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Abstract: The de novo design and synthesis of peptide-based biocatalysts that can mimic the activity
of natural enzymes is an exciting field with unique opportunities and challenges. In a natural enzyme,
the active site is composed of an assembly of different amino acid residues, often coordinated with a
metal ion. A metalloenzyme’s catalytic activity results from the dynamic and concerted interplay
of various interactions among the residues and metal ions. Aiming to mimic such enzymes, simple
peptide fragments, drawing structural inspiration from natural enzymes, can be utilized as a model.
In our effort to mimic a metal-containing hydrolase, we designed peptide amphiphiles (PA) 1 and 2
with a terminal histidine having amide and acid functionalities, respectively, at its C-terminal,
imparting differential ability to coordinate with Zn and Cu ions. The PAs demonstrate remarkable
self-assembly behavior forming excellent nanofibers. Upon coordination with metal ions, depending
on the coordination site the nanofibers become rigidified or weakened. Rheological studies revealed
excellent mechanical properties of the hydrogels formed by the PAs and the PA–metal co-assemblies.
Using such co-assemblies, we mimic hydrolase activity against a p-nitrophenyl acetate (p-NPA)
substrate. Michaelis–Menten’s enzyme kinetic parameters indicated superior catalytic activity of 2
with Zn amongst all the assemblies.
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1. Introduction

Nature precisely engineers a structurally complex system such as protein to perform
complex functions with excellent conformational control, structural specificity, and feedback
mechanisms [1,2]. Understanding nature’s approach to out-of-equilibrium self-assembly
and mimicking it with supramolecular self-assembly in the laboratory offers several chal-
lenges, as it typically gets dictated by the free energy of the equilibrium process [3–5]. Amy-
loids, as well as other prion infection proteins, driven by nucleation-mediated self-assembly,
encompass pathway complexity involving multiple on- and off-pathway aggregates [6].
These fibrillar networks and supramolecular assemblages possessing catalytic abilities
create compartmentalized systems capable of self-replication, which might have functioned
as the proto-enzymes in the early stages of life on Earth [7–9]. Following millions of years
of evolutionary optimization, the resulting macromolecular enzymes that we find in nature
have the exquisite properties of superior catalytic activity, substrate specificity, and recog-
nition [1,10]. However, their intricacy also implies that engineering a synthetic enzyme
mimic with tailored functionality and efficient activity is thoroughly difficult. Consequen-
tially, utilizing fibrillar assembly with efficiency such as natural enzymes still remain an
unattained target. The fact that natural enzymes are very sensitive to their physical and
chemical environment presents further challenges in utilizing the enzymes in their original
form in diverse chemical or biotechnological scenarios. Motivated by the rising industrial
demands for greener alternatives, it is of urgent importance to develop efficient biocatalysts
in the current scenario [11].
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Structurally simple peptide fragments have been found to mimic the properties of
amyloids and offer a promising alternative in the pursuit of designing de novo biocat-
alysts [12,13]. Their simplicity allows for a high degree of control over their sequence
and structure and offers higher stability, and they can be functionalized with a variety of
chemical groups, such as metal ions, organic cofactors, and reactive side chains [13]. Their
self-assembly into various supramolecular structures, such as β-sheet fibrils or nanosheets,
further enhances their catalytic properties by providing a confined environment for sub-
strate binding and catalytic reaction [13], thereby creating robust and modular catalytic
amyloids tailored for a specific activity. A metal-chelated histidine residue is ubiquitous
in the metal-binding domains of biologically important proteins. The metal cofactor that
we commonly find associated with these histidine residues is zinc, copper, or iron, among
which zinc is the most prevalent [14–16]. The active sites of metalloenzymes such as car-
bonic anhydrases, carboxypeptidases, hydrolases, and structural motifs such as zinc fingers
in transcription factors are a few examples of the diverse and substantial occurrence of
the histidine–zinc pair in biology [14,17,18]. Similarly, the His-Cu pair also plays a vital
role in the activity of several important metalloenzymes. In this regard, designing de novo
metal-containing catalytic peptides has been an active area of research. His- terminal has
been employed in such functional peptides to impart hydrolytic activity [19]. Gazit et al.
have demonstrated that even a single amino acid, when grafted with zinc, can catalyze a
hydrolysis reaction of p-NPA [20]. Similarly, Korendovych et al. have designed a copper-
containing catalytic amyloid capable of phosphoester hydrolysis [21]. Stupp et al. and
Ulijn et al. have shown that histidine-anchored peptide assemblies can be used to modulate
the ester hydrolysis rate by tweaking the number and location of histidine residues on the
peptide sequence [22]. The substrate specificity of such peptide fragments is augmented by
co-assembling a triad of such sequences having different terminal residues, similar to the
catalytic triads found in nature [23].

