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Abstract: Cambridge Structural Database (CSD) is the largest repository of crystal data, containing
over 1.2 million crystal structures of organic, metal–organic and organometallic compounds. It is a
powerful research tool in many areas, including the extensive studying of noncovalent interactions.
In this review, we show how a thorough analysis of CSD crystal data resulted in recognition of
novel types of stacking interactions. Even though stacking interactions were traditionally related to
aromatic systems, a number of crystallographic studies have shown that nonaromatic metal–chelate
rings, as well as hydrogen-bridged rings, can also form stacking interactions. Joined efforts of a CSD
analysis and quantum chemical calculations showed that these new stacking interactions are stronger
than stacking interactions of aromatic species and recognized them as very important attractive forces
in numerous supramolecular systems.
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1. Introduction

The review titled “A Million Crystal Structures: The Whole Is Greater than the Sum of
Its Parts” was published in 2019 [1], approximately at the time when the millionth crystal
structure was deposited in the Cambridge Structural Database (CSD) [2]. This review
described how the data from the CSD are used as a tool in the fundamental research on
molecular structures and geometries, intermolecular interactions and molecular assem-
blies, and shows the potential for being used in industry and other commercially relevant
areas [1].

One of the areas where the analysis of the data from the CSD was extensively used is
the area of noncovalent interactions. One can combine the analysis of the crystal structures
in the CSD with quantum chemical calculations. By analyzing the crystal structures in the
CSD, one can recognize the existence of the certain types of noncovalent interactions. This
includes finding the occurrence of interactions in crystal structures and describing their
typical geometrical parameters. Although shorter or longer distances can indicate stronger
or weaker interactions, the data from the crystal structures cannot reveal the energies of the
interactions. To show that the recognized interactions are not just the consequence of crystal
packing and other surrounding interactions in the crystal environment, the calculations are
performed on a very high CCSD(T)/CBS level to obtain very accurate interaction energies,
which can then be compared for various systems.

Using this methodology, we were able to recognize several new types of noncovalent
interactions [3–11]. In this review, we focus on new types of stacking interactions. Stacking
interactions are very important in many chemical and biological systems, starting from
the DNA [12] and protein structure [13], and finding their application in areas such as
drug design [14], crystal engineering [15] and materials science [16]. Although traditionally
related to organic aromatic systems, stacking interaction exists and can be quite strong in
nonaromatic systems as well. In this paper, we will summarize our findings on stacking
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interactions of metal–chelate rings and hydrogen-bridged rings based on thorough studies
of CSD crystal structures and quantum chemical calculations.

2. Stacking Interactions of Chelate Rings

Until the beginning of the 21st century, it was common to consider stacking interac-
tions a feature of aromatic molecules. The typical aromatic system for studying stacking
interactions is the dimer of benzene. Plenty of theoretical work was performed with the aim
of elucidating the geometries of various dimers of benzene, as well as their energies [17–20].
The strongest stacking interaction is a minimum on the potential energy surface for the ben-
zene dimer (Figure 1); it has a displaced–stacked geometry with a horizontal displacement
of 1.51 Å, normal distance of 3.40 Å and interaction energy of −2.73 kcal/mol, calculated at
the accurate CCSD(T)/CBS level of theory [18]. This structure is only slightly less stable
than the global minimum for the benzene dimer, which has T-shaped geometry with C-H/π
interactions and an interaction energy of −2.84 kcal/mol [18].
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placement (offset) r is the distance between Ω1 and ΩP2. 

Theoretical calculations have, however, shown that aromaticity is not a defining 
feature of stacking interactions [21] and that stacking interactions can be made stronger if 
one or both aromatic constituents are replaced with nonaromatic ones [22]. Interestingly, 
first examples of stacking interactions, which include nonaromatic molecules, were given 
prior to these calculations by analyzing the crystal structures deposited in the Cambridge 
Structural Database [2]. These interactions were formed between the aromatic and che-
late ring of square planar transition metal complexes [23]. Chelate rings are highly stable 
cyclic systems, which are formed when a metal simultaneously binds to two atoms of a 
bidentate ligand. Later, it was shown that strong stacking interactions can also be formed 
between two chelate rings [3].  
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tion metal complex was first observed in the crystal structure of 
bis(acetone-1-naphthoylhydrazinato)copper(II) (Figure 2) [23]. This interaction is char-
acterized by the normal distance of R = 3.49 Å and horizontal displacement of r = 1.46 Å, 
which is very similar to classical parallel-displaced aryl–aryl stacking interaction.  

Figure 1. Geometrical parameters that describe stacking interactions between benzene molecules.
Ω1 and Ω2 are centers of interacting rings, and ΩP2 is the projection of the center Ω2 onto the plane
of the other benzene. Normal distance R is the distance between Ω2 and ΩP2, while horizontal
displacement (offset) r is the distance between Ω1 and ΩP2.

Theoretical calculations have, however, shown that aromaticity is not a defining
feature of stacking interactions [21] and that stacking interactions can be made stronger if
one or both aromatic constituents are replaced with nonaromatic ones [22]. Interestingly,
first examples of stacking interactions, which include nonaromatic molecules, were given
prior to these calculations by analyzing the crystal structures deposited in the Cambridge
Structural Database [2]. These interactions were formed between the aromatic and chelate
ring of square planar transition metal complexes [23]. Chelate rings are highly stable cyclic
systems, which are formed when a metal simultaneously binds to two atoms of a bidentate
ligand. Later, it was shown that strong stacking interactions can also be formed between
two chelate rings [3].

2.1. Chelate–Aryl Stacking Interactions

Stacking interaction between an organic aromatic ring and a chelate ring of a transition
metal complex was first observed in the crystal structure of bis(acetone-1-naphthoylhydrazi-
nato)copper(II) (Figure 2) [23]. This interaction is characterized by the normal distance
of R = 3.49 Å and horizontal displacement of r = 1.46 Å, which is very similar to classical
parallel-displaced aryl–aryl stacking interaction.
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3.49 Å in the crystal structure of bis(acetone-1-naphthoylhydrazinato)copper(II) (CSD refcode 
MABNUZ) [23]. Interacting chelate and aromatic rings are presented in ball-and-stick style, while 
other atoms are presented in capped stick style. Atom colors: carbon—dark gray, hydro-
gen—white, oxygen—red, nitrogen—blue, copper—light brown. 

At approximately the same time, the first intramolecular stacking interaction be-
tween the aromatic and chelate ring was observed in the crystal structure of square py-
ramidal aqua-(1,10-phenanthroline)-(2-benzylmalonato)-copper(II) (Figure 3) [24]. This 
“aryl–metal chelate ring π–π interaction” [24] was discussed as the new structural evi-
dence of the metalloaromaticity of the copper(II)-(aromatic α,α’-diimine) chelate ring. It 
was later shown that many chelate rings do not satisfy the magnetic criteria for aroma-
ticity [25]. 

 
Figure 3. Two views of the intramolecular chelate–aryl stacking interaction with r = 0.92 Å and R = 
3.36 Å in the crystal structure of aqua-(1,10-phenanthroline)-(2-benzylmalonato)-copper(II) (CSD 
refcode VACSUO) [24]. Atom colors: carbon—dark gray, hydrogen—white, oxygen—red, nitro-
gen—blue, copper—light brown. 

The early examples of chelate–aryl stacking interactions prompted an analysis of 
crystal structures that contain square planar copper(II) complexes and C6 aromatic rings. 
This study revealed that the distances between copper atoms and carbon atoms of aro-
matic rings are shorter if the copper atom is part of a chelate ring [26]. A systematic study 
of crystal structures containing C6 aromatic rings and square planar complexes of all 
transition metals showed that the presence of chelate rings influences the mutual orien-
tation of the aromatic ring and transition-metal complex, as well as the metal–carbon 

Figure 2. Two views of the intermolecular chelate–aryl stacking interactions with r = 1.46 Å and
R = 3.49 Å in the crystal structure of bis(acetone-1-naphthoylhydrazinato)copper(II) (CSD refcode
MABNUZ) [23]. Interacting chelate and aromatic rings are presented in ball-and-stick style, while
other atoms are presented in capped stick style. Atom colors: carbon—dark gray, hydrogen—white,
oxygen—red, nitrogen—blue, copper—light brown.

