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Abstract: The discovery of melamine by Justus von Liebig was fundamental for the development
of several fields of chemistry. The vast majority of compounds with melamine or melamine deriva-
tives appear as adducts. Herein, we focus on the development of novel compounds containing
anionic melamine species, namely the melaminates. For this purpose, we analyze the reaction of
SbCl3 with melamine by differential scanning calorimetry (DSC). The whole study includes the
synthesis and characterization of three antimony compounds that are obtained during the deprotona-
tion process of melamine to melaminate with the reaction sequence from SbCl4(C9N18H19) (1) via
(SbCl4(C6N12H13))2 (2) to SbCl(C3N6H4) (3). Compounds are characterized by single-crystal X-ray
diffraction (SXRD), powder X-ray diffraction (PXRD), and infrared spectroscopy (IR). The results
give an insight into the mechanism of deprotonation of melamine, with the replacement of one, two,
or eventually three hydrogen atoms from the three amino groups of melamine. The structure of
(3) suggests that metal melaminates are likely to form supramolecular structures or metal-organic
frameworks (MOFs).
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1. Introduction

In the 19th century, the foundation of amine-substituted s-triazine derivatives was laid
for the first time by Liebig and Gmelin [1–3] with the synthesis of melamine, melam, melem
and their condensation product called melon. Melamine (1,3,5-triazine-2,4,6-triamine) is
the simplest and most intensively studied C/N/H compound synthesized from potassium
thiocyanate and ammonium chloride for the first time (1834) by Liebig [1,4]. However, it can
also be easily achieved with trimerization of cyanamide (CN2H2), while today, industrial
productions take place from urea in tons [5–7]. Melamine has a relatively high-melting
point for an organic compound and undergoes condensation reactions on heating. The
condensation products melem, melam, and melon (Figure 1) of this ancestry compound
have been studied extensively using various spectroscopy techniques [8,9]. For a long
period, thermal condensation was not fully understood due to the chemical inertness and
low solubility of these products [10]. In 1959, May conducted a study on the pyrolysis
of melamine at temperatures between 200 ◦C and 500 ◦C [11]. Afterward, this process
was investigated by several scientists, particularly by Schnick and Lotsch [12,13]. The
temperature-programmed XRD (TPXRD) was used in the temperature range between
25 ◦C and 660 ◦C to clarify the exact temperatures of formation of condensed products,
which shows that the sublimation temperature of melamine is approximately 360–370 ◦C
at atmospheric pressure. However, TPXRD in semi-closed systems shows that the X-ray
reflections of melamine disappear at 296 ◦C, and then melamine forms melam and melem,
which are stable up to 379 ◦C [13]. Pure melem, which consists of internally hydrogen-
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bonded heptazine molecules, can be obtained at 379 ◦C and is stable up to 500 ◦C. The
polymeric carbon nitride material melon is also achieved with further heating [13].

Chemistry 2023, 5, FOR PEER REVIEW 2 
 

 

which are stable up to 379 °C [13]. Pure melem, which consists of internally hydrogen-

bonded heptazine molecules, can be obtained at 379 °C and is stable up to 500 °C. The 

polymeric carbon nitride material melon is also achieved with further heating [13]. 

 

Figure 1. Molecular structures of melamine (C3N6H6), melam (C6N11H9) and melem (C6N10H6). 

In addition to the many applications melamine has, such as surface coating [14], 

flame redundancy [14–17], and heavy metal removal [18,19], it has some unique charac-

teristics which make it a relevant research topic up to this day. The most important poten-

tial of melamine is its ability to create a metal-organic framework (MOF) [20] or porous-

organic framework (POFs) [21] by the formation of metal melaminates. 

Justus von Liebig’s discovery of melamine was essential in the progress of C/N/H 

chemistry. Most melamine-containing compounds and their derivatives are found as ad-

ducts. Cationic C/N/H ions are present in various molecular compounds, including mela-

mine, melam, and melem. These ions are formed by protonating the ring nitrogen atoms, 

which are more basic than the terminal amino groups. The most common cations are mon-

oprotonated, but di- or trications have also been observed. More research into the chem-

istry of these substances led to the discovery of melaminium [22–26], melamium, and 

melemium salts. By far, the majority of salts were produced by melamine, including mel-

aminium sulfate [27], melaminium nitrate, melaminium phosphates [16,28], melaminium 

chloride [29] organic slats of phthalates [30], benzoates, or citrates [31], and many inor-

ganic salts containing complex anions [32,33]. On the other hand, a small number of mela-

mium salts have been studied, such as melamium bromide and iodide [26]. Recently, mele-

mium salts, namely melemium sulfate, triple protonated melemium methylsulfonate, and 

melemium perchlorate, are also discovered [34,35]. Melamine was also reported to coor-

dinate with metal halides to form organic-inorganic hybrid copper halides such as 