However, controlling the conformation and resulting properties of such amyloid-mimicking
short peptides require an external trigger. In that regard, our group has not only demonstrated
precise control over the 1D and 2D morphologies arising from the pathway-dependent assembly
of the amphiphiles by living supramolecular polymerization but also developed strategies to
sequester the self-assembly pathway using photochemical, redox cues [24–26]. We have devel-
oped several strategies for on-demand self-assembly–disassembly affecting not just the fibrillar
morphology but rather to tweak optomechanical and bioelectronic properties such as piezo
response [27,28]. Fibrillar assemblies resulting from the controlled self-assembly of such
amyloid-inspired peptide amphiphiles have also been exploited in making stiff and inter-
penetrating hydrogels for designing biomimetic materials and tissue engineering [27,29,30].
Further, such peptide amphiphiles with different chiralities exhibit self-sorted and enzyme-
responsive compartments [31]. In another work, we demonstrated that the morphology
of the nanostructures arising from the self-assembly of catalytic amyloid, modulated by
external thermal and photochemical cues, is in fact a determining parameter in their
catalytic activity [32].

In this work, we envisioned the metal-coordinated terminal histidine to act as the
catalytically active site in our effort to develop a hydrolase mimic. We altered the ter-
minal functionality in the amphiphiles: 1 having an amide functionality and 2 having a
carboxylic acid functionality. We anticipated augmented metal coordination and, therefore,
the activated catalytic activity of 2 with respect to 1 (Scheme 1). The assembly of a peptide
amphiphile is governed by supramolecular interactions, namely, hydrophobic interaction,
π-π stacking, H-bonding, and electrostatic interactions. Our rational design of the am-
phiphiles 1 and 2 in this work directs specific importance on tuning the supramolecular
interactions so that efficient self-assembly can be achieved, in view of the fact that the
assembly behavior subsequently affects the catalytic properties as well. We attached a
hydrophobic Fmoc- moiety at one periphery of an amyloid NVFFAC core acting as the
nucleation center and a histidine residue at the other periphery, which would be the func-
tionally active part of the enzyme mimic. The well-tuned balance of these interactions
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leads to the self-assembly of the amphiphiles into nanofibers (Scheme 1). The Zn(II) or
Cu(II) coordinated amphiphiles also form metal-incorporated fibrils in a similar way. The
assemblage of the peptide fibrils leads to the formation of hydrogels, and we concurrently
explored the mechanical properties of the peptide hydrogels and the effects of metal ion
incorporation, since the coordination with metal ions can dictate the self-assembly pathway
of the peptide amphiphiles [33]. Furthermore, our rheological investigations reveal that the
same co-assembly exhibits superior hydrogel strength amongst the other assemblies. The
Fmoc-VFFAH-COOH (2) and Zn(II) fibrillar co-assembly demonstrates superior hydrolytic
behavior over the other contenders against para-nitrophenyl acetate as a model substrate.
We also establish the superiority in kinetic efficiency of this co-assembly as a potent hydro-
lase mimic by quantifying the enzymatic parameters from the Michaelis–Menten equation.
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Scheme 1. (a) Molecular structures of peptide amphiphile 1 and 2; (b) self-assembly of PA 1 and 2 to
form nanofibers which, upon addition of Zn(II) or Cu(II), form metal-coordinated nanofibers (NF-Zn
or NF-Cu); (c) hydrolysis of p-NPA catalyzed by aggregated amyloid nanofibers to form p-NP and
acetic acid.

2. Materials and Methods

Fmoc- protected amino acids, piperazine, para-nitrophenylacetate (p-NPA) were pur-
chased from Sigma, St. Louis, MO, USA; Diisopropyl carbodiimide (DIC), hexafluoroiso-
propanol (HFIP), and triisopropylsilane (TIS) were purchased from TCI, Thioflavin-T (ThT),
Oxyma, Rink amide MBHA Resin, and His-Preloaded CTC Resin, were purchased from
Sigma-Aldrich. Cu(II) chloride, Zn(II) nitrate hexahydrate, NH3 (aq.), Dimethylformamide
(DMF), dichloromethane (DCM), HPLC grade acetonitrile, HPLC water, and ethanol were
ordered from Merck.