At approximately the same time, the first intramolecular stacking interaction between
the aromatic and chelate ring was observed in the crystal structure of square pyramidal
aqua-(1,10-phenanthroline)-(2-benzylmalonato)-copper(II) (Figure 3) [24]. This “aryl–metal
chelate ring π–π interaction” [24] was discussed as the new structural evidence of the
metalloaromaticity of the copper(II)-(aromatic α,α’-diimine) chelate ring. It was later
shown that many chelate rings do not satisfy the magnetic criteria for aromaticity [25].
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The early examples of chelate–aryl stacking interactions prompted an analysis of
crystal structures that contain square planar copper(II) complexes and C6 aromatic rings.
This study revealed that the distances between copper atoms and carbon atoms of aromatic
rings are shorter if the copper atom is part of a chelate ring [26]. A systematic study of crystal
structures containing C6 aromatic rings and square planar complexes of all transition metals
showed that the presence of chelate rings influences the mutual orientation of the aromatic
ring and transition-metal complex, as well as the metal–carbon distances [27]. Namely,
there is a tendency toward small interplanar angles if the transition metal complex contains
a chelate ring (Figure 4a), meaning that rings are parallel [27]. Also, for many transition
metal complexes that contain chelate rings, the shortest metal–carbon distance is smaller
than the sum of van der Waals radii of metal and carbon atoms (Figure 4b). If the transition
metal complex does not contain a chelate ring, the aromatic ring prefers to be orthogonal to
the mean plane of the complex, and the metal–carbon distances tend to be larger than in
the case of complexes with chelate rings (Figure 4). These parameters are considered the
structural evidence for the formation of stacking interaction between chelate and aromatic
rings [27]. Interestingly, all of the studied chelate rings have delocalization of π-electrons,
which, together with their ability to form stacking interactions, raises further speculations
regarding their aromaticity [25]. The composition of five-membered chelate rings forming
stacking interactions with C6 aromatic rings in crystal structures is dominantly MNCCN
(M denotes metal), while six-membered chelate rings forming chelate–aryl stacking are
usually MNCCCO rings; metals are mostly Ni, Pd, Cu and Pt [22].
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Figure 4. Distribution of interplanar angle (a) and the difference between the sum of van der Waals
radii and the shortest metal–carbon distance D (b) in CSD crystal structures that contain aromatic
rings and transition metal complexes with square planar geometry.

The study of chelate–aryl interactions in the CSD crystal structures also showed that
when the square planar transition metal complex and aromatic ring are approximately par-
allel, the displacement angle β is predominantly between 15◦ and 35◦ (Figure 5). This shows
that the typical arrangement of chelate–aryl stacking interaction is parallel-displaced [27],
which is similar to classical aryl–aryl stacking interactions. The detailed study of stacking
interactions between the aromatic ring and chelate rings of typical metals (Ni, Pd, Pt,
Cu) showed that the arrangements in chelate–aryl stacking interactions are very similar
regardless of the metal [28].

Aside from square planar and square pyramidal complexes, chelate–aryl stacking
can be formed in octahedral complexes. An interesting example is a hexacoordinated
ruthenium complex, which contains terpyridine, bipyridine and imidazole ligands, where
intramolecular chelate–aryl stacking interaction is formed (Figure 6). Namely, an imidazole
ligand contains phenyl substituents, and it is rotated so that chelate–aryl stacking of the
phenyl substituent and chelate ring of the terpyridine ligand is enabled (Figure 6) [29].
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structure of (2,2′-bipyridine)-(4,5-diphenylimidazole)-(2,2′:6′,2′-terpyridine)-ruthenium(II) 
bis(hexafluorophosphate) methanol solvate (CSD refcode FEPXII) [29]. Atom colors: carbon—dark 
gray, hydrogen—white, nitrogen—blue, ruthenium—green. 

Intramolecular chelate–aryl stacking can be encountered in the crystal structures of 
coordination polymers. Folded conformation of the copper complex with bipyridine and 
tryptophane is favored by intramonomer chelate–aryl stacking interaction between the 

Figure 5. The correlation of the displacement angle β with the angle between the mean planes of
chelate and aromatic rings (interplanar angle). The displacement angle β is the angle defined by the
line connecting the centers of chelate and aromatic rings (ΩC and ΩA, respectively) and the normal
of the aromatic ring center onto the chelate ring plane, which is defined by the line connecting the
aromatic ring center (ΩA) and its projection onto the chelate ring plane (ΩPA). Interplanar angle is
the angle formed between the chelate ring plane (PC) and aromatic ring plane (PA), which are colored
light blue.
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Figure 6. Intramolecular chelate–aryl stacking interaction (r = 1.55 Å and R = 3.32 Å) in the
crystal structure of (2,2′-bipyridine)-(4,5-diphenylimidazole)-(2,2′:6′,2′-terpyridine)-ruthenium(II)
bis(hexafluorophosphate) methanol solvate (CSD refcode FEPXII) [29]. Atom colors: carbon—dark
gray, hydrogen—white, nitrogen—blue, ruthenium—green.

Intramolecular chelate–aryl stacking can be encountered in the crystal structures
of coordination polymers. Folded conformation of the copper complex with bipyridine
and tryptophane is favored by intramonomer chelate–aryl stacking interaction between
the bipyridine chelate ring and C6 aromatic ring of a tryptophanato ligand, as well as
intermonomer π–π stacking between bipyridine ligands (Figure 7). Similar interactions can
be observed if bipyridine is replaced with phenanthroline [30].
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Figure 7. Intramolecular chelate–aryl stacking interactions in the crystal structure of polymeric catena-
((PP)-(µ2-L-tryptophanato)-(2,2′-bipyridyl)-copper(II) perchlorate (CSD refcode KIRKIF01) [30], with
two views of chelate–aryl stacking in the monomer unit. Atom colors: carbon—dark gray, hydrogen—
white, nitrogen—blue, oxygen—red, copper—light brown.

In the crystal structure of a distorted square pyramidal complex of copper with
bipyridine and an iminodiacetate derivative containing a nitrophenyl group, intramolecular
chelate–aryl stacking cannot be formed due to a large distance between nitrophenyl and
coordinated nitrogen. Instead, intermolecular chelate–aryl stacking interaction between the
bipyridine ligand of one complex and the nitrophenyl unit of the other complex is formed
(Figure 8) [31].
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Figure 8. Intermolecular chelate–aryl stacking interaction (r = 0.64 Å and R = 3.35 Å) in the crystal
structure of (2,2′-bipyridine-N,N′)-(fac-2,2′-((2-((2-nitrophenyl)amino)ethyl)imino)diacetato-N,O,O′)-
copper(II) dihydrate (CSD refcode QOZCAK) [31]. Chelate–aryl stacking is highlighted on the right
in capped stick style, with the rest of the atoms in wireframe style. Atom colors: carbon—dark gray,
hydrogen—white, oxygen—red, nitrogen—blue, copper—light brown.

Intermolecular chelate–aryl stacking can be noted in the crystal structure of a square
planar nickel complex containing a chelate ring fused with an aromatic ring and another
chelate ring (Figure 9). The aromatic ring of one molecule forms stacking interaction with
the sulfur-containing chelate ring of the other molecule (Figure 9) [32]. The preference for
the sulfur-containing chelate ring might be due to enhanced dispersion effects.
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computational studies [34–39]. CCSD(T)/CBS calculations with the extrapolation method 
of Mackie and DiLabio using the aug-cc-pVTZ and aug-cc-pVQZ basis sets [40], as well 
as calculations using various DFT methods, were performed on a series of square planar 
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Figure 9. Intermolecular chelate–aryl stacking interaction (r = 0.94 Å and R = 3.49 Å) in the crystal
structure of chloro-(di-2-pyridylketone-N4,N4-(butane-1,4-diyl)thiosemicarbazonato)-nickel(II) (CSD
refcode AYADAF) [32]. Chelate–aryl stacking is highlighted on the right in capped stick style,
with the rest of the atoms in wireframe style. Atom colors: carbon—dark gray, hydrogen—white,
sulfur—yellow, nitrogen—blue, chlorine—light green, nickel—green.

