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It is my pleasure to welcome you to Chemistry (ISSN: 2624-8549), an open access peer-
reviewed journal that publishes both primary reports and reviews highlighting important
advances in fundamental areas of chemistry and/or illustrating the central role of chemistry
in bridging the physical and life sciences. Chemistry is a young journal (established in 2019),
but has had an excellent start under the leadership of Edwin C. Constable (University
of Basel).

If you are reading this article, you are likely a chemist! I also hope that this means
that you have recently discovered something new and important, and are looking for the
right venue to publish your work. I invite you to choose Chemistry. If you are a chemist,
submitting your best work to Chemistry simply makes sense!

Allow me to outline the key points of the journal’s scope and philosophy to help you
to decide if Chemistry is the right venue for your work.

Why Do We Need a Journal Named “Chemistry”?

Our goal is to showcase research that highlights the uniqueness of chemistry among
the natural sciences, illustrates its broad appeal and the central role it often plays in
multidisciplinary research. However, we will embrace novelty, even when if it is the result
of serendipity. If you have discovered something truly new and unexpected, submit it to
Chemistry, even if you are unsure what the future impact of this work may be.

Chemistry is a journal for chemists. Its mission is to provide a home for papers of
high quality and interest to the broad scientific community. The journal welcomes both
fundamental and applied multidisciplinary research. Contributions that describe connec-
tions between chemistry and energy, chemistry and the environment, chemistry and health,
chemistry and artificial intelligence, and chemistry and information storage/processing
are welcome.

Chemistry is often called a “central science”, as it connects basic sciences, from physics
to biology, and enables advances in applied disciplines such as medicine and engineering.
Modern chemistry also takes advantage of advances in mathematics, computer science, and
artificial intelligence. Furthermore, chemistry is central as it is positioned at the intersection
of the molecular world and the world perceptible to humans. It provides a foundation
for research in materials science and opens the doors for new technologies. Chemistry
connects humans with the universe, as all carbon atoms in our bodies were forged in
stars from smaller elements via nuclear fusion. Chemistry is the foundation of biology
and astrobiology.

The mission of Chemistry is reflected in the journal’s philosophy and our view of
chemistry as a special science with a unique combination of scientific rigor and creativity.
Chemists do not only study nature as it exists, but they also expand nature by creating their
own objects of study.

Chemistry Is a Unique Science

Although chemistry is an ancient science, chemistry stays “modern” by continuously
reinventing itself. This is inevitable as the world of known molecules, reactions, processes,
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and concepts continues to expand. Such expansion is intrinsically limitless, propelling
chemists to continue to dig deeper and look further in their research. The number of isomers,
even for relatively small molecules of just 167 carbon atoms, already exceeds the number of
particles in the universe [1] because chemistry is inherently self-propagating in its expansion.
Unlike for other sciences, chemists routinely create previously unknown substances, each
with its own unique microcosm of properties, which may reveal a new bonding pattern
and unexpected emerging behavior. Of course, chemistry is full of surprises, so serendipity
often helps make an unexpected discovery.

There are many challenges as chemistry continues to conquer space and time, reaches
new depths in the intricacies of molecular structure, and expands to the new areas. For
example, even complex molecules can “solve” their own Schrodinger equation instanta-
neously and precisely, just because they are real objects which, by the mere fact of their
existence, have the exact energy and all of the other properties encoded in this equation.
However, our advanced computers are still not capable of this task, apart from the rather
small systems. Do we need new ways of thinking that would take us beyond the current
paradigms instead of creating hundreds of new DFT potentials? Will new tools, such as
quantum computing and artificial intelligence, lead to breakthroughs?

Theory aside, are there new paradigms that can be used for the experimental control
of reactivity? What new knowledge can come from the ability to manipulate individ-
ual molecules and get their electronic “signatures” by directly analyzing their molecular
orbitals? We are able to direct the motion of individual atoms, creating and breaking
individual bonds at will on the surface [2,3], and observe the atomic picture in the course of
chemical reactions in a liquid medium [4]. Time-resolved spectroscopy can provide direct
information about species that live less than a vibration; not only the transition states, but
even more subtle details of energy landscapes stop being experimental “terra incognita” [5].
At the same time, the interaction of molecules with photons (i.e., molecular spectroscopy)
allows chemists to search for unusual molecules in interstellar space [6,7].

