 w. 10.7.3, 7 w. 10.7.4, and 8 w. 10.8.

3.3. Controlling for Demographic Variables Procedures

The first step in the analysis, as mentioned in the method section, involved controlling for age
and sex, since these variables are known to affect both ISMS/ISIP timing [46] and SRT [18,44]. These
corrections were applied to the timing data set used to evaluate and correct for platform differences, not
to the final data set used for behavioral analyses, as for them age and sex differences may be relevant.
Based on the slopes (B values) in Table 3, the values were corrected with −0.35 ms per year for SRT and
−0.18 ms for SRTV, according to highly statistically significant effects. No corrections were made for
ISIPV and ASYNC, because the age effects were both small and non-significant. The women’s values
were corrected by –2.0 ms for SRT, −1.06 for SRTV, −0.4 for ISIPV, and 7.6 ms for ASYNC, according to
the sex differences listed above (only for those using Shockwave).

In the next step, differences between OSs and OS versions were examined on the age and
sex-corrected data. For this analysis, the number of levels of one variable differed across the levels
of other variables (OS type, OS version, Flash/Shockwave), which made factorial designs unfeasible.
We therefore first assessed effects within each condition given by the available combinations of other
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variables, in this step OS type and OS version. Significant effects were then subjected to specific tests
of interactions.

One-way ANOVAs and Tukey’s LSD post-hoc tests were used for testing effects of OS version,
separately for each OS. The overall differences between Flash and Shockwave across Windows versions
were 4.67 vs. 4.59 for ISIPV (p = 0.028), 350.0 vs. 250.1 ms for SRT (p < 0.000001), and 48.6 vs. 44.0 ms
for SRTV (p = 0.00032). Because this is an enormous difference for SRT in particular, analyses in this
step were also performed for each OS and timing application type separately. Starting with Windows
and Flash, no significant differences were found between OS versions for ISIPV, neither for Flash nor
Shockwave application data. There were only two significant differences for RT, in that Vista had
13.2 ms longer SRTs than Windows 7 (W7) (p = 0.0052) and 3.5 ms shorter SRTs than Windows XP
(p = 0.0460). The only significant difference for SRTV was that Vista had 8.3 ms higher variability than
W7 (p = 0.0072).

For data obtained with the Shockwave application running in Windows, which featured the
additional asynchrony measure (ASYNC), there was a substantially larger number of significant
differences between OS versions. This is apparently a consequence of the Shockwave application’s
smaller variability, which renders mean differences more likely to be statistically significant. XP had
significantly shorter SRTs than all other Windows versions. In order of magnitude, XP had 21.1 ms
shorter SRT than W7 (p < 0.000001), 23.8 ms shorter than Windows 8 (W8) (p < 0.0223), and 27.1 shorter
than Vista (p < 0.000001). The opposite pattern was found for SRTV, in which case XP exhibited 5.8 ms
higher variability than W7 (p < 0.0211) and 9.1 ms higher than Vista (p < 0.0044), but no significant
difference involving W8. Descriptive data for each combination of media player, OS, and OS version
are listed in Table 4.

The overall differences between Flash and Shockwave across Mac OS versions were very small for
ISIPV (4.398 and 4.473, respectively, p = 0.45), and moderate for SRT and SRTV. Shockwave yielded
12.6 ms shorter SRTs (248.5 vs. 261.1 ms; p = 0.016), but larger SRTV (54.1 vs. 45.3 ms; p = 0.022). There
were 16 versions of the Mac OS amongst the participants that used Flash, ranging from 10.4 to 10.8.2.
Table 4 lists the data for versions with more than nine data, thus ignoring versions with so few data that
individual differences were likely to play a greater role than OS version (see Table note for excluded
OS versions). Tukey’s LSD post-hoc tests showed that RTs were 35.0 ms shorter for version 10.6 than
for 10.7.4 (p = 0.048), and 28.2 shorter for version 10.8.2 (p = 0.012), that SRTV was 6.8 ms larger for
version 10.8.2 than for 10.7.5 (p = 0.036), and that there were no significant differences for ISIPV.

Mac OS featured 15 versions amongst the participants that used Shockwave, ranging from 10.4 to
10.8.2. The numbers of Shockwave users were substantially smaller in each Mac OS version group,
ranging from 1 to 60, as compared to 3 to 171 for those who used Flash. As no significant differences in
SRTV, ISIPV, or ASYNC were found amongst OS versions with reasonably large numbers of cases, the
corresponding values are not listed in Table 4.