2.1. Synthesis of Peptides 1 and 2

Peptides 1 and 2 were synthesized via solid-phase peptide synthesis technique using
the CEM Liberty Blue automated microwave-assisted peptide synthesizer. For the synthesis
of 1, Rink Amide MBHA resin was chosen to get a terminal amide functionality after
cleavage from the resin. For the synthesis of 2, His- preloaded CTC resin yields a carboxylic
acid group upon cleavage.

Fmoc-Rink amide MBHA resin was swelled in DMF, and His-preloaded CTC resin was
swelled in DCM for 15 min. Fmoc-protected amino acids were weighed as per the desired
scale of the reaction and dissolved in the required DMF solution. Deprotection of Fmoc
group from the amino acid was achieved by using 10% piperazine in DMF. Required mass
of piperazine was stirred in 10% ethanol in ethanol/DMF solvent mixture for complete
solubilization. DIC and Oxyma in DMF were used as activators for the coupling reaction
between acid and amine to form the peptide bonds. A cycle of coupling and deprotection
steps was repeated to synthesize the required peptides anchored to the resin. Peptide 1
was cleaved from the resin by stirring the resin in a mixture of trifluoroacetic acid (TFA),
triisopropylsilane (TIS), and water (95:2.5:2.5) for 1 h, and peptide 2 using a mixture of
30% HFIP and DCM for 3 h at room temperature. The resin was then filtered and the
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filtrate containing desired peptides was concentrated by evaporating the excess solution.
The peptides were then precipitated from cold diethyl ether and subsequently air-dried
to obtain the peptides as white powder which were characterized using HPLC and mass
spectroscopy (Scheme 2).

Chemistry 2023, 5, FOR PEER REVIEW 4 
 

 

deprotection steps was repeated to synthesize the required peptides anchored to the resin. 
Peptide 1 was cleaved from the resin by stirring the resin in a mixture of trifluoroacetic 
acid (TFA), triisopropylsilane (TIS), and water (95:2.5:2.5) for 1 h, and peptide 2 using a 
mixture of 30% HFIP and DCM for 3 h at room temperature. The resin was then filtered 
and the filtrate containing desired peptides was concentrated by evaporating the excess 
solution. The peptides were then precipitated from cold diethyl ether and subsequently 
air-dried to obtain the peptides as white powder which were characterized using HPLC 
and mass spectroscopy (Scheme 2). 

 
Scheme 2. (a) Synthesis of PA 1 from Rink amide resin and 2 from His-preloaded CTC resin follow-
ing the solid phase peptide synthesis protocol. (b) Characterization of PA 1 and 2 using HPLC and 
mass spectra. 

2.2. HPLC and Mass Spectra 
Reverse phase HPLC a of 1 and 2 was performed using Waters binary HPLC system 

by dissolving 1 mg of sample in 1 mL 50% acetonitrile/water, making the final concentra-
tion of the peptide 1 mM. A Nucleodur analytical column (C18 stationary phase, 5 μm, 4.6 
× 250 mm) was used for the analysis. The sample was injected with an autosampler in 
gradient mode from 95% water with 0.1% formic acid as additive with 5% acetonitrile up 
to 5% water with 0.1% formic acid as additive with 95% acetonitrile over 15 min. Photo-
diode array (PDA) detector was used to detect the sample along with electrospray ioniza-
tion mass spectrometry (ESI/MS) with Waters Acquity QDa detector. 

2.3. Self-Assembly of the Peptide Amphiphiles 
The peptide amphiphiles 1 and 2 were dissolved in a 1:1 mixture of ethanol and wa-

ter. The composition was chosen in such a way that the peptides remain readily soluble. 
To allow for fibril growth, the solutions were left to incubate for 24 h at a temperature of 
25 °C. In a similar way, we also prepared and incubated 1 mM peptide solutions in DMSO. 
To prepare co-assemblies of the peptides with metal ions, equivalent amounts of Zn(II) or 
Cu(II) ions were introduced to the 1 mM peptide solutions in ethanol/water or DMSO 
from 20 mM stock solutions of Zn(NO3)2·6H2O or CuCl2, respectively. 

2.4. Circular Dichroism Spectra 
The circular dichroism spectra were recorded using a JASCO J-1500 circular dichro-

ism spectrometer (Easton, MD, USA). The peptide solution (0.1 mM) was added to a cu-
vette of the path length of 0.1 mm, and scanned in the wavelength range from 200 nm to 
400 nm at a scan rate of 100 nm/min. 