It can be noted in previous examples that chelate rings are often fused with aromatic
rings. Crystallographic study of stacking interactions of the systems where a chelate ring
is fused with an aromatic ring gave insight into the relative strengths of chelate–aryl and
aryl–aryl stacking interactions. It was determined that in the majority of these contacts,
chelate–aryl distance (dCA) is shorter than aryl–aryl distance (dAA; Figure 10), which
indicates that an aromatic ring prefers to stack with a chelate ring, rather than to stack with
another aromatic ring [33]. This implied that chelate–aryl stacking interactions are stronger
than aryl–aryl stacking interactions.
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Figure 10. Distribution of the difference in the distances between the centers of aromatic rings (dAA)
and between the centers of aromatic and chelate ring (dCA) in the stacking interactions between
transition metal complexes with fused chelate and aromatic rings.

The strength of chelate–aryl stacking interactions was the subject of a series of com-
putational studies [34–39]. CCSD(T)/CBS calculations with the extrapolation method of
Mackie and DiLabio using the aug-cc-pVTZ and aug-cc-pVQZ basis sets [40], as well as
calculations using various DFT methods, were performed on a series of square planar transi-
tion metal complexes with acac-type chelate rings (acac = acetylacetonato). The calculations
have shown that the strongest chelate–aryl stacking interactions have parallel-displaced
arrangements, with benzene as a model of the aryl ring being located either above the C2
atom or above the metal atom of the chelate ring (Figure 11) [34,36,38]. For the arrangement
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with benzene above the C2 atom of the chelate ring, interaction energies are very similar for
all complexes, with values around −5.0 kcal/mol (Table 1). However, if benzene is located
above the metal atom of the chelate ring, interaction energies vary, depending on the metal
in question. The strongest chelate–aryl stacking was calculated for acac-type chelate of zinc,
with an interaction energy of −7.56 kcal/mol (Table 1) [38]. Considering that benzene–
benzene stacking has the interaction energy of −2.73 kcal/mol [18], it can be concluded
that chelate–aryl stacking interactions can be significantly stronger than aryl–aryl stacking
interactions, which explains their abundance in the CSD crystal structures.
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Figure 11. Model systems for calculations of chelate–aryl stacking interactions are made of benzene
and square planar complexes of various metals with formate and enolate of malondialdehyde as
acac-type ligand (acac = acetylacetonato). Two minima are found on the potential energy curves for
acac-benzene chelate–aryl stacking.

Table 1. Geometrical parameters (offset r and normal distance R, both in Å) and interaction en-
ergies (∆E, in kcal/mol) for stacking interactions between benzene and acac-type chelate ring in
[M(formate)(acac-type)] complexes. For M = Ni, Cu, Zn, the energies were calculated atωB97X-D/def2-
TZVP level of theory, while for M = Pd, Pt, the energies were calculated at M06-D3/def2-TZVP level
of theory. The structures of the dimers are given in Figure 11.

Metal
Minimum 1 Minimum 2

r R ∆E r R ∆E

Ni [38] 1.3 3.40 −4.82 1.4 3.37 −5.52
Cu [38] 1.2 3.40 −4.92 1.3 3.31 −6.43
Zn [38] 1.0 3.43 −4.93 1.3 3.27 −7.56
Pd [38] 1.2 3.40 −5.15 1.2 3.50 −5.73
Pt [36] 1.2 3.40 −5.36 1.2 3.50 −5.27

In order to gain insight into the nature of chelate–aryl stacking interactions, interaction
energies were subjected to decomposition based on Symmetry Adapted Perturbation The-
ory (SAPT) [41]. The decomposition was performed using the basic SAPT0 level of theory,
since it is the only one that is applicable for open-shell systems [42,43], and is therefore the
only one that can be used for copper-containing chelate rings. It was shown that dispersion
is the most pronounced energy component in chelate–aryl stacking interactions, with signif-
icant contribution of electrostatics [38]. The sum of dispersion and exchange components,
regarded as net dispersion [44], is very small for chelate–benzene stacking (Table 2), which
was also shown to be the case for benzene–benzene stacking (Table 2) [38,44]. Interestingly,
when comparing the energy components of stacking interactions of chelates of different
metals, it can be noted that the increase in total interaction energy is in good agreement
with the increase in the electrostatic energy component (Table 2) [38]. Moreover, the differ-
ences in interaction energies of chelate–benzene [38] and benzene–benzene stacking [44,45]
correspond to differences in electrostatic energy components (Table 2). Observations similar
to those for stacking interactions of acac-type chelate rings were also noted for dithiolene
chelate complexes [37].
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Table 2. Geometrical parameters (offset r and normal distance R, both in Å) and total SAPT0/def2-
TZVP interaction energy (∆E) and its components (ELST—electrostatic, EXCH—exchange, IND—
induction, DISP—dispersion, all in kcal/mol) of the most stable stacking interactions between benzene
and acac-type chelate rings in [M(formate)(acac-type)] complexes (dimer minimum 2; Figure 11).
Net dispersion (NET DISP, in kcal/mol) is the sum of dispersion and exchange components. The
decomposition of SAPT2+3/def2-TZVPPD energy of benzene–benzene stacking interaction [45] is
given for comparison.

System r R ∆E ELST EXCH IND DISP NET DISP

Ni(acac)-benzene 1.4 3.37 −5.97 −4.07 +7.91 −0.80 −9.00 −1.09
Cu(acac)-benzene 1.3 3.31 −6.80 −5.38 +9.53 −1.16 −9.78 −0.25
Zn(acac)-benzene 1.3 3.27 −7.59 −6.38 +10.52 −1.61 −10.12 +0.40
benzene–benzene 1.5 3.50 −2.83 −1.50 +6.58 −0.70 −7.21 −0.62

The arrangements in the dimers with strongest interactions and the pronounced elec-
trostatic component of chelate–aryl stacking can be rationalized with electrostatic potential
surfaces of the studied complexes containing chelate rings. The surfaces show positive elec-
trostatic potential above metals (Figure 12), making them good sites for overlapping with
negative electrostatic potentials above the benzene ring center (Figure 12) [38]. Moreover,
the magnitude of positive potentials increases from Ni to Zn (Figure 12), which produces
the same trends in electrostatic energy components and total interaction energies for their
chelate–benzene stacking interactions (Table 2) [38].
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Figure 12. Electrostatic potentials for chelate-containing complexes and benzene plotted at the surface
defined by electron density of 0.004 a.u. The potentials were calculated atωB97X-D/def2-TVZP level
of theory.

2.2. Chelate–Chelate Stacking Interactions

The discovery that chelate–aryl stacking interactions are very frequent in the CSD
crystal structures has led to assuming that two chelate rings can also form stacking interac-
tions. A detailed CSD survey was conducted according to the criteria given by Janiak, who
studied stacking between aromatic rings in transition metal complexes [46]. Namely, two
chelate rings are considered forming stacking interaction if the angle between their mean
planes is less than 10◦, the distance between their centers is shorter than 4.6 Å and their
displacement angle β is less than 35◦ (Figure 13). Since chelate rings are very often fused to
organic aromatic rings, interactions of isolated and interactions of fused chelate rings were
analyzed separately. The study found 89 chelate–chelate stacking interactions between
isolated chelate rings and 1777 chelate–chelate stacking interactions between fused chelate
rings [47]. The isolated five-membered chelate rings forming chelate–chelate stacking
interactions are mostly of MNCCN composition (M is Ni, Pt or Pd), while six-membered
rings mostly have CuOCCCO and CuNCCCO composition [47].
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ring centers (d < 4.6 Å), displacement angle β (β < 35◦) and normal distance R. Distributions of
normal distance and displacement angle are given separately for stacking interactions of isolated
chelate rings and chelate rings fused with aromatic rings. Chelate rings are usually 5-membered and
6-membered.

The majority of chelate–chelate stacking interactions, both of isolated and fused chelate
rings, have normal distances between 3.3 Å and 3.5 Å, while displacement angle β val-
ues are typically in the range 16–36◦ (Figure 13), which indicates parallel-displaced ar-
rangement [47]. These geometrical features make chelate–chelate stacking similar to both
aryl–aryl and chelate–aryl stacking interactions [3]. The only exception is chelate–chelate
stacking interactions of six-membered isolated chelate rings, which have small values of β
angles (Figure 13), indicating face-to-face arrangement. Visual inspection has shown that
these rings are mostly substituted with bulky groups, which then tend to avoid clashing
with each other, giving face-to-face chelate–chelate stacking arrangement [47]. This type
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of chelate–chelate stacking can be found in the crystal structure of bis(acetylacetonato)-
copper(II) (Figure 14) [48].
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Figure 14. Face-to-face chelate–chelate stacking interaction (r = 0.00 Å, R = 3.15 Å) in the crystal
structure of bis(acetylacetonato)copper(II) (CSD refcode ACACCU61) [48]. Atom colors: carbon—
dark gray, hydrogen—white, oxygen—red, copper—light brown.