Linux featured five version numbers, a zero for unknown (40 cases) and 12.04 (2 cases), and one
each of 9.10, 10.04, and 12.10. This was the only information provided by the user strings, which to our
knowledge does not say anything about the Linux distribution. However, the small numbers of cases
would have rendered that information useless anyway. Because of the small numbers as well as similar
values amongst Flash users, the data were computed across all 44 cases with complete Flash timing
data. What we can conclude from this set of analyses is, first, that there are substantial differences
between Flash and Shockwave when they run in Windows, but not when they run in Mac OS, and,
second, that there are substantial differences between some Windows versions but not between Mac
OS versions. It also appears as if the Linux systems used here have very much larger delays and
variability, but caution should be taken because of a small number of cases and uncertainty regarding
Linux distributions. Taken together, the following analyses should, as a consequence, examine these
combinations separately.

The third step of the analysis regarded possible relationships between WMT and level of education
on the one hand and the three types of timing variability. As a reasonable compromise based on the
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previous analyses, these relations were examined for each OS and type of media player separately, to
rule out likely spurious effects due to interaction amongst OSs and Flash vs. Shockwave. Linux was
not included because of the small number of data. Because of the relationships between WMT and
both age and sex [27,46], the regressions used the age and sex-corrected variables. Specifically, linear
effects were estimated with multiple regressions with each timing variable as dependent variable and
WMT and level of education as predictors. The amount of variance explained by the regression models
varied from 0.3 to 3.5 percent, and their parameters are listed Table A1 (Appendix A). As it turned out
that the slopes with WMT as a predictor of ISIPV were quite similar for each OS and media player
combination, their mean slope of −0.0389 was used as a correction factor. Likewise, the mean slope for
SRT was −1.171 and for SRTV it was −0.846. Finally, the slopes for ASYNC, that were only available for
Shockwave data, were 0.92 for Windows and 0.60 for Mac OS. As these numbers were quite different,
they were applied as-is.

The slopes with education level as a predictor were considerably smaller and mostly non-significant,
indicating that WMT had already accounted for most of the systematic variance, as WMT and education
level were themselves substantially correlated (r = 0.289, N = 8084). The slopes for ISIPV in Windows
systems were significant, however, so their mean slope of −0.052 was used. Combining these figures
with the grand means for WMT (13.09) and level of education (6.43) amongst all participants who
completed the timing tests (N = 6996) yielded the correction factors listed in Table A2. These are
simply the values that were added (or subtracted, in case of negative sign) from all the timing data
for each combination of OS type and media player type. Their function is thus to correct for purely
participant-specific effects that could be attributable to age, sex, intelligence, and level of education,
but not to correct for platform effects. As such, these corrections should increase possible true platform
effects by reducing other variability.

3.4. Estimating Platform Effects on Behavioral Data Corrected for Demographic Variables

Thus, having corrected for participant-related variables in the data, we proceeded to analyze
differences between browser versions and Flash and Shockwave versions, again for each OS separately.
Inasmuch as significant differences were obtained, the strategy was to infer if they can be related to an
interaction with OS version, and if so we attempted to correct also for OS version. In cases where no
such interactions could be found, the values were accepted as-is. After this, the results were aggregated
for each of the derived variables across all versions with non-significant differences, and tabulated
together with values for those versions that possibly demonstrated significant differences amongst
themselves. Finally, interactions across all these values were sought.

First, as regards numbers, 1111 of Windows users had Explorer, 610 had Firefox, 559 had Chrome,
13 had Opera, and 9 had Safari installed as their browser. Amongst Mac OS users, 471 had Safari, 152
had Firefox, and 72 had Chrome. The OS versions for PC computers running Shockwave were XP
(696), Vista (639), W7 (2326), and W8 (53). The OS versions for PC computers running Flash were XP
(383), Vista (312), W7 (1578), and W8 (54). Apple computers had Mac OS versions 10.5 to 10.8.2, 234
with Shockwave and 697 with Flash. No significant mean SRT differences were found between Mac OS
versions running either Flash or Shockwave, partly owing to small N, in the range 9–171. Again, there
were only 44 participants using Linux.

