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Abstract: Gold nanoparticles are easily obtained by a range of room temperature processes. In
particular, polyols-based syntheses performed in alkaline conditions without the need for surfactants
lead to small size nanoparticles around 10 nm in diameter. While highly viscous polyols, such as
glycerol, have been the most studied polyols with which to perform the reaction, the use of alternative
alcohols with lower viscosity could benefit the processing of the nanoparticles. Here, we show that
ethylene glycol is a suitable alternative to glycerol. Via a study comprising more than 70 experiments
overall, we identified that the key parameters by which to control nanoparticle size and colloidal
stability are the amount of base used and the amount of ethylene glycol. Too-high or too-low values
of base and/or ethylene glycol do not lead to stable colloidal nanoparticles. An optimal Base/Gold
molar ratio is around 4 and an optimal amount of ethylene glycol is around 30 v.% to obtain stable
ca. 10 nm Au NPs and to develop a green room temperature surfactant-free colloidal synthesis of
gold nanoparticles.

Keywords: nanoparticles; gold; synthesis; polyol; ethylene glycol; room temperature

1. Introduction

Gold (Au) nanoparticles (NPs) present unique properties relevant for applications as
diverse as catalysis [1], optics [2], sensing [3], and medicine [4]. With the wide interest and
potential use of Au NPs, numerous synthetic recipes have been reported. In particular,
various colloidal syntheses of Au NPs have been documented [5]. In these approaches, a
metal precursor, such as HAuCl4, is reduced to Au NPs in a solvent and in the presence
of at least one reducing agent. In most cases, additives playing the role of size-controlling
and/or shape-directing agents are also required. These additives are usually referred to
under the generic wording of stabilizers or capping agents, but also ligands or surfactants.
Iconic examples of colloidal syntheses include the Turkevich–Frens method performed
in close-to-boiling point water with citrate as a stabilizer and reducing agent [6,7], or the
Brust–Schiffrin method performed at room temperature in the presence of a strong reducing
agent such as NaBH4 and thiol-based compounds as stabilizing agents [8].

Following the increasing concerns about sustainability, and guided by the principles of
Green Chemistry, the design of a range of alternative synthetic concepts emerged to achieve
more sustainable and eco-friendly syntheses of NPs [9–11]. In particular, due to the high
reduction potential of HAuCl4, a range of room temperature syntheses can be achieved [5].
Examples of such room temperature syntheses use bio-derived molecules such as plants,
fruits, or food extracts as reducing agents and stabilizers [12,13]. Bio-organisms such as
viruses or bacteria are also suitable for obtaining Au NPs [14]. Unfortunately, depending
on the source of these species, different results and impacts on the Au NPs properties are
expected, for instance because extracts from bio-derived sources have different properties
depending on the origin of the feedstock [15]. Although such biogenic approaches are
arguably green (obtaining plant extracts might require the generation of organic waste),
they hardly address the challenges of reproducibility often observed in NP syntheses [16].
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Fortunately, as an alternative, a range of syntheses are possible using simple and
safe chemicals such as polyols [17,18]. For instance, the group of Prof Tremiliosi-Filho
and others reported the room temperature synthesis of Au NPs using glycerol [19–21].
The reaction proceeds under alkaline conditions where alkoxides from the alcohol play
the role of reducing agents [22]. While the synthesis is often performed in the presence
of stabilizers such as polyvinylpyrrolidone (PVP), an additive commonly used in the
synthesis of various nanomaterials [23], the same group showed that no stabilizers are
required to obtain stable colloidal NPs using glycerol and water [24]. The development of
surfactant-free syntheses, although it remains a general challenge, is indeed possible [25]
and directly beneficial for applications such as catalysis where more active ‘unprotected’ or
‘surface clean’ NPs typically show higher catalytic activity than their counterpart prepared
with surfactants [26]. Developing surfactant-free syntheses also alleviates the typically
tedious, multi-steps and energy demanding removal of the surfactants [27]. Most polyols
are relatively safe chemicals, such as glycerol [24]. Unfortunately, glycerol and its mixtures
with water lead to highly viscous media (the viscosity of glycerol is about 1.4 Pa·s) that can
be tedious to handle and process [28]. High viscosities can be detrimental to scaling up the
synthesis, for instance in flow systems, or for further using the as-prepared colloids. In a
range of surfactant-free syntheses based on the so called ‘polyol synthesis’ [17], ethylene
glycol (EG) is preferred. EG is also a relatively green solvent [29] suitable for obtaining Pt,
Ir, Ru, or Rh NPs [26,30,31].