Cu2Br2(C3N6H7)]n, [Cu3Cl3(C3N6H7)]n [36], the silver complex [Ag(C3N6H6)(H2O)(NO3)]n, 

and the mercury compound (C3N6H7)(C3N6H6)HgCl3 [37], which have biochemical appli-

cations and nonlinear optical properties [38,39]. 

Regarding the basic property of melamine, protonation is easy, and a great variety of 

such compounds, either theoretically or experimentally, have been investigated 

[25,26,40,41]. A new class of chemistry related to melaminates (deprotonated melamine) 

has received less attention until now; however, it is very important from either a chemistry 

or application perspective. The coordination behavior of molecules such as guanidine or 

melamine, capable of forming extended hydrogen bonds, can be changed by deprotona-

tion [36,42]. Thus, it is a promising strategy for synthesizing interconnected supramolec-

ular structures or MOFs. Despite the challenge which arises from the rigidity of its heter-

ocyclic structure, the affinity of ring-N atoms to act as H-bond acceptors, and the steric 

hindrance of neighboring amino groups [35], the deprotonation of melamine seems to be 

plausible since guanidine (a stronger base) has already been deprotonated twice [43]. 

Franklin pioneered the work on anionic melaminate by synthesizing two compounds of 

K(C3N6H5)·NH3 and K3(C3N6H3) [44,45] in liquid ammonia. However, these compounds 

were only characterized using elemental analyses, and no crystallographic structure in-

formation was provided. Later, Dronskowski and coworkers confirmed the presence of 

the two ammonia adducts, K(C3N6H5)·NH3 and Rb(C3N6H5)·½NH3 by single-crystal X-ray 

Figure 1. Molecular structures of melamine (C3N6H6), melam (C6N11H9) and melem (C6N10H6).

In addition to the many applications melamine has, such as surface coating [14], flame
redundancy [14–17], and heavy metal removal [18,19], it has some unique characteristics
which make it a relevant research topic up to this day. The most important potential of
melamine is its ability to create a metal-organic framework (MOF) [20] or porous-organic
framework (POFs) [21] by the formation of metal melaminates.

Justus von Liebig’s discovery of melamine was essential in the progress of C/N/H
chemistry. Most melamine-containing compounds and their derivatives are found as
adducts. Cationic C/N/H ions are present in various molecular compounds, including
melamine, melam, and melem. These ions are formed by protonating the ring nitro-
gen atoms, which are more basic than the terminal amino groups. The most common
cations are monoprotonated, but di- or trications have also been observed. More re-
search into the chemistry of these substances led to the discovery of melaminium [22–26],
melamium, and melemium salts. By far, the majority of salts were produced by melamine,
including melaminium sulfate [27], melaminium nitrate, melaminium phosphates [16,28],
melaminium chloride [29], organic slats of phthalates [30], benzoates, or citrates [31], and
many inorganic salts containing complex anions [32,33]. On the other hand, a small number
of melamium salts have been studied, such as melamium bromide and iodide [26]. Recently,
melemium salts, namely melemium sulfate, triple protonated melemium methylsulfonate,
and melemium perchlorate, are also discovered [34,35]. Melamine was also reported to
coordinate with metal halides to form organic-inorganic hybrid copper halides such as
Cu2Br2(C3N6H7)]n, [Cu3Cl3(C3N6H7)]n [36], the silver complex [Ag(C3N6H6)(H2O)(NO3)]n,
and the mercury compound (C3N6H7)(C3N6H6)HgCl3 [37], which have biochemical applica-
tions and nonlinear optical properties [38,39].