The analyses uncovered several substantial effects of platform components. Windows versions
with Flash yielded 50–85 ms longer mean SRTs than both Windows with Shockwave and Mac OS with
either Flash or Shockwave. Chrome produced 180–195 ms longer mean SRTs in both Windows and
Mac OS than did all other browsers, which affected 631 cases out of the total 7081 that completed the
RT tests. In addition, smaller but statistically significant differences were found between Windows
versions. Compared to XP, the Shockwave application produced longer mean SRTs in W7 (21 ms), W8
(24 ms), and Vista (27 ms). Compared to W7, the Flash application produced longer mean SRTs in Vista
(13 ms) and XP (17 ms). No other mean differences for either Windows or Mac OS were significant.
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Table 5 lists the means of the derived timing variables as a function of OS (only Windows and
Mac OS) and browser, across all other variables. Linux was excluded because it both had few data (44)
and very large SRTs (~700 ms). Standard deviations (SD) were excluded to conserve space, but except
for SRT they were similar across browsers: for Windows on the order of 1.5% for ISIPV, 69 ms for RT,
and 40 ms for SRTV, and for Mac OS 1.5% for ISIPV, 40 ms for SRT, and 25 ms for SRTV. The much
larger SDs for Windows indicate larger platform differences, and extensive cross-tabulations showed
that its source is Flash versions as well as Flash versus Shockwave, as mentioned before. Across Flash
and Shockwave versions, however, Chrome stood out as yielding approximately 200 ms longer SRTs
than the other browsers (p < 0.01, according to LSD). LSD tests of the 45 Flash versions were conducted
for each OS and browser separately (see Table A3 in the Appendix A for the version numbers). For
Chrome and both Windows and Mac OS, ISIPV was larger for the version indexed 49 and SRT was
larger for those indexed 45–47 (most differences amongst versions indexed 2–49 were also significant,
p < 0.05). There were no differences for SRTV when versions used by less than 10 participants were
excluded. For comparison, the same tests were conducted for Chrome and the 18 Shockwave versions
(see Table A4 in the Appendix A for the version numbers). Whether run in Windows or Mac OS, no
differences were found for any variable with more than 10 data, which was also true when all browsers
running under Mac OS were considered. For Windows, however, this was true only for SRTV, whereas
there were several significant contrasts amongst the Shockwave versions for ISIPV, SRT, and ASYNC.
It could clearly be seen that Flash versions 11.5.311–11.315 yielded qualitatively different data with
higher mean SRT and variability, indexed 45–47 in Figure 1. However, Table A3 also shows that these
version numbers coincided with Chrome, an example of the complexity of these independent variables.

We conclude that the patterns of platform effects are very complex. They contain both strong
confounds in the sense that some Flash and Shockwave versions only occurred together with some
OSs, OS versions, browsers, and browser versions, and difficult evaluations of difference values in
combination with their significance levels and N. What we can safely say is that the presence of relatively
large systematic individual differences, although corrected for some demographic variables, make it
inappropriate to correct for means based on small N. Significant effects occurred repeatedly even for
very small N, which may either be a true platform effect or the result of particularly large individual
differences, a random artefact, or a confound between a platform effect and some unmeasured
individual variable. There is therefore a risk that the correction of relatively small groups introduces
more noise, as it might by chance eliminate a fraction of the true differences between individuals.

Table 5. Mean ISIP variability, SRT, and SRT variability for each combination of OS and Browser (data
corrected for age, sex, WMT score, and level of education).

Windows Mac OS

N ISIPV SRT SRTV N ISIPV SRT SRTV

Explorer 1111 4.667 302.43 49.34 0
Firefox 610 4.644 301.92 49.98 152 4.430 243.50 42.64
Chrome 559 4.757 500.54 50.55 72 4.221 425.83 44.53

Safari 9 4.511 305.04 48.35 471 4.315 238.71 43.98
Opera 13 4.490 267.02 50.32 0

3.5. Direct Measurements

We also attempted to directly measure system delays and variances. The first result we can note
from Table 6 is that all configurations were very accurate in measuring the mean IOIs, whose means
across 400 intervals were all within ±1.3 ms. Differences in delays and variability were substantial,
however. W7 entailed almost three times as long delays as did XP, with Mac OS halfway in between.
Likewise did the Firefox browser entail twice as large variability than did Chrome and Internet Explorer,
but this difference was smaller in W7 than in XP.
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Figure 1. Scatter plots of reaction time as a function of OS and media player versions separately for
Flash and Shockwave.
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Table 6. Timing delays and variability for eight computer systems.

SRT app ISIP app

M SD M SD

Windows XP, Internet Explorer 18.84 2.71 498.67 24.3
Windows XP, Firefox 12.0 23.65 5.96 500.27 9.10
Windows XP, Chrome 22.53 2.89 500.25 4.56
Windows 7, Chrome 85.94 5.73 499.98 10.85
Windows 7, Firefox 12.0 87.80 7.41 500.63 6.61
Windows 7, Internet Explorer 64.43 4.04 500.06 4.04
Windows 7, Chrome 20.0.1132.47 87.72 5.27
Mac OS X 10.7.4, Safari 6.0 53.77 4.36 503.24 6.23

Note. Each value is based on 400 responses. ISIP variability is given in ms, but in the results section in Coefficient of
Variation (CV) x 100, in other words dispersion as a percentage of the mean. For the first row for example, the SD of
corresponds to a CV of 4.86 (24.3/499 × 100 = 4.86).

It is an important result that the timing variability is so large and differs as much across different
software (as the hardware was the same for the Windows platforms). The magnitude of both delays,
variabilities, and their differences across platforms are many orders of magnitude larger than what
might be expected from hardware properties, such as clock frequency. Even the first personal computer,
the IBM XT, with a clock frequency of 4.77 MHz, would entail a temporal variability of less than
1 ms, assuming around 50 basic processor operations per measurement cycle. It is apparently not
the hardware that constitutes the bottleneck for precise timing, but the way that the software is
designed for multi-purpose computers, including the operating systems themselves [16]. This points
to the importance of tracking the software versions in users’ computer when conducting time-critical
online measurements.