Three typical orientations of stacked chelate rings can be singled out, based on the
values of torsion angle τ defined by metals and ring centers (Figure 15). The most abundant
are chelate–chelate stacking interactions with antiparallel orientation. One of the many
examples of this orientation of stacked chelate rings is encountered in the crystal structure of
a palladium complex with an ethyl-2-hydroxy-4-styryl-4-oxo-2-butenoate ligand [49], where
six-membered isolated chelate rings of acac-type stack in parallel-displaced arrangement
(Figure 16). From this crystal structure, it is implied that chelate–chelate stacking is stronger
than aryl–aryl stacking, since the formation of chelate–chelate stacking interaction prevents
larger overlap of phenyl rings (Figure 16).

For complexes with fused rings, chelate–chelate stacking is often combined with
chelate–aryl stacking. The structure of a nickel complex with aromatic hydrazone contains
a system of three fused rings (two chelate and one aromatic), which form an antiparallel
stacking arrangement with central chelate–chelate stacking interaction surrounded by
two chelate–aryl stacking interactions (Figure 17) [50].
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Parallel orientation is less encountered than the antiparallel one in CSD crystal 
structures (Figure 15) [47]. It can usually be encountered when a square planar complex 
contains two identical chelate rings, which enables them to overlap almost entirely by 
forming two simultaneous chelate–chelate stacking interactions. Such parallel orientation 
was found, among others, in the crystal structure of 
bis(2-(1H-pyrazol-5-yl)pyridinato)platinum(II) (Figure 18), where two N,N-type chelate 
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Figure 16. Parallel-displaced chelate–chelate stacking interaction in antiparallel orientation
(r = 1.32 Å, R = 3.29 Å) in the crystal structure of palladium complex with ethyl-2-hydroxy-4-styryl-
4-oxo-2-butenoate ligand [49]. Atom colors: carbon—dark gray, hydrogen—white, oxygen—red,
palladium—blue.
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Figure 17. Chelate–chelate stacking interaction (r = 1.05 Å and R = 3.42 Å) combined with
two chelate–aryl stacking interactions in the crystal structure of azido-(N-phenyl-N′-(1-(pyridin-
2-yl)ethylidene)carbamohydrazonothioato)-nickel(II) (CSD refcode XAMVOZ) [50]. Atom colors:
carbon—dark gray, hydrogen—white, nitrogen—blue, sulfur—yellow, nickel—green.

Parallel orientation is less encountered than the antiparallel one in CSD crystal struc-
tures (Figure 15) [47]. It can usually be encountered when a square planar complex contains
two identical chelate rings, which enables them to overlap almost entirely by forming two
simultaneous chelate–chelate stacking interactions. Such parallel orientation was found,
among others, in the crystal structure of bis(2-(1H-pyrazol-5-yl)pyridinato)platinum(II)
(Figure 18), where two N,N-type chelate rings fused with aromatic rings form a pair of
chelate–chelate stacking interactions [51].
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Figure 18. Parallel-displaced chelate–chelate stacking interactions with parallel orientation of
fused chelate rings (r = 0.71 Å, R = 3.32 Å) in the crystal structure of bis(2-(1H-pyrazol-5-
yl)pyridinato)platinum(II) (CSD refcode USIRUK) [51]. Atom colors: carbon—dark gray, hydrogen—
white, nitrogen—blue, platinum—light gray.

An interesting example of parallel orientation is encountered in the crystal structure
of a biimidazole complex of rhodium (Figure 19). The molecules of this complex form three
geometrically different and alternating chelate–chelate stacking interactions, all of which
are parallel-displaced and in parallel orientation of the complexes (Figure 19). Very similar
stacking interactions are found in crystal structures of this cationic complex with several
different counteranions [52].

Chemistry 2023, 5, FOR PEER REVIEW 13 
 

 

 
Figure 18. Parallel-displaced chelate–chelate stacking interactions with parallel orientation of fused 
chelate rings (r = 0.71 Å, R = 3.32 Å) in the crystal structure of 
bis(2-(1H-pyrazol-5-yl)pyridinato)platinum(II) (CSD refcode USIRUK) [51]. Atom colors: car-
bon—dark gray, hydrogen—white, nitrogen—blue, platinum—light gray. 

An interesting example of parallel orientation is encountered in the crystal structure 
of a biimidazole complex of rhodium (Figure 19). The molecules of this complex form 
three geometrically different and alternating chelate–chelate stacking interactions, all of 
which are parallel-displaced and in parallel orientation of the complexes (Figure 19). 
Very similar stacking interactions are found in crystal structures of this cationic complex 
with several different counteranions [52]. 

 
Figure 19. Three different chelate–chelate stacking interactions in crystal structure of hex-
akis(Dicarbonyl-(2,2′-bi-imidazole)-rhodium(I) dicarbonyl-dichloro-rhodium(I) pentachloride di-
chloromethane solvate tetrahydrate (CSD refcode RUXPUW) [52]. All individual interactions are 
parallel-displaced (1 r = 1.10 Å and R = 3.31 Å, 2 r = 0.86 Å and R = 3.39 Å, 3 r = 1.26 Å and R = 3.29 
Å). Molecules forming individual interactions are highlighted in capped stick style, while the other 
atoms are in wireframe style. Atom colors: carbon—dark gray, hydrogen—white, nitrogen—blue, 
oxygen—red, rhodium—dark green. 

The analysis of crystal structures containing cross orientation of chelate–chelate 
stacking showed that this orientation is characteristic for fused chelate rings, where it is 
always encountered together with parallel or (more often) antiparallel orientation [47]. In 
the crystal structure of a copper complex containing fused five-membered and 
six-membered rings, there is the antiparallel chelate–chelate stacking interaction of 
six-membered chelate rings, and two simultaneous cross chelate–chelate stacking inter-
actions between the six-membered and five-membered ring (Figure 20) [53]. 

Figure 19. Three different chelate–chelate stacking interactions in crystal structure of
hexakis(Dicarbonyl-(2,2′-bi-imidazole)-rhodium(I) dicarbonyl-dichloro-rhodium(I) pentachloride
dichloromethane solvate tetrahydrate (CSD refcode RUXPUW) [52]. All individual interactions are
parallel-displaced (1 r = 1.10 Å and R = 3.31 Å, 2 r = 0.86 Å and R = 3.39 Å, 3 r = 1.26 Å and R = 3.29 Å).
Molecules forming individual interactions are highlighted in capped stick style, while the other
atoms are in wireframe style. Atom colors: carbon—dark gray, hydrogen—white, nitrogen—blue,
oxygen—red, rhodium—dark green.

The analysis of crystal structures containing cross orientation of chelate–chelate stack-
ing showed that this orientation is characteristic for fused chelate rings, where it is always
encountered together with parallel or (more often) antiparallel orientation [47]. In the
crystal structure of a copper complex containing fused five-membered and six-membered
rings, there is the antiparallel chelate–chelate stacking interaction of six-membered chelate
rings, and two simultaneous cross chelate–chelate stacking interactions between the six-
membered and five-membered ring (Figure 20) [53].
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Figure 20. Simultaneous antiparallel (r = 1.83 Å and R = 3.40 Å) and cross chelate–chelate stack-
ing interactions (r = 1.41 Å and R = 3.36 Å) in the crystal structure of (4-hydroxy-N′-(2-oxy-3-
methoxybenzylidene)benzohydrazide)-bis(methanol)-copper(II) nitrate methanol solvate (CSD re-
fcode XETXEB) [53]. The antiparallel and cross orientations are highlighted in capped stick style,
while the other atoms are in wireframe style. Atom colors: carbon—dark gray, hydrogen—white,
nitrogen—blue, oxygen—red, copper—light brown.