Regarding the basic property of melamine, protonation is easy, and a great variety of
such compounds, either theoretically or experimentally, have been investigated [25,26,40,41].
A new class of chemistry related to melaminates (deprotonated melamine) has received
less attention until now; however, it is very important from either a chemistry or applica-
tion perspective. The coordination behavior of molecules such as guanidine or melamine,
capable of forming extended hydrogen bonds, can be changed by deprotonation [36,42].
Thus, it is a promising strategy for synthesizing interconnected supramolecular structures
or MOFs. Despite the challenge which arises from the rigidity of its heterocyclic struc-
ture, the affinity of ring-N atoms to act as H-bond acceptors, and the steric hindrance of
neighboring amino groups [35], the deprotonation of melamine seems to be plausible since
guanidine (a stronger base) has already been deprotonated twice [43]. Franklin pioneered
the work on anionic melaminate by synthesizing two compounds of K(C3N6H5)·NH3 and
K3(C3N6H3) [44,45] in liquid ammonia. However, these compounds were only character-
ized using elemental analyses, and no crystallographic structure information was provided.
Later, Dronskowski and coworkers confirmed the presence of the two ammonia adducts,
K(C3N6H5)·NH3 and Rb(C3N6H5)· 12 NH3 by single-crystal X-ray diffraction. Ammonia-free
K3(C3N6H3) has been assigned by its characteristic infrared bands, being compared with
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calculated bands from density-functional theory (DFT) [42]. There was no further research
reported on these classes of compounds and their properties until the discovery and iden-
tification of the copper melaminate Cu3(C3N6H3) with a layered framework structure by
Meyer & coworkers [20].

In this work, the step-wise deprotonation of melamine in a solid state has been studied
by thermal analysis. Herein, antimony (III) chloride is used for the deprotonation of
melamine due to its low melting point of 73.4 ◦C [46]. The recorded reaction sequence shows
three compounds that were prepared and later characterized by powder X-ray diffraction
(PXRD), single-crystal diffraction, and IR measurements. The structure of SbCl(C3N6H4)
suggests the potential of synthesizing interconnected supramolecular structures or metal-
organic frameworks (MOFs).

2. Materials and Methods
2.1. Materials

The starting materials, melamine (2,4,6-triamino-1,3,5-triazine, purchased from Sigma-
Aldrich, 99%), and antimony(III)chloride (Sigma-Aldrich, 99%), ammonium chloride
(Sigma-Aldrich, 99.99%) were used without further purification. The reaction mixtures
were prepared under an argon atmosphere in a glovebox with moisture and oxygen levels
below 1 ppm and transferred into homemade silica tubing (inner diameter 13 mm and
7 mm) and sealed under vacuum. The reactions were carried out in Simon–Müller and
Carbolite chamber furnaces.

2.1.1. Synthesis

Synthesis of SbCl4(C9N18H19) (1):

Precursors were pestled in an agate mortar with a 1:4 molar ratio of antimony(III)chloride
and melamine. A mixture of antimony(III) chloride and melamine with a total mass
of ≈200.0 mg was transferred into a homemade silica ampule and sealed therein under
vacuum. The ampoule was placed into a Simon–Müller furnace and heated to 200 ◦C for
20 h with a heating rate of 2 ◦C/min and cooling ramp of 0.5 ◦C/min (Figure S1). The reaction
produced a white color product crystallized on the top of the ampule (>90% yield w.r.t Sb). A
temperature gradient seemed to play an essential role in the separation of the product (1).

The solubility of compound (1) has been investigated in acetonitrile, THF, DCM,
ethanol, methanol, and water. The PXRD measurements showed the decomposition of this
product to unknown phases.

Synthesis of (SbCl4(C6N12H13))2 (2):

Similar to the previous preparation, the mixture of antimony (III)chloride and melamine
was mixed in a 1:2 molar ratio (total mass of ≈200.0 mg) and heated to 200 ◦C for 20 h with
a heating and cooling rate of 2 ◦C/min (Figure S1). The product was X-ray amorphous
powder and contained transparent single crystals of (2) (10% w.r.t Sb).

Synthesis of SbCl(C3N6H4) (3):

The structure of (3) was obtained from both (1:2 and 1:4) ratios of antimony(III)chloride
and melamine by heating the 1:2 ratio at 250 ◦C for 20 h, or by heating the 1:4 ratio at 280 ◦C
for 20 h (Figure S1). The beige color product was isolated in 50% yield w.r.t Sb.