There were however several problems. First, the direct measurements did not include the
Shockwave applications, as explained in Section 2.4. Second, the direct measurements provided no
user strings, and version numbers was therefore read off from the applications themselves. That
this information was obtained in a different format than the behavioral tests created confusion as to
its comparability. Third, some platform configurations were not even found in both the benchmark
and behavioral data, and could thus not be applied. Fourth, any way we attempted to relate the
patterns across the eight model systems listed in Table 6 with the behavioral data provided poor
correspondence. For example, the 87.8 ms delay and 6.61 ms variability for a Windows 7 system with
Firefox would indicate that these values could be subtracted from the behavioral values, but in fact,
this would in numerous cases yield negative values, which is of course unreasonable. In concert, these
discrepancies suggest that there are additional factors that affect the timing inaccuracy, be they either
random or unmeasured. If they are unmeasured, they may in fact to some extent be detected by the
post-hoc analysis of the behavioral data. Considering all these concerns, we decided to ignore the
direct measurements in the correction with the argument that we can only be sure that the behavioral
data actually contains the specific system error that we want to control for.

3.6. Correcting for Platform Effects Based on Behavioral Data Corrected for Demographic Variables

Based on the present results and conclusions, the best approach for correction seems to be piecewise
independent N-weighted correction. This means that correction values are calculated independently
for each platform variable and then aggregated for each case. Specifically, the value for each level of
the current platform variable will be subtracted from the mean across all levels, which yields a positive
value when that value is smaller than the mean and vice versa. This is only done for variables that are
in fact independent. Obviously, OS version was only relevant with respect to a particular OS, browser
version only to a particular browser, Flash version only to Flash, and Shockwave versions only to
Shockwave, which means that there were four levels of correction values. The series of these four
values was added to each raw value for each case. To account for N and the risk that values based on
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small N are incorrect one could set a cut-off such that the correction values for platform variable levels
with small N are set to 0. However, as just mentioned, the appropriateness of correcting depends both
on N and the platform effect, which is not directly known. Although it is in principle computable, the
sheer amount of effects to consider would be enormous. A more straightforward method is to weight
the differences by their proportional N according to W(X) = N(X)/Ntotal.

3.7. Implementation of Corrections for Platform Timing Differences

As reported above, the corrections occurred as vectors of N-weighted discrete values related
to each level in several method variables for each variable specifically (e.g., browsers, media player
versions). Because of the complexity entailed by different numbers of levels between methods, and
interactions between methods, the corrections were implemented as iterative subtractions from the raw
values, rather than attempting to produce joint mathematical expressions. Concretely, the corrections
were made with a visual basic script in Statistica 7.1, which subtracted values from a table according
to a conditional loop for each case in the data matrix. To give an impression of the effects of the
corrections, Table 7 shows means and SDs for SRT, CRT, and ISIPV before and after correction. These
statistics are categorized by participant age in Table 7, in order to assess the consistency across some
partitioning of the data, and because there were significant differences across birth years [18].

Table 7. Comparison of means and standard deviations of raw and corrected SRT, CRT, and ISIPV for
each year cohort.