Scheme 2. (a) Synthesis of PA 1 from Rink amide resin and 2 from His-preloaded CTC resin following the
solid phase peptide synthesis protocol. (b) Characterization of PA 1 and 2 using HPLC and mass spectra.

2.2. HPLC and Mass Spectra

Reverse phase HPLC a of 1 and 2 was performed using Waters binary HPLC system by
dissolving 1 mg of sample in 1 mL 50% acetonitrile/water, making the final concentration of
the peptide 1 mM. A Nucleodur analytical column (C18 stationary phase, 5 µm, 4.6 × 250 mm)
was used for the analysis. The sample was injected with an autosampler in gradient mode
from 95% water with 0.1% formic acid as additive with 5% acetonitrile up to 5% water
with 0.1% formic acid as additive with 95% acetonitrile over 15 min. Photodiode array
(PDA) detector was used to detect the sample along with electrospray ionization mass
spectrometry (ESI/MS) with Waters Acquity QDa detector.

2.3. Self-Assembly of the Peptide Amphiphiles

The peptide amphiphiles 1 and 2 were dissolved in a 1:1 mixture of ethanol and
water. The composition was chosen in such a way that the peptides remain readily soluble.
To allow for fibril growth, the solutions were left to incubate for 24 h at a temperature of
25 ◦C. In a similar way, we also prepared and incubated 1 mM peptide solutions in DMSO.
To prepare co-assemblies of the peptides with metal ions, equivalent amounts of Zn(II) or
Cu(II) ions were introduced to the 1 mM peptide solutions in ethanol/water or DMSO from
20 mM stock solutions of Zn(NO3)2·6H2O or CuCl2, respectively.

2.4. Circular Dichroism Spectra

The circular dichroism spectra were recorded using a JASCO J-1500 circular dichroism
spectrometer (Easton, MD, USA). The peptide solution (0.1 mM) was added to a cuvette of
the path length of 0.1 mm, and scanned in the wavelength range from 200 nm to 400 nm at
a scan rate of 100 nm/min.

2.5. Thioflavin-T Binding Studies

The fluorescence emission spectra of Thioflavin-T were obtained using an FS5 spectroflu-
orometer from Edinburgh Instruments (Livingston, UK). Wavelength range was selected
from 470 nm to 600 nm with a scan slit and offset slit of 1 mm each with a dwell time of 0.1 s
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at 25 ◦C. An increase in emission intensity at 485 nm suggests more organized assembly,
i.e., β-sheet formation by the amyloids. An amount of 600 µL of 0.1 mM peptide solutions
was taken into which 2 µL of ThT was added from a 10 mM stock solution, making the
final concentration of the dye in the solution to be 0.03 mM.

2.6. Atomic Force Microscopy

An amount of 10 µL of the 0.1 mM peptide solutions was drop-casted on a clean
silicon wafer, and the drops were blotted after 5 min. The wafers were air-dried at room
temperature for 24 h before imaging. A Bruker Multimode 8 AFM system in tapping mode
was used for imaging.

2.7. Scanning Electron Microscopy

An amount of 10 µL of 50 µM samples were drop-casted on silicon wafers, which were
kept overnight at room temperature for air drying. SEM images were obtained using a
JEOL JEM 2100 (Tokyo, Japan) scanning electron microscope at accelerating voltages not
exceeding 15 kV.

2.8. XPS Study

To know the chemical states of the samples, X-ray photoelectron spectroscopy of the
samples was performed on KAlpha plus XPS system by ThermoFisher Scientific instruments
(Waltham, MA, USA) in an ultrahigh vacuum chamber (7 × 10−9 torr) using Al-Kα radiation
(1486.6 eV). The samples were prepared by drop-casting 10 µL of 2 mM samples on silicon
wafers, which were kept overnight at room temperature for air-drying.

2.9. Fourier Transform Infrared Spectroscopy

The FTIR spectra were recorded in the range of 1000 cm−1 to 2000 cm−1 in attenuated total
reflectance (ATR) mode using Bruker Vertex 70 FTIR spectrophotometer (Billerica, MA, USA).

2.10. UV–Vis Spectroscopic Studies and Titration with Metal Ions

For obtaining the UV–Vis absorption spectra of the samples, 0.01 mM solutions were
taken in a 1 mL quartz cuvette of a path length of 1mm, and the spectra were recorded
in the range of 2150 nm to 400 nm using an Agilent Cary 60 UV–Vis spectrophotometer
(Santa Clara, CA, USA). For titration studies with metals, the spectra were obtained using
a TECAN Infinite 200Pro plate reader, by taking 200 µL 0.5 mM peptide solutions in
ethanol/water in a transparent plate and varying the metal ion concentrations at 1, 0.75,
0.5 0.25, and 0.1 equivalents of metals.