The solubility of compound (3) has been studied in many solvents. The powder was
soaked for one hour in acetonitrile, THF, DMF, DCM, ethanol, methanol, water, and diluted
acetic acid. Subsequent PXRD measurements were undertaken. The results showed that com-
pound (3) remains stable in acetonitrile, THF, DMF, DCM, ethanol, and methanol. However,
in water and DMSO, compound (3) decomposes and forms Sb2O3 and an unknown phase,
respectively. The schematic synthesis of all three compounds is presented in Figure S1.

2.1.2. X-ray Powder Diffraction

The X-ray diffraction of prepared powders was recorded with a powder diffractometer
(STOE Darmstadt, STADIP, Ge-monochromator) using Cu-Kα1 (λ = 1.540598 Å) radiation
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in the range of 5 < 2θ < 120◦. Match3! Software [47] was used to compare the patterns with
patterns of the corresponding crystal structures.

2.1.3. Single-Crystal X-ray Diffraction

Single Crystals of (1), (2), and (3) were selected and placed on a single-crystal X-ray
diffractometer (Rigaku XtaLab Synergy-S) with Cu-Kα radiation (λ = 1.54184 Å) and a
mirror monochromator at 150 or 220 K. Crystal structures were solved by direct meth-
ods (SHELXT) [48], followed by full-matrix least-squares structure refinements (SHELXL-
2014) [49]. The absorption correction of X-ray intensities was performed with numerical
methods using the CrysAlisPro 1.171.41.92a software (Rigaku Oxford Diffraction). Hydro-
gen atoms were found in the difference map and refined therefrom isotropically.

2.1.4. Thermoanalytic Studies

Differential scanning calorimetry (DSC) was carried out using a DSC 204 F1 Phoenix
(Fa. Netzsch, Selb, Germany). The starting materials were enclosed under Ar in a glovebox
into gold-plated (5 µm) steel autoclaves with a volume of 100 µL (Bächler Feintech AG in
Hölstein, Switzerland). The reactions of SbCl3 with melamine were analyzed for different
ratios between room temperature and 500 ◦C at a heating and cooling rate of 2 ◦C/min.

2.1.5. Infrared Spectra

The infrared (IR) spectra of samples were recorded with a Bruker VERTEX 70 FT-IR
spectrometer within the spectra range of 400−4000 cm−1. Tablets of KBr were used as a
background.

3. Results and Discussion
3.1. Thermoanalytic Studies

Thermal analyses based on DSC and DTA have been shown to be highly insightful
regarding the examination of reaction sequences [50,51] and for comprehensive studies of
binary or ternary systems [52], especially when combined with PXRD studies. Following
this method, the formation or decomposition of a crystalline species is usually indicated by a
thermal event, and the newly formed species is characterized by X-ray diffraction techniques.

The differential scanning calorimetric (DSC) measurements of 1:2 and 1:4 molar mix-
tures of antimony chloride and melamine are shown in Figure 2, with heating and cooling
rates of 2 ◦C/min. The DSC patterns display a small exothermic peak at around 70 ◦C,
which can be attributed to the melting point of antimony(III)chloride. Figure 2a,b show
multiple exothermic effects between 200 ◦C and 300 ◦C. The resolution of thermal events
in this region is rather poor and cannot be significantly improved by changing the heat-
ing ramp. For example, we have explored different heating rates throughout. At lower
heating rates, the signals were smeared out and were not as sharp as the signals shown
in Figure 2a,b, so the resolution was worse. The presented heating rate is the optimized
heating rate with respect to the signal-to-noise ratio. Moreover, the effects are slightly
different for different ratios of starting materials, with lower reaction temperatures in the
presence of more melamine.

Powder XRD patterns were recorded on samples obtained under conditions given in
the DSC experiments, being interrupted at certain temperatures, especially in the tempera-
ture region between 200 ◦C and 280 ◦C. Compound (1) was already formed at 200 ◦C from
a 1:4 ratio of starting materials, and compound (2) was observed in the XRD pattern from a
1:2 ratio at the same temperature. Compound (3) was identified at around 280 ◦C from a 1:4
ratio of starting materials or, alternatively, at 250 ◦C from a 1:2 ratio. The endothermic peaks
at 370 ◦C indicate the melting/decomposition of (excess) melamine, which appears sharper
for the 1:4 ratio due to the larger amount of melamine. This assignment is confirmed by a
DSC of melamine (Figure S2), which shows a similar endothermic peak with a slight shift
at 361 ◦C. At slightly higher temperatures, compound (3) is decomposed, which is followed
by a strong exothermic peak at 400 ◦C and 417 ◦C for the 1:4 and a 1:2 ratio, respectively.
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These intense exothermic peaks led to the formation of a phase with a yellow color (4) that
looked glassy under the microscope. This was further studied by means of IR spectroscopy
(see the relevant section).
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Figure 2. (a) DSC of the reaction of SbCl3 and melamine in a ratio of 1:4, (b) DTA of the reaction of
SbCl3 and melamine in a ratio of 1:2.