SRT
Raw

SRT
Corrected

CRT
Raw

CRT
Corrected

ISIPV
Raw

ISIPV
Corrected

Age M SD M SD M SD M SD M SD M SD

27 * 295.8 84.9 248.7 35.8 485.0 116.9 442.2 84.9 4.759 1.138 4.688 1.143
28 295.1 99.1 250.4 51.4 503.1 170.9 465.7 150.8 4.821 1.494 4.731 1.501
29 293.6 93.4 247.3 53.8 501.8 144.9 461.7 119.9 4.936 1.468 4.852 1.456
30 303.9 104.1 249.7 62.8 525.5 149.8 480.7 123.8 4.788 1.243 4.700 1.242
31 291.3 104.6 245.0 68.2 517.7 194.0 477.1 177.7 4.974 1.579 4.889 1.589
32 288.3 89.1 242.8 51.2 509.7 127.8 471.2 105.0 4.926 1.429 4.833 1.427
33 282.2 91.2 243.0 58.2 492.5 146.8 461.2 134.6 4.752 1.366 4.661 1.359
34 286.1 91.9 241.3 47.6 516.2 155.6 480.7 145.2 4.863 1.918 4.773 1.919
35 276.8 83.5 238.8 46.1 498.3 110.1 465.6 91.8 4.884 1.179 4.773 1.181
36 274.3 91.4 238.3 52.3 495.1 144.4 463.0 125.9 4.805 1.318 4.696 1.325
37 278.9 90.5 241.0 55.6 499.0 127.4 467.2 110.7 4.814 1.355 4.705 1.361
38 279.8 94.9 239.0 49.1 510.8 143.9 479.6 126.0 4.973 1.433 4.842 1.426
39 275.0 81.5 243.1 49.5 500.6 144.8 472.5 132.7 4.872 1.356 4.764 1.338
40 272.0 90.4 237.6 54.4 506.4 179.2 477.8 164.3 4.868 1.443 4.751 1.453
41 266.9 80.1 235.3 42.7 497.9 121.7 473.1 110.0 4.650 1.238 4.524 1.237
42 287.8 103.2 238.9 66.2 520.3 139.0 484.8 121.6 4.990 1.324 4.879 1.331
43 276.0 82.7 241.1 45.4 511.1 152.0 481.1 140.6 4.831 1.296 4.724 1.312
44 274.9 90.7 241.8 60.2 528.5 233.3 499.2 223.1 4.726 1.091 4.595 1.085
45 266.8 75.3 238.6 49.6 503.0 126.1 477.2 108.3 4.748 1.453 4.627 1.465
46 272.6 82.1 242.8 48.2 510.7 137.8 484.4 124.3 4.620 1.372 4.483 1.355
47 278.3 86.7 246.3 62.6 530.7 156.5 502.5 147.8 4.903 1.497 4.795 1.489
48 273.9 82.0 242.2 56.4 520.1 125.6 491.7 113.3 4.874 1.355 4.756 1.362
49 280.3 84.6 240.0 48.8 526.5 128.5 490.0 103.2 4.712 1.374 4.596 1.382
50 284.7 80.2 249.4 54.0 531.4 162.9 500.1 153.4 4.725 1.421 4.616 1.414
51 291.9 99.5 250.6 62.2 544.4 165.4 506.7 145.2 4.781 1.315 4.656 1.320
52 291.3 99.5 251.3 61.8 547.2 177.0 510.1 156.4 4.840 1.360 4.744 1.376
53 281.4 84.7 251.8 63.2 548.8 239.1 522.5 234.8 4.832 1.333 4.713 1.315

54 * 302.0 110.0 254.5 89.8 557.1 128.5 510.8 115.1 4.984 1.255 4.871 1.259
M across age 282.2 90.6 243.7 55.5 515.8 157.2 482.9 142.2 4.826 1.393 4.718 1.394

N = 7081 for SRT (201–310 * per age group); N = 7033 for CRT (200–306 * per age group); N = 6985 for ISIPV (200–307
* per age group). * excluding 27 and 54 years, for which there were substantially fewer participants, i.e., 64–97.

The differences between raw and corrected values in Table 7 are consistent with the results in
general. The largest differences were obtained for SRT, reflected in very much larger variability for
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the raw values. There was also a tendency that particularly large SDs, as for 30, 31, and 42 years of
age, became more similar to other age cohorts after correction. It is likely that these cohorts had by
chance a more even proportion of Chrome vs. other browsers (see Figure 1 and Tables A3 and A4), or
some other major difference between method variables. For CRT, the differences between raw and
corrected values were smaller but consistently in the direction of lower SDs. This shows that the
correction has decreased variability across individuals, which means it has either decreased variability
due to platform effects or to individual differences per se. Finally, the SD of ISIPV did not decrease at
all, consistent with the fact that these differences between platforms were very small and in no case
statistically significant. It is therefore questionable if the ISIPV correction increased the validity of the
measurements. To assess this issue, a final analysis considered correlations amongst the three timing
measures as well as with a validation variable, for raw and corrected values separately. The most
relevant validation variable present in this dataset was the WMT score, which is also included in Table 8.
Only participants who completed both the WMT and the timing tests were included (N = 6973), and
only one member of each complete twin pair was also excluded (N = 2071) so as not to create spurious
correlations because of their high behavioral similarity.

Table 8. Correlations amongst raw timing values, corrected timing values, and between both raw and
corrected timing values and WMT (intelligence) as a validation variable (N = 4902).

Raw Values Corrected Values

SRT CRT ISIPV SRT CRT ISIPV

CRT 0.585 0.400

ISIPV 0.086 0.137 0.119 0.130
WMT −0.074 −0.106 −0.163 −0.158 −0.119 −0.163

The results in Table 8 are consistent with the presence of platform effects, inasmuch as correlations
between timing measures related to the same (SRT and CRT) aspect (delays) decrease after correction,
but those related to different aspects (delays and variability) increase (SRT and ISIPV). This was,
however, not true for CRT. It is also consistent with decreased error variability, as correlations with
the validation variable (WMT) tended to increase. The correlation between WMT and ISIPV did not
change, however, which probably has to do with these corrections being very small.