Quantum chemical calculations on acac-type chelates (Figure 21) have shown that
chelate–chelate stacking interactions are strongest in antiparallel orientation [54], which
can explain the dominance of this orientation in crystal structures (the other reasons may
include the existence of the center of symmetry in antiparallel orientation) [47]. As in the
case of chelate–aryl stacking interactions, interaction energies can greatly vary depending
on the metal. It can be noted that acac-type chelates of Ni, Pd and Pt stack with similar
interaction energies of about −9.5 kcal/mol (Table 3) [54], while Cu and Zn chelates form
significantly stronger antiparallel chelate–chelate stacking interactions (−11.70 kcal/mol
and−14.58 kcal/mol; Table 3) [38]. On the other hand, the strongest parallel chelate–chelate
stacking surpasses only the interaction energy of −6.28 kcal/mol [54]. The strength of
chelate–chelate stacking interactions in antiparallel orientation increases going from Ni to
Zn chelates, in accordance with the increase in the electrostatic component of interaction
energy (Table 4) [38]. This is owed to double overlapping of positive electrostatic poten-
tials above metals and negative electrostatic potentials above C2 atoms of chelate rings
(Figures 12 and 21). Hence, strong antiparallel orientations are a consequence of favorable
electrostatic interactions.

Interestingly, interaction energies in cross orientation are very similar to those in
parallel orientation (Table 3). Still, parallel orientation is more often encountered in crystal
structures than cross orientation (Figure 15) [47], probably due to the existence of elements
of symmetry in parallel orientation.

From the interaction energies, it can be concluded that chelate–chelate stacking interac-
tions are stronger than chelate–aryl and aryl–aryl stacking interactions [3]. Chelate–chelate
stacking owes its strength to a very pronounced electrostatic energy component, which in
some cases even exceeds the dispersion energy (Table 4), which is typically the dominant
one for stacking interactions of aromatic molecules [38]. Similar energies and nature of
interactions are observed for stacking interactions between dithiolene chelate rings [37,38].
Overall, crystallographic and computational data imply that stacking interactions of chelate
rings are very important noncovalent interactions that must be considered when observing
and discussing the packing of molecules in the crystal structures and other systems.
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Table 3. Geometrical parameters (offset r and normal distance R, both in Å) and interaction energies
(∆E, in kcal/mol) for stacking interactions between two acac-type chelate rings in [M(formate)(acac-
type)] complexes. For all the metals, the energies were calculated at LC-ωPBE-D3BJ/aug-cc-pVDZ
level of theory. The structures of the dimers are given in Figure 21.

Metal
Antiparallel Parallel Cross

r R ∆E r R ∆E r R ∆E

Ni [38] 0.5 3.13 −9.47 1.8 3.20 −4.80 1.8 3.25 −4.98
Cu [38] 0.4 3.01 −11.70
Zn [38] 0.4 2.88 −14.58
Pd [54] 2.7 3.30 −9.30 1.8 3.20 −5.97 1.8 3.30 −5.56
Pt [54] 2.7 3.30 −9.73 1.5 3.30 −6.28 1.8 3.40 −6.13

Table 4. Geometrical parameters (offset r and normal distance R, both in Å) and total SAPT0/def2-
TZVP interaction energy (∆E) and its components (ELST—electrostatic, EXCH—exchange, IND—
induction, DISP—dispersion, all in kcal/mol) of the most stable stacking interactions between two
acac-type chelate rings in [M(formate)(acac-type)] complexes (antiparallel orientation; Figure 21). Net
dispersion (NET DISP, in kcal/mol) is the sum of dispersion and exchange components.

Metal r R ∆E ELST EXCH IND DISP NET DISP

Ni 0.5 3.13 −10.11 −11.99 +15.60 −1.82 −11.89 +3.71
Cu 0.4 3.01 −12.54 −16.67 +21.42 −3.47 −13.82 +7.60
Zn 0.4 2.88 −15.39 −23.21 +30.67 −6.67 −16.18 +14.49

3. Stacking Interactions of Hydrogen-Bridged Rings

Hydrogen-bridged rings are the rings in which one of the bonds is an intramolecu-
lar hydrogen bond. These rings may have no π-bonds, which makes them single-bond
hydrogen-bridged rings (SBHB; Figure 22). More known are resonance-assisted hydrogen-
bridged rings (RAHB), in which hydrogen donor and acceptor atoms are connected
by a π-conjugated system (Figure 22). In these rings, there are synergistic effects be-
tween the hydrogen bond and resonance, which reinforce H-bond strengthening and
π-delocalization [55,56], making them very interesting from theoretical and experimental
points of view [57,58]. Interestingly, some theoretical studies show that the reason for the
stability of intramolecular hydrogen bonds in RAHB rings is not resonance, but simply the
σ-skeleton of the systems, which provides the close proximity of the hydrogen donor and
hydrogen acceptor [59,60].

Hydrogen-bridged rings have found an application in numerous areas, ranging from
biomolecules to synthesis and materials. The denaturant activity of a guanidinium cation
towards proteins with aromatic side chains is owed to the formation of hydrogen-bridged
rings [61,62]. The formation of a hydrogen-bridged ring was shown to have a critical role
in E/Z isomeric resolution [63,64]. The supramolecular design based on the creation of six-
membered intramolecular hydrogen-bonded rings was shown to improve the temperature
range of liquid crystals [65]. RAHB rings are also shown to drive the photoluminescence
of ethyl N-salicylideneglycinate dyes [58]. Moreover, optical properties of alternating
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phenylene–pyridinylene copolymers can be finely tuned due to the formation of RAHB
rings [66].
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bridged rings (RAHB).

Similar to chelate rings in transition metal complexes, hydrogen-bridged rings can
form stacking interactions, in spite of not being aromatic. These stacking interactions
were recognized and their geometrical parameters were described based on the crystal
data deposited in the Cambridge Structural Database [7–10,67,68]. Moreover, calculated
interaction energies show that the stacking interactions of hydrogen-bridged rings are
stronger than stacking interactions of aromatic molecules [7–10,67,68]. For both types of
hydrogen-bridged rings (SBHB and RAHB), stacking interactions between two hydrogen-
bridged rings were studied, as well as interactions of hydrogen-bridged rings and C6-
aromatic rings.

3.1. Stacking Interactions of Single-Bond Hydrogen-Bridged Rings

The search of CSD derived a total of 978 crystal structures with planar hydrogen-
bridged rings with all covalent bonds within the ring being single and acyclic and all
atoms in the ring being planar (single-bond hydrogen-bridged rings, SBHB; Figure 22) [7].
Interaction between two SBHB rings, as well as between SBHB and a C6-aromatic ring, is
characterized by the distance between the centers of the rings that is shorter than 4.5 Å
(Figure 23). In this way, a total of 307 SBHB/SBHB and 493 SBHB/aromatic interactions
were found [7,8]. For SBHB/SBHB interactions, there is a very high tendency for small
interplanar angles (86%), while SBHB/aromatic contacts showed a smaller tendency for
interplanar angles below 10◦ (45%; Figure 24). Therefore, a total of 264 SBHB/SBHB and
221 SBHB/aromatic stacking interactions were found in the CSD crystal structures [7,8].
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Figure 23. Geometrical parameters used for the description of stacking interactions between two
SBHB rings (a) and between SBHB and C6-aromatic ring (b). Ω denotes the ring centroid; X and Y are
any atoms adjacent to hydrogen bond acceptor A and donor D atoms. R and r mark normal distance
and offset value, respectively. Additionally, mutual orientations of two SBHB rings are determined
with τH and τA torsion angles.



Chemistry 2023, 5 2529

Chemistry 2023, 5, FOR PEER REVIEW 17 
 

 

Figure 23. Geometrical parameters used for the description of stacking interactions between two 
SBHB rings (a) and between SBHB and C6-aromatic ring (b). Ω denotes the ring centroid; X and Y 
are any atoms adjacent to hydrogen bond acceptor A and donor D atoms. R and r mark normal 
distance and offset value, respectively. Additionally, mutual orientations of two SBHB rings are 
determined with τH and τA torsion angles. 

 
Figure 24. Distribution of interplanar angles for SBHB/SBHB and SBHB/aromatic interactions in the 
CSD crystal structures. 

The analysis of the geometrical parameters shows that most of the stacking interac-
tions of SBHB rings have normal distances in the range between 3.0 Å and 3.5 Å (Figure 
25), which makes them very similar to stacking interactions of organic aromatic rings. 
The horizontal displacement values are mostly between 1.0 Å and 3.0 Å (Figure 25), in-
dicating parallel-displaced arrangement [7,8]. Moreover, in the case of SBHB/SBHB 
stacking interactions, most of the contacts have both τH and τA torsion angles at around 
180° (Figure 23), showing preferred head-to-tail, or antiparallel orientation [7], similar to 
that for the stacking of chelate rings [47]. 

