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Abstract: New three-dimensional (3D) lanthanide framework compounds supported by bridging
thiocyanate ligand and K+ cations, K4[Ln(NCS)4(H2O)4](NCS)3(H2O)2(1: Ln = Dy, 2: Ln = Tb,
3: Ln = Gd) have been synthesized. A single-crystal X-ray diffraction study showed that all three
compounds were isostructural and crystallized in the I 2/a space group. The K+ ion form 2D layers
with thiocyanates which are further linked by [Ln(NCS)4(H2O)4]- complexes and additional thio-
cyanate ions to generate an interesting 3D framework structure. Compound 1 shows slow magnetic
relaxation behavior under a zero direct current (DC) field, indicating that 1 behaves as a single-ion
magnet (SIM). As estimated from AC magnetic measurements, the effective energy barrier for spin
reversal in 1 was Ueff = 42 cm–1. Slow relaxation of magnetization under a small external DC field
was also detected for 2 and 3 at 1.8 K.

Keywords: Dy(III); 3D coordination framework; SIM

1. Introduction

Single-molecule magnets (SMMs) and single-ion magnets (SIMs) are usually composed
of 3d and/or 4f discrete complexes with significant energy barriers to prevent spin reversal
behaviors at the molecular levels [1–4]. SMMs/SIMs show promising applications such
as high-density information storage, quantum computer, and molecular spintronics [1–3].
The large magnetic moments and remarkable magnetic anisotropy of lanthanide ions,
particularly for the Dy3+ ions, make them potential candidates for SMMs/SIMs [3,5].
However, in the literature, most lanthanide SMMs/SIMs are based on isolated polynuclear
or mononuclear complexes, and few Ln-type coordination frameworks are reported to
behave as SMMs/SIMs so far [6–14].

Compared to discrete molecules, metal-coordination frameworks have higher struc-
tural stability, and this advantage has been utilized in constructing some metamagnetic
materials [15,16]. However, slow magnetic relaxations in most of these framework com-
pounds are absent due to the existence of 3D ordered exchange interactions among metal
ions such as Ru and Co in the coordination framework [15–17]. For lanthanide coordination
frameworks, the exchange interactions between lanthanide ions are usually weak, as the
shielding of unpaired electrons in the 4f orbitals is strong [18]. We considered that such
weak interatomic exchange interactions in Ln-frameworks can be utilized to promote the
appearance of slow magnetic relaxation behaviors, leading to the efficient construction of
SMMs/SIMs based on rigid and stable Ln-frameworks.
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Some lanthanide metal-organic frameworks (MOFs) have been reported in the lit-
erature, where the organic linkers are usually made by carboxylate-type ligands [19].
Thiocyanate is a versatile inorganic ligand with a delocalized charge and polarizable π sys-
tem [20,21]. Moreover, thiocyanate has two donor atoms of nitrogen and sulfur, which can
coordinate with metals, leading to the formation of homo- or hetero-metallic MOF involv-
ing various combinations of metal ion node points, such as Cu-thiocyanate coordination
polymer [20], Zn-K-thiocyanate MOF [22], Cd-thiocyanate MOF [23], Cd-Hg-thiocyanate
and Mn-Hg-thiocyanate coordination polymers [21], and so on. These combinations lead to
the formation of materials with interesting solid-state structures and hetero-metallic arrays.
In the present work, we report three new Dy3+, Tb3+, and Gd3+ based coordination frame-
works linked by inorganic SCN ligands and K+ ions. To the best of our knowledge, this is
the first report of Dy-type coordination framework bridged by thiocyanate ligands [24]. By
examining its magnetic measurement, we found that 1 shows SIM properties with slow
magnetic relaxation behavior under a zero DC field.

2. Materials and Methods
2.1. Synthesis

LnCl3·6H2O (Ln = Dy, Tb, Gd), potassium thiocyanate salts, and organic solvents were
of analytical quality, commercially purchased, and used without any further purification.