From this study, we note that reactions in the given system proceed very quickly,
almost simultaneously, making the assignment of compounds and their preparations
challenging. This is due to the high reactivity of reaction partners.

3.2. Crystal Structures

Crystal structures of all three compounds (1), (2), and (3) were solved and refined

based on single-crystal X-ray diffraction data with triclinic (P
−
1) and monoclinic (P21/c

and P21/n) space groups, respectively, with crystallographic details summarized in
Table 1 and relevant distances given in Table 2. The asymmetric unit of each compound
is shown in Figure S3.

The crystal structure of (1) is composed of one deprotonated melamine, two protonated
melamine and a single chloride ion besides SbCl3 to make up SbCl4(C3N6H5)(C3N6H7)2.
The crystal structure contains a sequence of three distinct layers stacked on top of each
other (along b); one of them is displayed in Figure 3. Stacking behavior is most common for
melamine-based structures.
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Figure 3. (a) Constituents of one layer in the structure of (1) as SbCl4(C3N6H5)(C3N6H7)2, and (b) a
perspective view of the unit cell of (1) along the b-axis, with the color code: N: blue, C: gray, H: white,
Cl: green, Sb: red).
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Table 1. Crystallographic details of the crystal structure refinement of compounds (1), (2), and (3).

Compound (1) (2) (3)

CCDC code 2201273 2210244 2213381
Formula weight 642.97 1033.67 281.32
Temperature/K 220.0(1) 150.0(1) 150.0(1)
Wavelength/Å 1.54184 1.54184 1.54184

Space group P
−
1 P21/c P21/n

a/Å 9.5878(5) 13.2780(2) 5.3562(2)
b/Å 10.5395(3) 10.6878(1) 10.5432(3)
c/Å 11.4338(5) 24.0953(2) 12.5618(4)
α/◦ 74.011(3) 90 90
β/◦ 79.122(4) 105.860(1) 93.710(3)
γ/◦ 85.602(3) 90 90

Volume/Å3 1090.37(8) 3289.26(7) 707.90(4)
Z 2 4 4

Rint 0.0364 0.0485 0.0312
Goodness-of-fit on F2 1.074 1.044 1.044

wR2 (all data) 0.0660 0.0607 0.0267
wR2 0.0643 0.0603 0.0264

Final R indices
(all data) 0.0339 0.0251 0.0120

R1 0.0278 0.0243 0.0110
θMax./◦ 4.365 3.460 5.483
θMin./◦ 66.585 66.583 70.067

µ/mm−1 14.93 19.478 33.932
∆ρMax./e·Å−3 0.508 2.491 0.322
∆ρMin./e·Å−3 −0.593 −0.597 −0.451

Completeness/% 97.3 100 99.8

Table 2. Selected interatomic distances (pm) of compounds (1), (2), and (3).

Compound (1) Compound (2) Compound (3)

Atom Atom Length/pm Atom Atom Length/pm Atom Atom Length/pm

Sb1 Cl1 276.5(8) Sb1 Cl3 284.7(6) Sb1 N2 241.5(1)
Sb1 N1 253.6(3) Sb1 Cl4 260.6(0) Sb1 N6 208.6(8)
Sb1 Cl2 247.0(0) Sb1 Cl5 248.7(2) Sb1 N4 204.4(6)
Sb1 Cl3 256.8(2) Sb1 Cl1 240.2(1) Sb1 Cl1 254.9(3)
Sb1 N4 204.7(3) Sb2 N1 256.1(3)

Sb2 N4 204.7(3)
Sb2 Cl6 279.2(7)
Sb2 Cl7 247.2(8)
Sb2 Cl8 251.1(1)

The SbCl3 entity in the structure, with its lone pair, is well known from several crystal
structures having average Sb-Cl distances of 260.1 pm [53]. The antimony is connected with
an exocyclic nitrogen atom of the melaminate ion (C3H5N6)− via Sb-N4 (204.7(3) pm) and
an obviously weaker interaction via Sb-N1 (253.6(3) pm). The constituents in each layer in
(1) are interconnected by a network of hydrogen bonds (Figure 3a). An isolated Cl− ion
in the structure is interconnected by hydrogen bridges at dH-Cl = 216.3 pm and 225.6 pm,
consistent with the corresponding value in melaminium chloride dH-Cl = 239.7 pm [29].