2.11. Rheological Studies

Next, 1 w/v% peptide was dissolved in 500 µL 1:1 ethanol/water mixture, in which
sodium phosphate buffer (SPB) was added so that the final concentration of SPB becomes
15 mM. Equimolar Zn(II) or Cu(II) ions were introduced from CuCl2 and Zn(NO3)2 ·6H2O
stock solutions. Images of the hydrogels were captured using a digital camera. The
mechanical characterizations of the gels thus prepared were done using an Anton Paar
Modular Compact Rheometer 302 (Graz, Austria) with parallel plate geometry (25 mm plate
diameter) equipped with a Peltier temperature control unit, to keep the temperature at
22 ◦C throughout the experiments. The gap between the plates was set to be 0.2 mm.
Amplitude sweep measurements with 0.01% to 100% deformation at a constant angular
frequency of 10 rad/s determined the linear viscoelastic region of the gels. Frequency
sweep oscillatory rheology was performed over the frequency range from 0.1 rad/s to
100 rad/s at a constant shear strain of 1% in the linear viscoelastic region. The gels were
prepared and incubated for 24 h prior to the measurements.
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2.12. Kinetic Assays of Para-Nitrophenyl Acetate (p-NPA) Hydrolysis

The kinetics of p-NPA hydrolysis by 1, 2, 1 + Cu, 1 + Zn, 2 + Cu, and 2 + Zn at
different concentrations of the substrate were studied using a TECAN Infinite 200Pro plate
reader by recording the absorbance at 400 nm for 30 min in a transparent 96-well plate.
Hydrolysis of p-NPA produces yellow-colored para-nitrophenolate ions as the product that
shows strong absorption at 400 nm. An increase in absorbance at this wavelength indicates
the accumulation of the hydrolysis product p-nitrophenol in the solution.

A 25 mM stock solution of p-NPA was made in acetonitrile, from which six batches
of 1 to 10 µL were added to peptide solutions (0.25 mM) in the wells to maintain the final
concentration of p-NPA from 0.125 to 1.25 mM with a final volume of 200 µL. The absorbance
values for the peptide solutions in which p-NPA was not added were subtracted from the
values obtained for the peptide solutions containing the p-NPA substrate. Thus, the initial
rates of reaction (V0) were obtained. Using the obtained absorbance values at different
time intervals, the initial slopes were calculated for different substrate concentrations of
p-NPA at a fixed concentration of peptide (0.25 mM). These slope values, with respect
to their substrate concentration values, were fitted in the Michaelis–Menten equation
(V0 = Vmax [S]/(Km + [S]) to get the kinetic parameters—catalytic rate kcat, Michaelis–Menten’s
constant KM, maximum velocity Vmax, and catalytic efficiency kcat/KM. The obtained values
were further compared to those obtained from Lineweaver–Burk linearization method.

3. Results

The peptide amphiphiles 1 and 2 were designed by tethering a hydrophobic fluo-
renylmethyloxycarbonyl (Fmoc) group at the N-terminal and a histidine moiety at the
C-terminal of an Aβ(1-42) inspired short peptide sequence NVFFAC. Amphiphiles 1 and 2,
differing in the C-terminal functional group, were synthesized from the precursors follow-
ing the solid-phase peptide synthesis (SPPS) protocol and characterized using HPLC-MS
(Scheme 2). C-terminal amide containing peptide amphiphile 1 elutes at 12 min corre-
sponding to an (M + 1) peak of 841, whereas owing to the carboxylic acid terminal PA 2 is
more polar, and thus has a lesser retention time of 10.5 min with an (M + 1) peak of 842.
This difference in polarity arising from the peripheral moiety also brings about several
differences in the self-assembly pattern and metal binding ability influencing mechanical
and functional properties.