4. Discussion

The purposes of the present study were to provide a comprehensive and detailed description
of how these timing data were processed and corrected for platform effects, as they have and will
be used in many studies, and to provide concrete examples of these kinds of platform effects, and
how they can be dealt with. Taken together, the results indicate that web-based collection of these
variables entails considerable loss in reliability, even after correction. For example, SRT has been used in
Mosing, Verweij, Madison, Pedersen, Zietsch, and Ullén [28], Madison, Mosing, Verweij, Pedersen, and
Ullén [47], and Madison, Woodley of Menie, and Sänger [18], and ISIP in Mosing, Verweij, Madison,
and Ullén [46] and Ullén, Mosing, and Madison [45]. Correlations have been about −0.17 between both
SRT and ISIP and intelligence, but around 0.3 between intelligence and related indices that are not
time-critical, such as WMT and rhythm discrimination [46]. Likewise, WMT was stronger correlated
(~0.35) with musical ability test performance than with SRT (−0.10), although SRT and ISIP measured
in laboratory settings are typically correlated with intelligence at 0.3–0.5 [60–62]. The major effects
of the correction were rather to decrease inflated RTs due to system delay, and decrease the mean
inter-individual variability. In accordance with the figures in Table 7, this was found to decrease SD
within each age cohort from 90.6 to 47.9 ms, although it made only a marginal difference to the main
result in a study on secular change in SRT [18].
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The present study could not determine to which extent this lower reliability is due to temporal
inaccuracy inherent in the instruments, or to differences in behavior related to the situation. This is
because the data were collected online, which considerably decreases the researchers’ control over
the participants. Madison et al. [18] discussed several sources of behavior-related reliability threats.
ISIP and reaction time tasks are repetitive and tend to be perceived as boring, which may be one
reason why they might have been affected by the situation more than other tests performed under the
same conditions [21,22,27,29,59]. The threshold for fluking the task may also be much lower when
participants (1) work for free, (2) perform the tests in the comfort of their own homes, and (3) feel less
obligation to anonymous researchers that they have not met, or even know the names of. It can also be
argued that they require more focus and determination to be performed close to the individual’s top
level of performance, compared to the WMT and musical ability tests [59].

The direct measurements of timing inaccuracy, without participants involved, should in principle
yield the best benchmark data for method correction. As it turned out, we could not use those data
to control for the data proper, because they were incongruent with the differences in the behavioral
data across comparable platforms. We had admittedly only one Mac OS system, and did not cover all
possible combinations of current types and versions of OSs, browsers, and media players. However,
already this combinatorial space soon becomes unmanageable, both in terms of setting up and
administering all these direct tests and analyzing and interpreting the results. This disappointing
lack of coherence may also to some extent be attributed to additional sources of variation that are
more difficult or impossible to control for, such as hardware (processors, clock frequencies, hard drive
and bus data transfer speed, sound cards, keyboards, etc.) and software (other programs that use
system resources, drivers), and Internet-related things like bandwidth and more or less temporary
communication failures. Furthermore, we did not know beforehand which of all the known method
variables would be most important so that we could include design features that focus on them.

That SRT and CRT means became lower after correction is trivial, but it is notable that they
became more similar to auditory SRT and CRT found for comparable participants in studies with the
shortest RTs, which indicates that they used equipment with minimal delays. Considering only studies
with more than 50 participants from the general, typically functioning population, median or mean
SRTs have been reported at 209 ms [63], 240–259 ms [64], and 220–280 ms for young to middle-aged
adults [65,66]. There are, however, also studies that have indicated both substantially shorter and
longer auditory reaction times. The former studies are typically older, and the explanation could be
that before computers were readily available, researchers used equipment with almost no delay at
all, either mechanic (e.g., [67], 120–200 ms) or electronic hardware ([66], 175–220 ms), [68]. Another
explanation could be that reaction times have increased across generations [18,19,44,69]. Consistent
with the first explanation is that studies reporting longer RTs used various forms of computerized
testing. It is notable that none of them reported the inherent delay and variability of their measurement
setup. In such studies are mean simple auditory RTs reported as, for example, 284 ms [70] and 415
ms [71]. These large differences across studies highlight the influence of different methods. Dodonova
and Dodonov [72] listed a range of factors that may differ across reaction time studies, and that entail
RT differences on the order of 10–30 ms, but did not acknowledge that errors related to general purpose
computer systems can be considerably larger [16], and thus typically overshadow the former. It
is therefore disconcerting that the delays and variability in instruments for measuring time-critical
behavior are seldom reported [73–75].