The crystal structure of (2) comprises one deprotonated melamine, three protonated
melaminium ions, an SbCl3 unit and an (SbCl5)2− ion to make up (SbCl4)2(C3N6H5)(C3N6H7)3
displayed in Figure 4. The average Sb-Cl distances in SbCl3 are 259.3 pm, and those of SbCl5
are 262.1 pm and 257.8 pm, supporting the presence of Sb3+ throughout. Antimony in SbCl3 is
interconnected with the melaminate ion (C3H5N6)− via Sb-N4 (204.4(6) pm) and an obviously
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weaker interaction via Sb-N1 (256.1(3) pm). Again, the crystal structure features a layered
arrangement and hydrogen bridging within layers.
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Figure 4. (a) Section of the crystal structure of (2) as (SbCl4)2(C3N6H5)(C3N6H7)3 projected on the
bc-plane, and (b) a perspective view along the b-axis with the color code: N: blue, C: gray, H: white,
Cl: green, Sb: red).

The crystal structure of (3) features the presence of (SbCl)2+ and the melaminate ion
(C3N6H4)2− in SbCl(C3N6H4). Unlike the two previous systems, this structure can be
described as an infinite chain structure due to the bridging connectivity of the divalent
melaminate anion, all shown in Figure 5. The (SbCl)2+ (dSb-Cl = 254.9(3) pm) is interconnected
via exocyclic nitrogen atoms of two melaminate ions via Sb-N4 (204.4(6) pm) and Sb-N6
(208.6(8) pm) interactions and an obviously weaker interaction via Sb-N2 (241.5(1) pm).
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Figure 5. (a) Section of a chain section of the crystal structure of (3) and (b) a perspective view of the
unit cell roughly along the a-axis with the color code: N: blue, C: gray, H: white, Cl: green, Sb: red.

The stacking sequences of layers are often dominated by the preference that the N
atom of the triazine ring in one layer is alternating with a C atom of the triazine ring in the
next layer, which is a characteristic feature in copper melaminate [20] and metal cyanurates
as well [54,55]. This is achieved by rotating or shifting C3N3 units in adjacent layers relative
to each other. However, this is not apparent in the structure of compounds (1–3). Layered
arrangements of C3N3 units are quite clearly visible in compounds (1) and (2) but not in
compound (3) (Figures S3–S6). Hence there is the possibility of π-π interactions between
C3N3 units in (1) and (2). Such interactions can play a crucial role in the stabilization of
parallel and antiparallel ring architectures in the crystal structure. The centroid-to-centroid
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distance at which C3N3 rings may be considered representative of π-π stacking interactions
is 360–390 pm in compounds (1) and (2). This distance increases to 560–590 pm in (3) which
might present no π-π interactions between layers in this structure.

The range from 357–393 pm was previously reported for several compounds [38,56,57];
for example, in a zinc(II) complex containing melamine (392.8 pm) [56]. In many other
studies of copper halide complexes (357.2–389.2 pm), we can see the stacking behavior of
twisted melamine rings, which represents the π-π interactions [58].

3.3. X-ray Powder Diffraction and Infrared Spectroscopy

The reaction products were investigated by PXRD, and the XRD patterns of (1), and
(3) are provided in Figures S7 and S8. Therein, the recorded data are compared with the
calculated patterns obtained from the structure refinement based on single-crystal data.
Compound (2) was obtained in low yield; therefore, no powder pattern of this intermediate
could be recorded. This compound was always found in the presence of (3) or melamine
at higher and lower temperatures, respectively. The powder pattern of compound (3) in
Figure S8 shows some unidentified diffraction peaks.