3.1. Self-Assembly Behavior of the Peptide Amphiphiles

The core NVFFAC fragment in our amphiphiles is inspired by the aggregation-prone
amyloid beta Aβ(1-42) in which this fragment plays a crucial role in its assembly behav-
ior [34]. In this fragment, the two proximal phenylalanine residues containing aromatic
rings provide an excellent surface for π-π stacking. The amide bonds between the residues
provide superior H-bonding interaction. Overall, this short fragment acts as the nucleating
core of the amphiphile, which, during assembly, acts as a “seed” onto which subsequent ag-
gregation can occur. At its N-terminal, a hydrophobic fluorenylmethyloxycarbonyl (Fmoc)
moiety has been attached which also provides π-π stacking interaction and imparts the nec-
essary hydrophobicity to the amphiphiles. Solvent plays a crucial role to allow for solubility
and efficient supramolecular interactions for optimum self-assembly. Using 50% EtOH as
co-solvent in water, both the peptides were allowed to self-assemble. The perfect balance of
these interactions resulted in the formation of nanofibers from the self-assembling peptide
amphiphiles, as shown in Figure 1e,f. However, choosing a solvent such as DMSO, even at
10% v/v with water, rather hindered the supramolecular interactions such as H-bonding.
AFM images show that, even at a low concentration of 0.001 mM, definite self-assembly
into fibrillar morphologies takes place in ethanol–water, but not when 10% DMSO is used
(Figure S1). This was also indirectly observed when co-assemblies of our PAs 1 and 2 with
Cu/Zn showed a complete absence of fibrillar morphology (Figure S2) and, instead, formed
nanoparticles of varying dimensions, indicating a lack of definite self-assembly. Thus, we
selected 50% EtOH:water as our solvent of choice for further self-assembly studies. The
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UV–vis spectra of 1 and 2 showed a broad absorption band spanning from 230 nm to
270 nm (Figure 1a). Owing to the stacking of Fmoc-moieties in the assembled amphiphiles,
the characteristic peak of Fmoc at 265 nm showed an increase in intensity in aged solutions
when compared to the intensity observed in freshly prepared peptide solutions (Figure S3).
The secondary structural information of the native assemblies in the solution was investi-
gated using circular dichroism (CD). The CD spectrum of a peptide assembly in the region
of 200–400 nm can reveal important information about its secondary structure, such as
β-sheets, α-helices, or random coil orientation, each of which imparts a characteristic spec-
tral signature. In the CD spectra of 1 and 2, the negative Cotton effect centered at 213 nm
characteristic for β-sheets was observed. Additionally, induced CD bands due to Fmoc-
stacking interactions were noted at 235 nm and 265 nm. It is noteworthy that the intensity
of the induced bands is higher in the case of 2 as compared to 1, indicative of differences in
their overall stacking pattern during assembly. Figure 1d displays bell-shaped emission
curves of self-assembled peptides with the amyloid reporter fluorescent dye Thioflavin T
(ThT). ThT displays enhanced emission at 490 nm when it binds to β-sheet rich structures
such as amyloid aggregates. We observed an intense emission peaking at 490 nm for both 1
and 2 (Figure 1c). Here, the emission intensity for 1 was noted to be slightly higher than
that of 2. This trend correlates with our observation from CD spectra (Figure 1b) which
also indicates slightly stronger self-assembly for 1. The peptide backbone characterized by
vibrational spectroscopy in Figure 1d describes the IR spectra of 1 and 2. The amide I and II
vibrational modes which are indicative of secondary structural information of the peptides
can be seen as a merged broad peak around 1600 cm−1 (Figure 1d). The morphological
assessment of the nanostructures formed upon self-assembly was performed via atomic
force microscopy (AFM) imaging. The amphiphiles in ethanol–water showed formation of
nanofibers with a median height of 5 ± 1 nm (Figure 1e,f). However, it is to be noted that
despite 1 displaying traits of stronger assembly, the fibers formed are relatively shorter and
more disperse than the long strands formed by 2.
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Figure 1. (a) UV absorption spectra of 1 and 2 showing characteristic absorption bands for stacked
Fmoc-moieties; (b) CD spectra of 1 and 2 showing β-sheet signature; (c) ThT fluorescence emission
spectra of 1, 2, and unbound ThT; (d) IR absorption spectra of 1 and 2; (e) AFM image of 1; (f) AFM
image of 2.
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3.2. Effect of Metal Ions