 
Figure 25. Dependence of normal distance R on the offset values r for stacking interactions between 
two SBHB rings (a) and between SBHB ring and C6-aromatic ring (b). 

It was determined that 94% of all SBHB/SBHB contacts have HNCNN composition 
of the hydrogen-bridged ring, out of which 75% have sulfur as a substituent of the C 
atom [7]. Therefore, stacking interactions between two single-bond hydrogen-bridged 
rings are mostly encountered in the crystal structures containing derivatives of thio-
semicarbazide. One of many examples of this parallel-displaced stacking is found be-
tween two thiosemicarbazones coordinated to copper(I) ions (Figure 26) [69]. 

Figure 24. Distribution of interplanar angles for SBHB/SBHB and SBHB/aromatic interactions in the
CSD crystal structures.

The analysis of the geometrical parameters shows that most of the stacking interactions
of SBHB rings have normal distances in the range between 3.0 Å and 3.5 Å (Figure 25), which
makes them very similar to stacking interactions of organic aromatic rings. The horizontal
displacement values are mostly between 1.0 Å and 3.0 Å (Figure 25), indicating parallel-
displaced arrangement [7,8]. Moreover, in the case of SBHB/SBHB stacking interactions,
most of the contacts have both τH and τA torsion angles at around 180◦ (Figure 23), showing
preferred head-to-tail, or antiparallel orientation [7], similar to that for the stacking of
chelate rings [47].
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It was determined that 94% of all SBHB/SBHB contacts have HNCNN composition
of the hydrogen-bridged ring, out of which 75% have sulfur as a substituent of the C
atom [7]. Therefore, stacking interactions between two single-bond hydrogen-bridged
rings are mostly encountered in the crystal structures containing derivatives of thiosemicar-
bazide. One of many examples of this parallel-displaced stacking is found between two
thiosemicarbazones coordinated to copper(I) ions (Figure 26) [69].

SBHB rings are also formed in crystal structures of derivatives of semicarbazide,
which has oxygen instead of sulfur as a substituent on the C atom. The CSD survey has
shown that 20% of all SBHB/SBHB stacking interactions found in the CSD are between
HNCNN rings with an oxygen substituent [7]. Therefore, another type of compounds
forming SBHB/SBHB stacking interactions is semicarbazides. One example of this stacking
interaction is presented in Figure 27 [70].
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The visual inspection of the SBHB/aromatic stacking interactions indicates that most 
of the contacts are between molecules that contain both C6-aromatic and hydro-
gen-bridged rings (Figure 28) [8]. These molecules have the possibility for aro-

Figure 26. Parallel-displaced stacking interaction (r = 1.59 Å and R = 3.34 Å) between two
single-bond hydrogen-bridged rings in the crystal structure of bis(µ2-bromo)-bis(N-methyl-2-(2-
thienylmethylene)hydrazinecarbothioamide)-bis(triphenylphosphine)-di-copper(I) (CSD refcode
KUGTAI) [69]. The atoms of SBHB rings forming the stacking interaction are presented in ball-
and-stick style on the left and capped stick on the right, while atoms not belonging to the SBHB
ring are presented in capped stick style on the left and in wireframe style on the right. Atom col-
ors: carbon—dark gray, hydrogen—white, nitrogen—blue, sulfur—yellow, phosphorus—orange,
copper—light brown.
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Figure 27. Parallel-displaced stacking interaction (r = 1.64 Å and R = 3.21 Å) between two single-
bond hydrogen-bridged rings in the crystal structure of (3-(4-(N,N-dimethylamino)phenyl)-1-(4-
methylphenyl)-3-(phenylsulfanyl)propylidene)semicarbazide (CSD refcode OCANAI) [70]. The
atoms of SBHB rings forming the stacking interaction are presented in ball-and-stick style on the
left and capped stick on the right, while atoms not belonging to the SBHB ring are presented in
capped stick style on the left and in wireframe style on the right. Atom colors: carbon—dark gray,
hydrogen—white, nitrogen—blue, oxygen—red, sulfur—yellow.

The visual inspection of the SBHB/aromatic stacking interactions indicates that
most of the contacts are between molecules that contain both C6-aromatic and hydrogen-
bridged rings (Figure 28) [8]. These molecules have the possibility for aromatic/aromatic,
SBHB/aromatic and SBHB/SBHB stacking interactions. The most frequent are SBHB/aromatic
stacking interactions with head-to-tail orientation of the whole molecules (Figure 28), which
were found in 58% of all stacking interactions [8]. In 62% of these contacts, two simulta-
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neous SBHB/aromatic stacking interactions are encountered, and they are also usually
formed with the derivatives of thiosemicarbazide (Figure 28) [71].
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High-level CCSD(T)/CBS calculations of SBHB stacking interaction energies were 
performed using 2-methylidenehydrazinecarbothioamide as a model molecule, based on 
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Figure 28. Two simultaneous SBHB/aromatic stacking interactions (r = 0.80 Å and R = 3.38 Å) in the
crystal structure of 2-(4-formylbenzylidene)hydrazinecarbothioamide (CSD refcode WOPJES) [71].
Hydrogen-bridged and aromatic rings are presented in ball-and-stick style, while other atoms are
given in capped stick style. Atom colors: carbon—dark gray, hydrogen—white, oxygen—red,
nitrogen—blue, sulfur—yellow.

An interesting case is the crystal structure containing pyridine-2-carbaldehydethiosemi-
carbazonium, which has an SBHB ring next to a five-membered resonance-assisted hydrogen-
bridged (RAHB) ring and an aromatic ring [72]. Unlike most of the (antiparallel) contacts
between such units, these ions are stacked with parallel orientation (Figure 29a), which
allows for the formation of simultaneous SHBH/aromatic (Figure 29b), SBHB/RAHB
stacking (Figure 29c) and RAHB/aromatic stacking interactions (Figure 29d).
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Figure 29. Crystal structure of pyridine-2-carbaldehyde thiosemicarbazonium chloride monohydrate
(CSD refcode RAHRAV) [72] contains stacked semicarbazone units (a) with SBHB/aromatic (b),
SBHB/RAHB (c) and RAHB/aromatic stacking interactions (d). SBHB/aromatic stacking interaction
is parallel-displaced (r = 1.46 Å and R = 3.28 Å), as well as the other stacking interactions. Particular
interactions are highlighted in capped stick style, with the rest of the atoms in wireframe style. Atom
colors: carbon—dark gray, hydrogen—white, nitrogen—blue, sulfur—yellow.

High-level CCSD(T)/CBS calculations of SBHB stacking interaction energies were
performed using 2-methylidenehydrazinecarbothioamide as a model molecule, based on
the occurrence of this type of hydrogen-bridged rings in the CSD crystal structures [7].
SBHB rings form the strongest stacking interactions in parallel-displaced arrangement, with
head-to-tail orientation (Figure 30). The strongest SBHB/SBHB stacking interaction has the
energy of −4.89 kcal/mol (Table 5) [7]. On the other hand, the most stable SBHB/benzene
stacking interaction is somewhat weaker, with an interaction energy of −4.38 kcal/mol
(Table 5) [8]. Nevertheless, both types of stacking interactions of single-bond hydrogen-
bridged rings are more stable than stacking interaction between two aromatic (benzene)
rings [18]. The SAPT2+3 [73] analysis of SBHB/benzene stacking interaction showed that
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the strongest attractive contribution to the total interaction energy is dispersion, which
is twice as strong as electrostatics (Table 5) [8]. SBHB/benzene stacking is stronger than
benzene/benzene stacking due to more attractive dispersion and (especially) electrostatic
energy terms (Table 5) [8].
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Table 5. Interaction energies (∆E, in kcal/mol) calculated at the CCSD(T)/CBS level and normal
distances (R, in Å) and offset values (r, in Å) for the most stable SBHB/SBHB and SBHB/benzene
stacking interactions (Figure 30). The total interaction energy for SBHB/benzene was recalculated
at SAPT2+3/aug-cc-pVDZ level of theory (SAPT, in kcal/mol) and decomposed into electrostatic
(ELST), exchange (EXCH), induction (IND) and dispersion (DISP) components (all in kcal/mol).
The data from SAPT2+3/def2-TZVPPD decomposition of benzene/benzene stacking are given
for comparison.