The participants in this study were a unique sample of twins, and it was a priority to recruit as
many as possible. We therefore sacrificed accuracy for inclusiveness, as we considered but rejected
several optional scenarios in which we required certain software versions or distributed a package of
software that each participant had to install on her computer, in order to standardize the platform
to some extent. Even regarding such an important component as the media player, we allowed
each participant to use Flash if she did not have or would not download Shockwave, not to risk
greater attrition.
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A less unique and exclusive population of participants would allow for considerably greater
control. If participants are paid and exchangeable, it would be feasible to demand customization of
their home computer by, for example, installing certain browsers, media players, etc. This also opens
the possibility to go yet one step further and require installing customized software, which makes
it possible to by-pass both media players and browsers, and thereby eliminate related variability. In
concert, one could require participants to turn off or uninstall software known to create time lags,
such as Groove (© Microsoft Corporation) or Outlook (© Microsoft Corporation), which demands
considerable resources when polling the email servers. In principle, one could even require a certain
OS, of which Windows XP would have been strongly preferred at the time of this data collection [16],
see also Tables 4 and 6.

In conclusion, computerized time-critical testing is subject to considerable delay and variability,
the largest part emanating from the software, but much of this can be controlled through a range of
different measures. The present study as well as the reviewed literature show that negligible or constant
measurement variation cannot be assumed under any circumstances, and that it is therefore essential
to assess this variation under all conditions. Only when the variation is known can its influence on the
results and their validity and reliability be assessed, and possible remedies be conceived.

The present study provides some guidance for conducting similar studies. It stands to reason
that media players are quite different, as they are the engine that runs the time-critical processes.
What was somewhat surprising, however, was that their performance was overall so poor that their
relative differences played a large and perhaps even the largest role for the platform effects. Future
studies should therefore stick to one type, unless one collects so much data that reliable comparisons
and corrections can be made, as in the present study. Another somewhat surprising result was the
substantial differences between some versions of the same software (browsers and media players).
This speaks for demanding or at least strongly encouraging users to update all relevant software to the
current versions before conducting time-critical tests online. This issue might perhaps be circumvented
altogether by other technical solutions that, for example, facilitate running the tests directly on a server
(see, e.g., [5,11]). This is outside the scope of the present paper, but it should be cautioned that this
might merely move the delays and timing variability from the local system to the Internet transmission
of time-critical stimulus and response events [14].
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Appendix A

Table A1. Regression results for all four derived variables with WMT and education level as predictors,
separately for each combination of OS and media player.

WMT Education Level

Windows/Flash
Dependent variable Intercept B β p B β p N

SRT 359.14 −1.248 −0.057 0.095 1.081 −0.019 0.37 2265
SRTV 60.24 −0.991 −0.111 <0.00001 0.080 0.004 0.87 2265
ISIPV 5.35 −0.037 −0.130 <0.00001 −0.038 −0.054 0.013 2265

ASYNC
Windows/Shockwave

Dependent variable Intercept B β p B β p N
SRT 273.98 −1.274 −0.087 <0.00001 1.024 −0.030 0.076 3624

SRTV 59.10 −1.004 −0.104 <0.00001 −0.290 −0.012 0.48 3624
ISIPV 5.21 −0.036 −0.137 <0.00001 −0.025 −0.039 0.023 3624

ASYNC −36.01 0.922 0.091 <0.00001 0.198 0.008 0.65 3645
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Table A1. Cont.

WMT Education Level

Mac OS/Flash
Dependent variable Intercept B β P B β p N

SRT 264.63 −1.169 −0.011 0.78 −0.129 −0.003 0.94 688
SRTV 54.27 −0.795 −0.144 0.0002 0.261 0.016 0.67 688
ISIPV 4.90 −0.047 −0.192 <0.00001 0.018 0.026 0.50 688

ASYNC
Mac OS/Shockwave

Intercept B β p B β p N
SRT 271.11 0.995 0.011 0.87 −3.25 −0.112 0.099 231

SRTV 28.75 0.596 0.045 0.60 1.695 0.034 0.62 231
ISIPV 4.83 0.036 0.023 0.06 −0.049 −0.054 0.42 231

ASYNC −9.04 0.599 0.057 0.39 −0.276 −0.009 0.89 235

Table A2. Correction factors for group differences in WMT and level of education for each derived
timing variable and OS type, based on the regressions listed in Table A1 and the grand means of the
WMT (13.09) and level of education (6.43) amongst all participants who completed the timing tests
(N = 6996).

WMT Education level

ISIPV ASYNC SRT SRTV ISIPV ASYNC SRT SRTV

Windows 0.00661 −0.1564 0.1990 0.1581 0.00428 −0.1012 0.1288 0.1023
Mac OS −0.03929 0.6060 −1.1827 −0.9393 −0.0291 0.45 −0.8783 −0.6975
Linux −0.09336 - −2.8104 −2.232 −0.0121 - −0.3630 −0.2883

Table A3. Coding of Flash versions into the ordinal numbers used in the present analyses, together
with the number of occurrence of each version, and for which browser and OS (1-3) they occurred.