Amphiphiles 1 and 2 have a strong tendency to coordinate with metal ions due to the
presence of the terminal imidazole moieties in histidine residue. Co-assembly of 1 with Zn/Cu
ions shows histidine–metal complexation at the expense of axial stacking interactions responsible
for fiber formation.SEM showed noticeably more dispersed short fibers in the case of metals-
1 co-assembly indicating metal binding causing a reduction of the fibrillar network density.
However, in the case of 2, it was observed to be reinforced (Figure 2a–d). This observation was
also confirmed from the AFM images obtained for the samples (Figure S4). To further study the
surface elemental composition of the metal–peptide assemblies, an XPS study was performed.
The XPS Survey scan obtained confirmed the presence of the metal ions in the corresponding
samples. In an attempt to quantify the effect of a metal addition on the β-sheet self-assembly,
we studied the extent of ThT binding to metal-bound peptides compared to the native
assemblies. However, both Zn and Cu ions were seen to quench the fluorescence of ThT
(Figure S5). In an additional aim to determine the complexation ratio with the metal ions,
UV–vis spectra at different metal equivalents were recorded; however, a significant change
in the absorbance was not observed (Figure S6).
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Figure 2. SEM Image of (a) 1 + Cu, (b) 1 + Zn, showing scattered fibrils; SEM Image of (c) 2 + Cu,
(d) 2 + Zn displaying remarkably close-knit network of fibrils; XPS elemental survey for (e) 1 + Cu,
(f) 1 + Zn, (g) 2 + Cu, (h) 2 + Zn confirming presence of metal ions.

3.3. Gelation Properties

The gels were prepared at a concentration of 1% wt/v in ethanol/water, followed
by the addition of sodium phosphate buffer (15 mM). Equivalent amounts of the metal
ions were introduced from the respective stock solutions. The inter-fiber bridging by
counter-ions led to uniform crosslinking resulting in the hydrogel networks. To check the
self-standing ability of the various gels thus formed, the gels were prepared and incubated
in a glass vial and thereafter held at an inverted position. Of the six gels, only the two gels
formed by co-assembling the metal ions with 1, i.e., 1 + Cu and 1 + Zn, were found to be
incapable of maintaining their vertical position when inverted (Figure 3a, Table 1).
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Table 1. Inverted vial test for the gels.

Sample 1 1 + Cu 1 + Zn 2 2 + Cu 2 + Zn

Observation Strong gel Weak gel Weak gel Strong gel Strong gel Strong gel

The mechanical properties of the gels were characterized by detailed rheological
investigation, which included amplitude sweep and frequency sweep measurements. The
rheology data showed some interesting details concerning the properties of the gels formed
with and without metal ions (Figure 3b–f). In the frequency sweep studies, all the gels
exhibited consistent storage moduli and frequency-independent behavior over the whole
frequency range owing to hydrogel network formation. It was noted that the addition of
Cu(II) and Zn(II) to 1 reduced the gel strength significantly, by three orders of magnitude,
whereas in the case of 2, it was found that the metal ions in fact reinforced the gels
remarkably, increasing the gel strength by an order of magnitude. The coordination of the
metal ion from dual sites, i.e., the carboxylate center, as well as the imidazole ring in this
case could be attributed as the reason. Among the six gels, 2 + Zn showed the highest gel
strength. The gel strengths follow the order 2 + Zn > 2 + Cu > 2 > 1 > 1 + Zn > 1 + Cu
(Figure 3g).

3.4. Catalysis

We envisaged the histidine-grafted metal-peptide assemblies as a biomimetic equiv-
alent of the metal-histidine active sites of the hydrolase class of metalloenzymes. Thus,
to study their catalytic behavior, we investigated their activity against the model sub-
strate, para-nitrophenyl acetate (p-NPA), which upon hydrolysis generates a yellow-colored
p-nitrophenolate ion (Figure 4a,b). The kinetics of the reaction, henceforth, can be followed
easily via UV–Vis spectrophotometer. The gradual change in the kinetic studies of p-NPA
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hydrolysis revealed excellent catalytic activities of the metal-coordinated amphiphiles. To
determine the comparative rates of reactions, kinetic studies against a specific p-NPA con-
centration of 0.25 mM were performed. Thus, 2 + Zn showed pronouncedly higher activity
compared to 2 + Cu and 2. The catalytic activity of 1, 1 + Cu, or 1 + Zn was found to be sig-
nificantly lower than the others (Figure 4c,d). Amongst the same metal-ion assembly pair,
using co-solvent as EtOH or DMSO made a drastic reduction in the catalytic activity. The
underlying fact of lack of efficient supramolecular polymerization in DMSO as co-solvent
and inability to assemble into nanofibrous morphology has a huge spatio-temporal impact
reflected in its enzymatic activity. This highlights the role of self-assembled nanofibers
in catalyzing the substrate (Figure S7). Considering the lower catalytic activity for 1 and
further suppression of activity upon metal coordination, we disregarded 1, 1 + Cu, and
1 + Zn for further catalytic studies. Here, owing to the absence of a -COOH group, the
metal did not activate the catalyst.
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Figure 4. (a) Hydrolysis reaction of p-NPA, catalyzed by metal-grafted amyloid fibrils; (b) change
in color of p-NPA solution upon addition of nanofibers due to accumulation of hydrolysis product
p-NP; (c) absorbance vs. time plot for 0.25 mM p-NPA concentration by 1, 1 + Cu, 1 + Zn (0.25 mM);
(d) absorbance vs. time plot for 0.25 mM p-NPA concentration by 2, 2 + Cu, 2 + Zn (0.25 mM);
(e) comparison of the initial rate of ester hydrolysis using 2, 2 + Cu and 2 + Zn (0.25 mM); (f) Michaelis–
Menten’s constant (KM) and catalytic efficiency (kcat/KM) for 2, 2 + Cu and 2 + Zn.