LnCl3·6H2O (1 mmol) and potassium thiocyanate (7 mmol) were mixed with 10 mL
of MeOH and stirred in an ultrasound bath for 10 min (Scheme 1). To precipitate KCl
completely, the resulting white suspension was diluted with 110 mL of acetone and stirred
for another 30 min. The resulting solution with white, slowly settling KCl precipitate was
filtered. Filtrate was evaporated at a rotary evaporator to a slightly wet white precipitate.
This product was dissolved in 1 mL of H2O, transferred to a small petri dish, and recrys-
tallized by evaporation of water. Due to high solubility in water, crystals form only when
a very small amount of solvent remains. Therefore, the product is not filtered, but the
obtained large transparent needle crystals are crushed and transferred as a wet slurry to a
filter paper, where they are pressed against a paper to remove the remaining mother liquor.
The collected product was dried in air to obtain 1, 2, or 3. A yield of approximately 0.5 g,
60% (based on LnCl3·6H2O) is obtained for all studied lanthanides. Elemental analysis:
(1) C7H12S7N7O6DyK4, Calcd. (%): C, 10.09; H, 1.45; N, 11.76. Found (%): C, 10.109; H,
1.474; N, 11.819. (2) C7H12S7N7O6TbK4, Calcd. (%): C, 10.13; H, 1.46; N, 11.81. Found (%):
C, 10.203; H, 1.555; N, 11.982. (3) C7H12S7N7O6GdK4, Calcd. (%): C, 10.15; H, 1.46; N, 11.84.
Found (%): C, 10.242; H, 1.468; N, 11.898.
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Compounds 1, 2 and 3 subjected to a vacuum lose an unidentified number of water
molecules. Samples partially rehydrated when exposed to air. Elemental analysis of
dehydrated in vacuum and then rehydrated in air compounds: (1) (by missing one water
molecule) C7H10S7N7O5DyK4, Calcd. (%): C, 10.31; H, 1.24; N, 12.02. Found (%): C, 10.388;
H, 0.844; N, 12.210. (2) (by missing one water molecule) C7H10S7N7O5TbK4, Calcd. (%): C,
10.35; H, 1.24; N, 12.08. Found (%): C, 10.281; H, 1.188; N, 12.043. (3) (by missing two water
molecules) C7H8S7N7O4GdK4, Calcd. (%): C, 10.61; H, 1.02; N, 12.38. Found (%): C, 10.675;
H, 0.788; N, 12.445.
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2.2. Physical Measurements

Single-crystal X-ray crystallographic data of compound 1–3 were collected at 120 K on
equipment of a Rigaku Saturn 70 CCD Diffractometer (Rigaku, Tokyo, Japan) with graphite-
monochromated Mo Kα radiation (λ = 0.71073 Å) produced by a VariMax microfocus
X-ray rotating anode source. Data processing was performed using the Crystal-Clear
crystallographic software package. The structures were solved using direct methods
of SIR-92, and the refinement was carried out using SHELXL-2013 [25–27]. The non-H
atoms were refined anisotropically using weighted full-matrix least squares, and H atoms
attached to the O atoms were positioned using idealized geometries and refined using a
riding model.

Powder X-ray diffraction measurements were performed on a Rigaku Smart Lab
diffractometer equipped with a plate stage using Cu Kα radiation source (λ = 1.5456 Å)
in a range 2θ = 3–60◦ before presentation data were corrected for background and Kα2
secondary reflections.

Magnetic measurements were performed using a magnetic property measurement
system (MPMS-XL, Quantum Design, Baton Rouge, LA, USA) in the DC mode and the
alternating current (AC) mode. Sample of compound 2 was measured in an RSO mode.
The samples were measured in gelatin capsules (Matsuya). They were mixed with a small
amount of melted eicosane (melting point = 37 ◦C) to additionally immobilize the samples
and protect them from loss of crystalline solvent molecules during the measurement. The
gelatin capsule was glued to a straw with a small piece of Kapton tape.

The elemental analysis was performed using J-Science Lab Co. Ltd. JM11 in collabora-
tion with the Research and Analytical Center for Giant Molecules (Tohoku Univ.).

Fourier transform infrared spectra (FTIR) of powdered air-dried samples of 1, 2, and
3 were measured on a Jasco FT/IR-4200 equipped with an ATR PR0450-S system over
a range of 4000–500 cm−1. For ATR (attenuated total reflection), a diamond crystal was
used with a 1.5 mm diameter of the sample contact area. KSCN spectra (Wako guaranteed
reagent) were also measured for comparison with compounds 1–3. The results were
presented and discussed, in the context of SCN vibrations, in supporting information in
Figures S10 and S11.

Continuous Shape Measure Analysis (CSHM) of all lanthanide ions in 1, 2 and 3
residing in eight-coordinate environments was performed using SHAPE program [28–30].