Ordinal Flash Version N Version Explorer Firefox Chrome Safari Opera

3 2 9.0.280 1
4 2 9.0.470 1 2
5 4 9.0.1545 1 2
6 2 10.0.1236 1 1
7 12 10.0.2287 1 1
8 32 10.0.3218 1 1,2
9 5 10.0.4234 1 1

10 13 10.0.452 1 1
11 43 10.1.10xxx 1 1,2 2
12 17 10.1.536x 1 1 2
13 11 10.1.8276 1 2
14 20 10.1.853 1 2,3 2
15 13 10.2.15226 1 1 2
16 20 10.2.1523x 1 1,2 1 2
17 18 10.2.1531 1 1,2 2
18 20 10.2.1591 1 1,3 2
19 7 10.2.16xxx 1 3
20 13 10.3.18114 1 1
21 24 10.3.1812x 1 1,2 2
22 24 10.3.18134 1 1,2,3 1 2
23 66 10.3.1831x 1 1,2 1,2
24 20 10.3.1832x 1 1,2 2 2
25 23 10.3.18xxx 1 1,2 2
26 32 10.3.1837 1 1,2 2
27 52 11.0.1152 1 1,2,3 2
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Table A3. Cont.

Ordinal Flash Version N Version Explorer Firefox Chrome Safari Opera

29 2 11.0.198 1 3
30 197 11.1.10255 1 1,2 2 1,2 3
31 88 11.1.10263 1 1,2 2
32 1 11.1.11110 2
33 1 11.1.11512 2
35 2 11.2.202147 1
36 146 11.2.2022xx 1 1,2,3 1,2,3 2 3
37 78 11.3.3002xx 1 1,2 1 2
38 8 11.3.312xx 1 1,3
39 1 11.3.37294 1
40 13 11.3.37612 1
41 10 11.3.37715 1
42 6 11.3.3785 1
43 61 11.4.31110 1,3
44 872 11.4.4022xx 1 1,2 2 1,2 1
45 146 11.5.31137 1,2
46 378 11.5.312 1,2,3
47 296 11.5.315 1,2,3
48 1667 11.5.5021xx 1 1,2 1 1,2 1
49 34 11.6.6021xx 1 1,2 1,2 2

Note. Numbers in browser columns designate operating system: 1 = Windows, 2 = Mac OS, or 3 = Linux. Version
numbers may be aggregates of lower order versions, whose lower order numbers are then replaced with x.

Table A4. Coding of Shockwave versions into the ordinal numbers used in the present analyses, together
with the number of occurrences of each version, and for which browser and OS (1-3) they occurred.

Ordinal Shockwave
Version N Version Explorer Firefox Chrome Safari Opera

2 44 10 1 1,2 1 2 1
3 92 11.5 1 1,2 1 2
4 66 11.6 1 1 1 2 1
5 19 12.0 1 1 2
6 31 11.03 1 1 1 2
7 110 11.51 1 1 1 2
8 43 11.52 1 1 1 2
9 79 11.56 1 1,2 1,2 2 1

10 114 11.57 1 1 1
11 77 11.58 1 1 1
12 291 11.59 1 1,2 1 2 1
13 161 11.61 1 1 1,2 2 1
14 151 11.63 1 1 1 2
15 133 11.64 1 1,2 1,2 1,2
16 148 11.65 1 1,3 1,2 2 1
17 110 11.66 1 1,2 1,2 2
18 91 11.67 1 1 1
19 2241 11.68 1 1,2 1,2 1,2

Note. Numbers in browser columns designate operating system: 1 = Windows, 2 = Mac OS, or 3 = Linux.

Appendix A.1. Instructions for Sound and Keyboard Test (Translated from Swedish)

“Now follow a number of reaction-time and rhythmical tasks, in which you listen to sounds and
press keys. The computer you use must be able to play sounds through headphones or loudspeakers,
and therefore we will now test the sound. If the sound does not work you will still be able to continue
answering the survey questions that follow the sound-based tasks, if you like. You must then log onto
the survey again with a computer that has functioning sound to complete the sound-based tasks.”
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The next page was titled “Test sound and key responses”, with the instruction “When you press start,
different sounds will be played so that you have the opportunity to adjust the sound volume to a
comfortable level. The next page was about the keyboard; “The colour-marked keys on the image shall
produce a box with the corresponding colour on the screen. We use colours to denote responses to the
left and right of the keyboard.” The participants were instructed to press a few of the keys that were
red-marked on the image with the left hand and few of the green-marked keys with the right hand,
and to press the space bar with the dominant hand (which produced a blue box).

Appendix A.2. Instructions for Timing and Musical Ability Test (Translated from Swedish)

“Now follow a number of tests that measure your reaction time and time precision by pressing
keys in relation to sounds that you will hear. It is important that you closely follow the instructions
when you later perform the different tests. Please therefore attend carefully to the instructions and the
description of what the different signals mean before each test. These tests take about 15 minutes, so
please make sure you have this time at your disposal without distractions before you start. Press the
keys normally, as when you type, that is, press them down briefly and do not keep them depressed”.
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