In order to determine the catalytic parameters, a kinetic assay against varying substrate
concentrations was performed. The slope values thus obtained were fitted in the Michaelis–
Menten’s equation to calculate the kinetic parameters, the Michaelis–Menten’s constant
(KM), along with the catalytic rate (kcat) and catalytic efficiency (kcat/KM), validating the
hydrolase catalysis (Figure 4e,f and Table 2). A lower value of KM reflects a higher affinity
of the substrates to the catalysts. Thus, 2 + Zn turned out to be the most active catalyst with
a minimum KM value of 0.92 mM and a maximum kcat/KM of 61.57 mM−1 s−1, implying
superior catalytic activity. The values obtained are found to match closely with those
obtained from Lineweaver–Burk plots (Figure S8 and Table S1).
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Table 2. Catalytic parameters with different peptide assemblies.

Sample Vmax (M−1 s−1) KM (mM) kcat/KM (mM−1 s−1) R2

2 60.29 9.97 24.19 0.9946
2 + Cu 32.10 3.80 33.77 0.9908
2 + Zn 14.17 0.92 61.57 0.9114

This result draws parallel to the histidine-coordinated zincmediated catalytic activity
of natural hydrolase enzymes. The efficient Lewis acidity and flexible coordination geome-
try of zinc make it ideal for binding with histidine-containing motifs and coordinating with
the oxygen center of water molecules, thus polarizing and activating it, facilitating rapid
hydrolysis reaction [35].

Thus, our findings demonstrate the pivotal role of the peripheral moiety in governing
the catalytic properties of a peptide amphiphile. Further, we also highlight a relationship
between the coordination-driven supramolecular assemblies of the amphiphiles with their
catalytic activity. The results from our study bear substantial implications in the endeavors
towards a futuristic de novo metalloenzyme mimic.

4. Conclusions

In summary, we designed two amyloid-inspired histidine-appended peptide am-
phiphiles with differential potency to coordinate with metal ions by tweaking their C-
terminal functionality. The amphiphiles, with structurally tuned degrees of supramolecular
interactions, self-assembled to form nanofibers, were confirmed through a series of spec-
troscopic and microscopic studies. We rationally choose the metal-coordinated peripheral
His moiety as the catalytically active site present in metalloenzymes and anchored it to
a Zn(II) or Cu(II) ion. The stability of the peptide–metal co-assemblies being dictated by
supramolecular interactions was evident from the gelation ability of the co-assemblies
compared to the native peptide ones. Using a stable co-assembly of 2 and Zn as catalysts,
we could achieve enhancement in the hydrolytic ability against p-NPA. The superiority of
nanofibrous morphology over the nanoparticle one also suggested morphology-dependent
catalytic activity. The metals failed to activate the catalyst where the terminal functionality
is an amide, implying the significance of the carboxylic group in enzymatic activity. Such
strategic fine-tuning of a catalyst’s activity is highly desirable in biotechnology to increase
the production yields of robust biocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemistry5020080/s1, Figure S1: AFM images of (a) 1 + Cu,
(b) 1 + Zn, (c) 2 + Cu and (d) 2 + Zn in DMSO showing the presence of nanoparticles and lack
of fibrillar assembly; Figure S2: ThT Fluorescence emission spectra of the peptide samples with
and without metal ions. Control: ThT in water not bound to any peptide; Figure S3: UV-vis
spectrophotometric titration of peptides 1 and 2 with different concentrations of Cu(II) and Zn(II).
(c = 0.5 mM); Figure S4: Absorbance vs. time plot for p-NPA hydrolysis by co-assemblies of 1 and 2
with metals in DMSO, showing diminished catalytic activity due to lack of nanofibrous assembly
in DMSO.
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