3. Results
3.1. Crystal Structures

Compounds 1–3 are isostructural and crystallize in the same I 2/a (15) space group
(Tables S1–S3). The structures will be described using the 1 as an example. Bond lengths
of Ln complexes in 1, 2, and 3 can be found in ESI Tables S7, S8, and S9, respectively. The
crystal structure of compound 1 is shown in Figure 1. The framework is composed of
the Dy cation, K cation, thiocyanate anion, and water molecules. The Dy atom is eight-
coordinated, where the coordinated ligands include four NCS ligands and four water
molecules (Figure 2).

The asymmetric unit (ASU) comprises only half of the Dy ion and its ligands (Figure S1).
The other half can be obtained by rotation around the C2 axis running through Dy ion
along the crystallographic b axis. Apart from the Dy complex, ASU contains two potassium
ions, K1 and K2, four thiocyanates, and three water molecules. Two water molecules are
coordinated to Dy and one is in contact with K1 and K2 atoms. In following discussion, four
thiocyanate ions, contained in the asymmetric unit will be referred to by the number 1, 2, 3,
and 4, which reflects the atom label in the CIF file and presented figures (i.e., thiocyanate 4
is made of atoms labeled S4 N4 and C4). Thiocyanates 1 and 2 are coordinated by the N
atom to Dy ions (Figure 2). As presented in Figure 1b, thiocyanate 3 bridges multiple K
ions: two K1 and one K2 on the N side and furthermore one K1 and one K2 on the S side
(note that in Figure 1b atoms K1 and K2 are shown with distinctive colors).
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lengths are given in Å. 

As shown in Figure 2a, for the Ln coordination geometry, the distance between Dy 
and coordinating N atoms is 2.39 and 2.41 Å, and the Dy-O distance is 2.49 and 2.43 Å. K1 
cation interacts with the S and N atoms of the thiocyanate ligands, with the K1-S distance 
falling in the range of 3.25 to 3.47 Å and the shortest K-N distance of 2.82 Å (Figure 2a). 
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Figure 1. Structural motifs identified in 3D frameworks are reported here. (a). Crystal structure view
along the b-axis. Particular components of the crystal structure are color coded for better clarity:
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layer viewed along the c-axis (b). Purple atom: K1, magenta K2, yellow: S3, grey: C3, blue: N3,
red: O3. For clarity, [Dy(SCN)4(H2O)4]- complexes, thiocyanate 4 (atoms S4, C4, N4) and H atoms
were omitted.
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Figure 2. Geometry of the Dy complex and potassium K1 ions (a) geometry of K2 ions (b). The bond
lengths are given in Å.

Potassium ions are assembled around thiocyanate 3, forming a distinctive [K4(SCN)2]2+

layer (Figure 1a,b). This layer spreads across a and b crystallographic directions and is
supported from the sides by other thiocyanates as well as water molecules present in the
structure (Figure 1a). Thiocyanate number 4 is only partially 50% occupied and reveals
a disorder in which the N and S ends of the molecule exchange positions with a 50%
probability. This thiocyanate stretches between and bridges two neighboring [K4(SCN)2]2+

layers by bonding to potassium K2 atoms. This arrangement is clearly illustrated in
Figure 1a with the orange color of bridging thiocyanate 4, purple color of [K4(SCN)2]2+

layers, and green [Dy(SCN)4(H2O)4]− complexes. The red color in Figure 1 highlights
uncoordinated water molecules on the Dy atom.

As shown in Figure 2a, for the Ln coordination geometry, the distance between Dy and
coordinating N atoms is 2.39 and 2.41 Å, and the Dy-O distance is 2.49 and 2.43 Å. K1 cation
interacts with the S and N atoms of the thiocyanate ligands, with the K1-S distance falling
in the range of 3.25 to 3.47 Å and the shortest K-N distance of 2.82 Å (Figure 2a). The K1-O3
distance is 3.08 Å, while K2-O3 is 3.31 Å (Figure 2a,b). The shortest distances between
Dy centers in the framework are 10.7 and 11.1 Å, along the a and c axis, respectively.
The shortest distances between K1 centers is 4.82 Å and 4.03 Å along the a and c axis,
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respectively. The shortest distance between K2 atoms is 4.82 Å, while it is 4.52 Å between
K1 and K2.