3.4. Infrared Spectroscopy (IR)

The IR spectrum of (1), (3) and (4) has been compared to that of melamine and
melaminium chloride, as presented in Figure 6. Table S1 lists the frequencies associated with
each vibrational mode of these molecules, along with the corresponding bond assignments.
Three IR absorption bands, indicative of the asymmetric and symmetric stretching of
-NH2 groups of melamine, can be found in the 3500–3300 cm−1 range of the melamine
spectrum [29,59]. These vibrations can overlap with the -NH+ in melaminium chloride, and
due to coupling, the peak is broadened [60]. The characteristic bands of -NH2 groups and
-NH+ are also seen in the spectrum of compound (1) at 3462, 3357, and 3433 cm−1. We can
see that the first peak (3462 cm−1) in compound (1) is shifted to lower wavenumbers when
compared to melamine. This shift may be due to the presence of protonated melamine
units in (1). In fact, the presence of hydrogen bonding would shift -NH2 IR bands to
lower wavenumbers, as the hydrogen bond would weaken the NH2 bond and lower its
vibrational frequency [61]. However, due to coupling with the N-H . . . Cl stretching mode
or the presence of heavier atoms (Cl, Sb) in compound (1), the second peak (3357 cm−1)
is shifted to slightly higher wavenumbers and also broadened [29]. Similarly, infrared
spectra for compounds (3) and (4) indicate that the asymmetric and symmetric vibrations of
-NH2 overlap with those of -NH+ in both compounds, as evidenced by the disappearance
of the first peak (3471 cm−1 for melamine) and the broadening of the other two peaks.
The bending mode bands for melaminium chloride and compound (1) are substantially
higher than those for melamine (1652 cm−1) at 1722, 1676, 1649 cm−1 and 1679, 1656, and
1612 cm−1, respectively. This is explained by the fact that melaminium chloride and (1) have
fewer intermolecular interactions than melamine. In compounds (3) and (4), bending modes
are split into multiple bands, showing that -NH2 groups in these compounds have different
vibrational frequencies due to the presence of neighboring atoms and molecular interactions
in these structures. The region below 1500 cm−1 is related to C-N, and C=N ring stretching
modes, C-N side group stretching, N-H rocking, and triazine ring breath and bending
vibrations, which are listed with detailed numbers in Table S1. The exact position of
these peaks can depend on various factors, such as the substitution pattern of the triazine
ring and the nature of the surrounding chemical environment, which agrees well with
the slight shifts in each region for compounds (1), (3), and (4). The strong split-band at
800 cm−1, which is brought on by the sextant-bend of both the triazine and heptazine rings,
provides additional evidence that compound (4) is still either a heptazine- or triazine-based
compound (IR cannot differentiate between triazine and heptazine) [13,22,62], whereas
the yellow emission color of the compound under ultraviolet radiation rather indicates a
heptazine based compound.
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4. Conclusions

The development of metal melaminates is just at its beginning. A preparative concept
for the development of melaminates was recently established for Cu3(C3H3N3) based on
the reaction of CuCl with melamine. The same concept is employed in this study for the
reaction of SbCl3 with melamine. Thermal studies (DSC) reveal a narrow sequence of
thermal events, or rather intertwining reactions that reveal new compounds, following the
sequence (1), (2) and (3) with increasing temperature.

Indeed, the final product of the given reaction cascade is compound (3), observed via
compounds (1) and (2). For a better description of the reaction sequence of compounds,
we use the abbreviation Mel for melamine, with Mel(n−) for melaminate and Mel(+) for
melaminium. The overall reaction representing the formation of compound (3) can be
described as follows:

SbCl3 + Mel→ SbClMel(2−) + 2 HCl↑

The formation of HCl in this reaction can be equivalent to melaminium chloride
(Mel(+)Cl), which is, in fact, present in compound (1) but is lost at elevated temperatures
through sublimation, which indeed has been reported as a side-phase for the corresponding
reaction of CuCl and melamine [20]. This reaction scheme with metal halide and melamine
is indeed a useful way to develop metal melaminates. However, reactions with melamine
are intrinsically difficult due to the high reactivity and condensation behavior of melamine.

The reaction of SbCl3 with excess melamine passes through some intermediate reaction
stages with the formations of melamine derivatives (Mel−, Mel+) that are successively
lost with increasing temperature from (1) to (2) and finally (3). Compound (1) is best
described as SbCl4Mel(−)(Mel(+))2 containing three melamine species per antimony atom,
and compound (2) is given as (SbCl4)2Mel(−)(Mel(+))3 and contains only two melamine
derivatives per antimony atom until only one melaminate is left in (3). The formation of
the expectable compound SbMel(3−) is not observed.
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