Of course, the interaction of photons with molecules can achieve much more than
molecular fingerprinting. Electronically excited states are “electronic isomers” with prop-
erties and reactivity that are drastically different from their common ground-state coun-
terparts, where even a benzene ring can become antiaromatic [8,9]! The renaissance of
photochemical [10–13] and electrochemical [14–16] methods illustrates how creativity can
rejuvenate classic approaches to the control of reactivity. Combining photochemistry and
electron transfer (“photoredox”) leads to the generation of highly reactive intermediates un-
der mild conditions where they can be tamed and employed in catalytic cycles [17–20]. Even
an electron [21] or a hole [22] can be catalysts capable carrying multiple catalytic cycles!

With the deeper understanding of molecular structure, even “unstable functional
groups”, such as organic peroxides, become incorporated into drug design and open
new regions of the molecular universe to medicinal chemists [23]. Unusual activation
approaches such as chemistry in crystals [24,25]) or mechanochemistry [26] can sometimes
lead to striking results. Limitless opportunities come from understanding this complexity
and emerging behavior [27]. The origin of life and astrobiology find their foundation in
chemistry, but take chemistry far beyond the simple grid of the periodic table.

However, are chemists using all of the tools that nature has provided us? Will new
paradigms emerge for making impossible reactions possible? Most likely! For example,
why should atoms be built only from the three elementary particles (proton, neutron, and
electron) when many other elementary particles exist? How many chemists know that
one can build a “hydrogen atom” that is with a mass that is only one-ninth of the mass
of a regular hydrogen atom? Such atoms (called muonium atoms, as they are made of an
electron and a positively charged muon) can initiate classic radical reactions [28]. One can
integrate them into organic chemistry! An even more intriguing concept of muon-catalyzed
nuclear fusion remains a tantalizing possibility for energy production [29].

Because molecules can organize matter and quantize energy in the sub-nanospace,
they can serve as essential tools for exploring and understanding the universe. It is not
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surprising that molecular design provides a key to the studies of a variety of conceptu-
ally intriguing phenomena, from quantum entanglement [30] to photon [31] and elec-
tron [32] up-conversion. Furthermore, molecules are intrinsically delocalized and spatially
anisotropic quantum objects. Hence, understanding molecules requires one to interface
human thinking with quantum realities. Doing that will expand the human mind and
provide fertile grounds for philosophical analysis.

What Makes a Great Chemistry Paper?

To answer this question, allow me to highlight a few papers recently published in
this journal.

Often, the computational exploration of molecules with unusual electronic properties
has the potential to uncover new chemical phenomena. For example, Hashimoto and
Tahara use thiophene analogues of anti-kekulene to get fresh insights into the tug-of-war
between aromaticity and anti-aromaticity [33]. Changes in the electronic structure of
polycyclic aromatic hydrocarbons (PAHs) upon photochemical excitation reveal a switch
from aromaticity to antiaromaticity and provide an important step in consolidating varying
viewpoints of electronically excited states.

The interface between chemistry and medicine provides a fertile ground for molecular
design that leads to interesting properties. This is illustrated by biomedical applications
of gold nanoparticles (AuNPs) as sensors, diagnostic tools, and therapy [34], and the
controlled delivery of bioactive materials via magnetic nanoparticles (MNPs) [35].

Connections between chemistry and the environment are becoming increasingly im-
portant. An example of a broadly useful analysis is illustrated by the work of Reina and
coworkers [36], who demonstrate how the understanding of chemical kinetics pertaining
to three-way catalytic converters provides insights in accompanying environmental issues.

It is also helpful to compare the roles of Chemistry and other chemistry-related MDPI
journals such as Molecules (ISSN 1420-3049) and International Journal of Molecular Sciences
(IJMS) (ISSN 1422-0067). Molecules covers mainly the topics of synthetic organic and natural
product chemistry, while IJMS encompasses molecular biology as the main field of research.
Chemistry will publish high-quality papers of any chemistry-related topic. We invite authors
to take advantage of this opportunity!

In summary, we hope to see papers in Chemistry that introduce fresh perspectives
of chemical structure, develop new approaches for controlling chemical reactivity, and
highlight the multidisciplinary impact of chemistry! We are looking for articles of high
quality, breadth, and significance. Because Chemistry is an open access journal, these articles
will be broadly available to the public.

There are many chemical journals, but only one with the simple name, “Chemistry”. I
am honored to be associated with a journal that is named after my favorite science! I hope
that chemistry is your favorite science too and that you will support it by publishing your
creative and innovative work in Chemistry!

Acknowledgments: The author wishes to express sincere gratitude to Edwin C. Constable, the
former Editor-in-Chief at the University of Basel, for his efforts during the founding and early
stages of the journal. Chemistry has made excellent progress and remained on track during the past
years. The early success would also be impossible without the day-to-day efforts of the editorial
team at https://www.mdpi.com/journal/chemistry/editors (accessed on 24 November 2023). Your
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