System r R ∆E SAPT ELST EXCH IND DISP

SBHB/SBHB [7] 1.0 3.0 −4.89
SBHB/benzene [8] 1.5 3.2 −4.38 −4.44 −4.29 +9.49 −1.04 −8.59

benzene/benzene [45] 1.5 3.50 −2.79 −2.83 −1.50 +6.58 −0.70 −7.21

SBHB/SBHB stacking interactions can be further stabilized if the SBHB rings con-
tain out-of-plane hydrogen atoms. This gives the possibility for additional simultaneous
hydrogen bonds between out-of-plane hydrogen atoms of one ring and electronegative
atoms of the other ring [67], as encountered in the crystal structure of hydrazinecar-
bothioamide (Figure 31) [74]. The large impact of these additional hydrogen bonds
was shown with the CCSD(T)/CBS calculations, which showed that the overall inter-
action in the hydrazinecarbothioamide dimer is twice as strong as the stacking inter-
action in the 2-methylidenehydrazinecarbothioamide dimer (−9.68 kcal/mol [67] and
−4.89 kcal/mol [7], respectively).
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3.2. Stacking Interactions of Resonance-Assisted Hydrogen-Bridged Rings

In order to study if resonance-assisted hydrogen-bridged rings (RAHB) are capable of
forming stacking interactions, the search of crystal structures deposited in the CSD was
performed in order to find six-membered RAHB rings with all bonds being acyclic, in order
to exclude the presence of rigid fused rings that can also form stacking interactions. This
search gave 1543 RAHB rings [9], which was more in comparison to SBHB rings [7]. Using
the distance between ring centers shorter than 4.5 Å as the criterion, the search gave a total of
678 interactions between two RAHB rings (Figure 32a), as well as 677 interactions between
RAHB and C6-aromatic rings (Figure 32b). Small interplanar angles (less than 10◦) were
encountered in 91% of RAHB/RAHB interactions and 59% of RAHB/aromatic interactions.
Therefore, a total of 617 RAHB/RAHB stacking interactions [9] and 402 RAHB/aromatic
stacking interactions [10] were found in the CSD crystal structures.
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Similar to hydrogen-bridged rings with single bonds (Section 3.1), normal distances 
in both RAHB/RAHB and RAHB-aromatic stacking are dominantly between 3.0 and 4.0 
Å (Figure 33) [9,10], which is also typical for stacking interactions of aromatic organic 
molecules. These interactions are in most cases parallel-displaced, with horizontal dis-
placements typically in the range 1.0–3.0 Å (Figure 33) [9,10]. The analysis of the mutual 
orientations of the two interacting RAHB rings showed another similarity with stacking 
interactions of SBHB rings, and that is the antiparallel orientation of interacting rings [9].  

Figure 32. Geometrical parameters used for the description of stacking interactions between two
RAHB rings (a) and between RAHB and C6-aromatic ring (b). Ω denotes the ring centroid; X, Y and
Z are any atoms; acceptor and donor atoms (A and D, respectively) include N, O and S atoms. R
and r mark normal distance and offset value, respectively. Additionally, mutual orientations of two
RAHB rings are determined with τD and τA torsion angles.

Similar to hydrogen-bridged rings with single bonds (Section 3.1), normal distances
in both RAHB/RAHB and RAHB-aromatic stacking are dominantly between 3.0 and
4.0 Å (Figure 33) [9,10], which is also typical for stacking interactions of aromatic organic
molecules. These interactions are in most cases parallel-displaced, with horizontal dis-
placements typically in the range 1.0–3.0 Å (Figure 33) [9,10]. The analysis of the mutual
orientations of the two interacting RAHB rings showed another similarity with stacking
interactions of SBHB rings, and that is the antiparallel orientation of interacting rings [9].
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The compositions of RAHB rings forming most of the stacking interactions are HOC-
CCO (31%), HNCCCO (28%) and HNNCCO (17%) [9]. The most abundant composition,
HOCCCO, usually belongs to β-diketones in enol form or β-hydroxy esters. Parallel-
displaced RAHB/RAHB stacking interaction is found in the crystal structure of one such
ester (Figure 34) [75]. Since this RAHB ring is connected to an organic aromatic ring, there
is a simultaneous aromatic–aromatic stacking interaction, which also has parallel-displaced
arrangement (Figure 34).
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Figure 34. Parallel-displaced stacking interaction between two RAHB rings (r = 1.55 Å and
R = 3.50 Å) in the crystal structure of (Z)-methyl-3-(2,4-dichlorophenyl)-3-hydroxyacrylate (CSD
refcode SAFNEU) [75]. RAHB ring is shown in ball-and-stick style, while other atoms are shown in
capped stick style. Atom colors: carbon—dark gray, hydrogen—white, oxygen—red, chlorine—green.

The RAHB/RAHB stacking between HNCCCO rings was observed in the crystal struc-
ture of a Z diastereoisomer of the push–pull alkene containing pyrrolo[2,3-b]quinoxaline
(Figure 35) [76]. The central π-bond of this alkene is a part of the RAHB ring, which forms
a dimer with the neighboring molecule via RAHB/RAHB stacking (Figure 35). Aside from
RAHB/RAHB stacking interactions, these dimers are additionally stabilized by aromatic C-
H/π interactions, as well as aromatic–aromatic stacking with large horizontal displacement
(Figure 35) [76].
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tal structure of (Z)-3-[(pyridin-2-ylamino)phenylmethylidene]-1,3-dihydro-2H-1-phenylpyrrolo[2,3-
b]quinoxalin-2-one (CSD refcode LUYWAF) [76]. The view on the right has RAHB/RAHB stacking
highlighted in capped stick style, with the rest of the atoms in wireframe style. Atom colors: carbon—
dark gray, hydrogen—white, oxygen—red, nitrogen—blue.

As in the case of SBHB/aromatic stacking, RAHB/aromatic stacking interactions are
often encountered in the structures that contain molecules with both RAHB and aromatic
rings (Figure 36). In this way, two simultaneous parallel-displaced RAHB/aromatic stack-
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ing interactions can be formed, as it is the case in the crystal structure of the ester with
HNNCCO ring composition (Figure 36) [77].
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Figure 36. Two simultaneous parallel-displaced RAHB/aromatic stacking interactions (r = 1.55 Å
and R = 3.40 Å) in the crystal structure of (Z)-ethyl-2-(2-(4-acetylphenyl)hydrazono)-4-chloro-3-
oxobutanoate (CSD refcode PIDGEP) [77]. One RAHB/aromatic contact is shown in capped stick
style, and the other one in ball-and-stick style. The remaining atoms are shown in wireframe style.
Atom colors: carbon—dark gray, hydrogen—white, oxygen—red, nitrogen—blue, chlorine—green.

If RAHB and the aromatic ring are not coplanar, only one RAHB/aromatic stacking
interaction can be formed. In one example, regarding the crystal structure of phenyl-
substituted β-diketimine of the NacNac type, where the aromatic and RAHB ring cannot
be planar due to the presence of methyl groups on RAHB rings, a single RAHB/aromatic
stacking interaction is formed between an unusual HNCCCN RAHB ring of one molecule
and phenyl ring of the other molecule (Figure 37) [78].
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Figure 37. Parallel-displaced RAHB/aromatic stacking interaction (r = 1.55 Å and R = 3.68 Å) in the
crystal structure of 3-anilino-2-(N-phenylethanimidoyl)but-2-enenitrile (CSD refcode NAVZAN) [78].
This stacking interaction is highlighted on the right in capped stick style, with the remaining atoms
in wireframe style. Atom colors: carbon—dark gray, hydrogen—white, nitrogen—blue.