3.2. Magnetic Properties

Direct current (DC) magnetic susceptibilities of polycrystalline samples 1, 2, and 3 were
measured in the range of 1.8–300 K at the magnetic field of 0.1 T. As shown in Figure 3a,
the χT values around room temperature are 15 cm3 K mol−1 (1), 11 cm3 K mol−1 (2), and
7.9 cm3 K mol−1 (3), which is consistent with those of the single ions of Dy3+ (6H15/2: J = 15/2
and gJ = 4/3), Tb3+ (7F6: J = 6 and gJ = 3/2), and Gd3+ (8S7/2: J = 7/2 and gJ = 2), respec-
tively [3]. The decrease of the χT of 1 and 2 when lowering the temperature is considered
to be due to the thermal depopulation of the sublevel excited states of Ln3+ ions [6],
which mainly relates to zero-field splitting. Additionally, antiferromagnetic interactions
between Ln3+ ions are considered to be relatively weak due to the efficient shielding ef-
fect of unpaired electrons in the Ln-4f orbitals, thereby making small contributions to the
magnetization process. Please note that the small increase of χT around 10 K in 3 and
17 K in 2 and 3 is a measurement artifact due to “emu-range” change, not a property of
the samples [31]. The magnetization-field loops show no visible hysteresis at 1.8 K in all
compounds (Figure 3b).
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Alternating current magnetic susceptibilities of 1, 2, and 3 were measured for the study
of their SIM behaviors. The Tb and Gd framework compounds 2 and 3 show slow magnetic
relaxation but only under a magnetic field (Figure S1). At zero magnetic field, no slow
magnetic relaxation phenomenon was observed for these two systems. Additionally, these
two compounds show multiple Debye relaxations under a magnetic DC field, indicating
the existence of second faster magnetic relaxation processes. Recently, in similar case, one of
the two relaxation processes observed in the [Gd(phendo)4]3+ complex was shown to fade
away upon dilution with diamagnetic Y3+ ions, suggesting that it was due to correlated
spin movements arising from the dipole–dipole interactions between Gd3+ ions [32]. It was
suggested that Gd3+ complexes might be good qubit candidates. Similar behavior of 3 is
expected; however, we did not pursue that research pathway here. All in all, compounds
2 and 3 are not desirable SIM materials. On the other hand, for compound 1, shown in
Figure 4 and Figure S2, clear peaks appeared in the frequency dependence of the out-of-
phase (χ”) susceptibilities in the range of 1.8–4.5 K at zero fields (Figure 4a) and in the
range of 3.0–4.5 K at the magnetic field of 0.1 T (Figure 4b). The peaks in the frequency
dependence χ” plot indicate the SIM behaviors of compound 1.
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temperature range of 1.8–4.5 K, and (b) 0.1 T in the temperature range of 3–4.5 K of compound 1.

Curve fitting was carried out using the Debye relaxation model (Equation (1)) for 0.1 T
and Havriliak–Negami model (Equations (2) and (3)) for zero-field [33]:

χ”(ω) =
(χT–χS)(ωτ)1–αcos(πα/2)

1 + 2(ωτ)1–αsin(πα/2) + (ωτ)2–2α
(1)

χ”(ω) =
(χT–χS) sin(βθ)

[1 + 2(ωτ) 1–αsin(πα/2) + (ωτ)2–2α]β/2
(2)

θ = tan−1 (ωτ)1–αcos(πα/2)

1 + (ωτ)1–αsin(πα/2)
(3)

where ω (= 2πf ), f, χT, χS, τ, α and β refer to the AC angular frequency and the AC frequency,
isothermal susceptibility, adiabatic susceptibility, relaxation time, dispersion coefficient,
and asymmetric coefficient, respectively. These fitting parameters are summarized in
Tables S4 and S5. The fitting at 0.1 T was carried out using a Debye relaxation model. On
the other hand, the plots measured at zero-field show asymmetric peaks that require a
Havriliak–Negami model with β. At the high-temperature region (>3.9 K), the parameter
of β was assumed from the tendency of the plot at the near temperature region (~3.9 K,
Figure S3) and fixed during the fitting (Table S4) because the opposite side of the peak was
out of the measurement range. This assumption was appropriate, as the relaxation time
plots converged at a higher temperature region with/without field (vide infra).