The model systems for quantum chemical calculations of stacking interaction energies
are based on the three most frequent types of RAHB rings in the CSD crystal structures
(Figures 38 and 39). The CCSD(T)/CBS interaction energies for both RAHB/RAHB and
RAHB/aromatic stacking interactions vary depending on the ring composition (Table 6). In
general, RAHB/RAHB stacking is stronger than RAHB/benzene stacking (−4.74 kcal/mol
and −3.54 kcal/mol, respectively; Table 6) [9,10]. Comparison with interaction energies of
stacking interactions of single-bond hydrogen-bridged rings (Section 3.1) shows that the
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strongest interactions for RAHB systems are somewhat weaker than the strongest interac-
tions for SBHB systems (Table 5) [7–10]. However, when compared with the interaction
energies between stacked benzene molecules (−2.73 kcal/mol) [18], stacking interactions of
RAHB rings are stronger. The calculations have also shown that RAHB stacking interaction
energies are significantly preserved even at large horizontal displacements [68].
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Figure 38. Molecules used for the model systems for quantum chemical calculations of stacking
interaction energies between two RAHB rings were (2Z)-3-hydroxyprop-2-enal (A), (2Z)-3-aminoprop-
2-enal (B) and (2Z)-hydrazinylideneacetaldehyde (C). Presented are the arrangements with strongest
stacking interactions for each system. Atom colors: carbon—dark gray, hydrogen—white, nitrogen—
blue, oxygen—red.
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C; Figure 38) has the weakest stacking interaction, since the electrostatic contribution in 
this dimer is quite small, and the contribution of dispersion is also smaller than in other 
systems (Table 6) [9]. The calculations were performed on the most stable structures 
(Figure 38) with antiparallel orientations; the strong influence of the electrostatic com-
ponent on the interaction energies indicates importance of electrostatics in the stability of 
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The data from crystal structures demonstrate that stacking interactions can exist 
between the rings that are not closed with covalent bonds, but with intramolecular hy-
drogen bonds. The calculated interaction energies show that stacking interactions of hy-
drogen-bridged rings, both single-bond and resonance-assisted, are stronger than stack-
ing interactions between aromatic rings. Interestingly, the strongest interactions are the 
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Figure 39. Molecules used for the model systems for quantum chemical calculations of stacking
interaction energies between RAHB and aromatic rings were benzene and (2Z)-3-hydroxyprop-2-
enal (A), (2Z)-3-aminoprop-2-enal (B) and (2Z)-hydrazinylideneacetaldehyde (C). Presented are the
arrangements with strongest stacking interactions for each system. Atom colors: carbon—dark gray,
hydrogen—white, nitrogen—blue, oxygen—red.

The SAPT2+3 analysis of the nature of stacking interactions between RAHB rings
showed that these interactions are dominated by the strong dispersion component, as
well as the strong electrostatic component [9]. Both components are the strongest for the
HNCCCO dimer (model system B; Figure 38), which possesses the strongest total inter-
action energy (Table 6) [9]. The RAHB ring with HNNCCO composition (model system
C; Figure 38) has the weakest stacking interaction, since the electrostatic contribution
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in this dimer is quite small, and the contribution of dispersion is also smaller than in
other systems (Table 6) [9]. The calculations were performed on the most stable structures
(Figure 38) with antiparallel orientations; the strong influence of the electrostatic compo-
nent on the interaction energies indicates importance of electrostatics in the stability of
antiparallel orientations.

Table 6. Interaction energies (∆E, in kcal/mol) calculated at the CCSD(T)/CBS level and normal
distances (R, in Å) and offset values (r, in Å) for the most stable RAHB/RAHB (Figure 38) and
RAHB/benzene stacking interactions (Figure 39). The total interaction energy for RAHB/RAHB
was recalculated at SAPT2+3/cc-pVQZ level of theory (SAPT, in kcal/mol) and decomposed into
electrostatic (ELST), exchange (EXCH), induction (IND) and dispersion (DISP) components (all in
kcal/mol).

Type of Stacking RAHB
Composition a r R ∆E SAPT ELST EXCH IND DISP

RAHB/RAHB [66]
HOCCCO (A) 0.5 3.30 −4.26 −4.32 −3.55 +5.92 −0.60 −6.10
HNCCCO (B) 1.8 3.10 −4.74 −4.81 −4.81 +7.86 −1.12 −6.74
HNNCCO (C) 1.8 3.35 −2.23 −2.09 −0.89 +3.76 −0.33 −4.64

RAHB/benzene [67]
HOCCCO (A) 1.4 3.4 −3.54
HNCCCO (B) 1.8 3.3 −3.47
HNNCCO (C) 1.5 3.4 −3.20

a See Figure 38 for RAHB/RAHB and Figure 39 for RAHB/benzene.

The data from crystal structures demonstrate that stacking interactions can exist be-
tween the rings that are not closed with covalent bonds, but with intramolecular hydrogen
bonds. The calculated interaction energies show that stacking interactions of hydrogen-
bridged rings, both single-bond and resonance-assisted, are stronger than stacking inter-
actions between aromatic rings. Interestingly, the strongest interactions are the ones of
single-bond hydrogen-bridged rings, which do not possess π-electrons within the rings.
The combined crystallographic and computational analysis illustrates that aromaticity or
even the presence of a π-system in the ring is not mandatory for strong stacking interactions.

4. Conclusions

Using the data from crystal structures in the Cambridge Structural Database, it is
possible to recognize new types of noncovalent interactions. First, it is possible to find
the occurrence of interactions in the crystal structures. In addition, it is possible to de-
scribe their most common geometrical parameters, and to determine the most common
types of species involved in the interactions. These data from crystal structures can be
supported with high-level quantum chemical calculations of interaction energies, prefer-
ably at a high CCSD(T)/CBS level, which show that the interactions are attractive and
provide information on their relative strength, comparing them with other interactions
of those or similar systems. In this way, we recognized that two types of nonaromatic
rings, namely metal–chelate rings and hydrogen-bridged rings, are capable of forming
stacking interactions.

The crystal data showed that chelate rings, most notably in square planar and square
pyramidal complexes of Ni, Cu, Pd and Pt, form stacking interactions with aromatic rings
(chelate–aryl stacking) and with other chelate rings (chelate–chelate stacking). Chelate–
aryl stacking interactions can be intramolecular and intermolecular, and they have the
tendency toward parallel-displaced arrangement. Quantum chemical calculations show
that, while their strength depends on the metal in the chelate ring, chelate–aryl stacking
interactions (−7.56 kcal/mol) are always stronger than aryl–aryl stacking interactions
(−2.73 kcal/mol). Even though they are dominated by dispersion, it was shown that
chelate–aryl stacking interactions are stronger than aryl–aryl stacking interactions due to
electrostatic effects. Chelate–chelate stacking interactions are preferably parallel-displaced,
but they can also be in face-to-face arrangement; in both cases, the mutual orientation of
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chelate rings is mostly antiparallel. Chelate–chelate stacking interactions can be signifi-
cantly stronger (−14.58 kcal/mol) than chelate–aryl and particularly aryl–aryl stacking
interactions. Chelate–chelate stacking interactions owe their strength to a very pronounced
electrostatic component.

Both single-bond hydrogen-bridged (SBHB) and resonance-assisted hydrogen-bridged
(RAHB) rings frequently form stacking interactions in the crystal structures, either with aro-
matic rings (SBHB-aromatic and RAHB-aromatic stacking) or with other hydrogen-bridged
rings (SBHB-SBHB and RAHB-RAHB stacking). These stacking interactions are mostly
with a parallel-displaced arrangement and, in the case of SBHB-SBHB and RAHB-RAHB
stacking, in antiparallel orientation. The calculations show that the strength of all these
stacking interactions depends on the ring composition, and that stacking interactions be-
tween two hydrogen-bridged rings (−4.89 kcal/mol for SBHB-SBHB and −4.74 kcal/mol
for RAHB-RAHB) are somewhat stronger than stacking interactions between a hydrogen-
bridged and aromatic ring (−4.38 kcal/mol for SBHB-aromatic and −3.54 kcal/mol for
RAHB-aromatic stacking). Both stacking between two hydrogen-bridged rings and stacking
of hydrogen-bridged rings with aromatic rings are stronger than aryl–aryl stacking interac-
tions (−2.73 kcal/mol). Stacking interactions of hydrogen-bridged rings are dominated by
dispersion, with substantial contribution of electrostatic interactions as well.

The analysis of the crystal data in the CSD supported with quantum chemical calcula-
tions shed a light on these new types of stacking interactions, that are very important for
the supramolecular systems in which they are found. It was shown how these new types of
stacking interactions are able to compete and very often prevail over traditional and more
famous types of stacking interactions. Moreover, these studies showed that the crystal
data deposited in the Cambridge Structural Database are a powerful tool for studying
noncovalent interactions.
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