Figure 5 shows the Arrhenius plots of the relaxation times of compound 1. The
Arrhenius plot (blue line) measured under an applied field of 0.1 T shows a straight
line, indicating that compound 1 follows the magnetic relaxation of the Orbach process
(Equation (4)):

τOrbach = τ0 exp (
Ue f f

kBT
) (4)

where τ0, Ueff, and kB refer to the preexponential activation energy of spin-reversal,
and Boltzmann constant, respectively. The linear fitting affords Ueff = 42 cm–1 and
τ0 = 3.6 × 10–10 s. The τ0 of 1 is a typical value for the SMMs/SIMs with a relaxation
time of 10−6 to 10−11 s [34]. At zero-field, the red plot curve shows nearly constant re-
laxation time at a temperature below around 3 K, suggesting the existence of quantum
tunneling magnetization (QTM) at low temperatures [35,36].
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resent the best fit with the Arrhenius law and the simulation with Ueff = 41.8 cm–1, τ0 = 3.6 × 10–10 s,
C = 40 K7 s, and Q = 0.0035 s, respectively.

The red plot of Figure 5 measured under zero-field can be simulated using a combina-
tion of the Orbach, Raman, and QTM processes (Equations (5)–(7)):

τRaman = CT−7 (5)

τQTM = Q (6)

τ–1 = τOrbach
–1 + τRaman

–1 + τQTM
–1 (7)

where C and Q refer to the coefficient of the Raman and QTM processes, respectively, the
red line at the low-temperature region is distinctly different from the straight line measured
at 0.1 T, indicating that applying the magnetic field effectively suppresses the Raman and
QTM processes of 1. These results clearly indicate that Dy(III) ions in 1 perform as SIMs
with thermo-activation energy. It should be noted that the studied compounds could be
partially dehydrated due to the vacuum conditions of the magnetic measurements. The
effect of hydration/de-hydration on the magnetism of compounds 1, 2, and 3 was not
studied at this stage. Further research in this direction is required and will be conducted in
the future.

4. Conclusions

In summary, we have successfully synthesized three Dy/Tb/Gd frameworks linked
by thiocyanate ligands. Magnetic investigations reveal that the Dy(III) ion in a frame-
work compound 1 behaves as SIM, showing suppression of the Raman and the quantum
tunneling magnetization processes by applying a magnetic field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemistry5020067/s1. Table S1. Crystal data and structure
refinement for 1 at 120 K. CCDC: 2249738. Table S2. Crystal data and structure refinement for 2
at 120 K. CCDC: 2249739. Table S3. Crystal data and structure refinement for 3 at 120 K. CCDC:
2249740. Figure S1. Asymmetric unit of 1. Figure S2. The real part (χ’) and the imaginary part (χ”)
of AC susceptibility of (a, b) 2 and (c, d) 3, measured at 1.8 K under the magnetic field of 0, 0.1, and
0.2 T. The curve lines for χ” show a dual Debye model. Figure S3. The real part of AC magnetic
susceptibility (χ’) of 1 under the static magnetic field of 0 T and 0.1 T, respectively. Table S4. AC
susceptibility fitting data of the imaginary part of 1 at 0 T. Table S5. AC susceptibility fitting data
of the imaginary part of 1 at 0.1 T. Figure S4. Plots of the temperature dependence of b of 1 at 0 T
fitted using Equations (2) and (3) in the manuscript. Figure S5. Crystal structure of compound 1–3
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along (a) a-, (b) b- and (c) c-axis. Figure S6. PXRD pattern of compounds 1, 2, and 3 measured at
293 K—crystals were ground before measurements. Figure S7. Comparison of calculated (on the
basis of single crystal structural data at 120 K) and measured (at 293 K) PXRD patterns of compound
1. Figure S8. Comparison of calculated (on the basis of single crystal structural data at 120 K) and
measured (at 293 K) PXRD patterns of compound 2. Figure S9. Comparison of calculated (on the
basis of single crystal structural data at 120 K) and measured (at 293 K) PXRD patterns of compound
3. Table S6. Bond lengths of Dy1, K1, and K2 centers. Table S7. Bond lengths of Tb1, K1, and K2
centers. Table S8. Bond lengths of Gd1, K1, and K2 centers. Table S9. Results of the continuous shape
measure analysis of lanthanide ion coordination spheres in compounds 1, 2, and 3 and symmetry
of the corresponding ideal shapes. Figure S10. IR spectra of 1 (red), 2 (blue), 3 (green), and KSCN
(black) in the range of 4000–500 cm−1. Selected vibration peaks are marked. Figure S11. IR spectra
of 1 (red), 2 (blue), 3 (green), and KSCN (black) in the range of 2200–1900 cm−1. Selected vibration
peaks are marked. References [28–30,37] are cited in the supplementary materials.
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