However, obtaining surfactant-free Au NPs using EG following the recipes developed
for other precious metal NPs often leads to large gold nuggets. This is attributed to the
typically high concentration of metal precursors used in the polyol-EG synthesis (typically
around 20 mM), the high amount of reducing agent (syntheses are often performed in
100% polyols) and the high temperature required (typically close the boiling point of the
polyol) [30,32,33]. Using HAuCl4 as a precursor, the combination of these conditions leads
to the rapid formation of large Au-based materials beyond the nanoscale. Nevertheless,
although EG and its mixtures with water are less viscous than solutions obtained with
glycerol (the viscosity of EG is around 1.6 × 10−2 Pa·s) [34], using EG still requires a
flocculation step in acid to collect the NPs before further use [35]. This suggests that stable
Au NPs could be obtained using EG under the right conditions. Inspired by the results
showing that glycerol is suitable for developing surfactant-free colloidal Au NPs at room
temperature, and taking into account the fact that EG should be a suitable solvent for
reducing HAuCl4 and stabilizing surfactant-free NPs, here, we investigated the option to
substitute glycerol with EG.

Previous reports on surfactant-free colloidal syntheses of Au NPs using glycerol
focused on the influence of the amount of glycerol (typically in the range 20–100%) [24,36],
the amount of base (typically in the range 1 mM up to 300 mM) [24,36], and/or the
temperature (typically in the range 10–60 ◦C) [24]. The HAuCl4 concentration is typically
in the range 0.5–1.0 mM, which means that the Base/Au molar ratio is typically around
1–10 [36], up to 400 [24]. A relatively high amount of glycerol is often preferred, e.g., around
65 v.%, to obtain ca. 7 nm Au NPs. It has been suggested that the viscosity of glycerol
was the key to stabilizing the NPs [24]. The opportunities opened by room temperature
syntheses are extremely appealing considering that at too-high temperatures (above 60 ◦C)
larger NPs are obtained and the reaction proceeds anyway within a few minutes at room
temperature [24]. Room temperature syntheses are suitable for obtaining relatively small ca.
7 nm NPs, which make the use of higher temperatures relatively irrelevant in the context of
developing energy-efficient syntheses. In most polyol processes, the amount of base and/or
the Base/Au molar ratio control the size of the NPs [37] and, in the case of surfactant-free
glycerol-based syntheses, one report focused on the use of a Base/Au molar ratio of around
200 to lead to ca. 7 nm Au NPs, using 65 v.% glycerol [24], whereas another work achieved
about the same size with only a molar ratio of Base/Au of 1.3 and 20 v.% glycerol [36].
These results suggest that surfactant-free and room temperature syntheses of Au NPs could
be achieved (i) substituting glycerol with EG in low(er) viscosity media, (ii) using a low
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amount of reducing agent, and (iii) minimizing the amount of base. These opportunities to
develop such green(er) syntheses were explored here.

2. Materials and Methods
2.1. Chemicals

All chemicals were used as received. HAuCl4·3H2O (≥99.9%, Sigma Aldrich, St. Louis,
MO, USA); ethylene glycol (EG, EMSURE® Reag. Ph Eur, Reag. USP, Supelco); LiOH·H2O
(ACS reagent, ≥98.0%, Sigma Aldrich); water (Milli-Q, Millipore, resistivity of >18.2 MΩ·cm);
HCl (puriss. ACS reagent, reag. ISO, reag. Ph. Eur. fuming, ≥37%, Sigma Aldrich); HNO3
(puriss ≥ 65%, Sigma Aldrich).

2.2. Synthesis of Au NPs

The syntheses were performed following the general procedure reported elsewhere [24,36],
with adjustments. Stock solutions of 50 mM HAuCl4 in water and 50 mM LiOH in water
were prepared in glassware and plasticware (polyethylene), respectively. A stock solution of
66 v.% EG in water was used (obtained by dilution of the 100% EG commercially available).
As opposed to previous work on glycerol where it is not clear if and how the solution
was stirred [36] or where a ‘soft shake’ was performed [24], stirring at 500 rotations per
minutes was used. A magnet cleaned with aqua regia (prepared using a mixture of 4:1,
v:v, HCl:HNO3) was placed in ca. 8 mL glassware. The desired amount of water, EG,
and LiOH from the stock solutions were added and the solution was magnetically stirred.
Upon stirring, the desired amount of HAuCl4 was added last at ambient temperature
and in ambient light. The container was then closed with the dedicated cap. Although
the reaction proceeded rapidly within few minutes and was completed in few hours, as
assessed by the appearance of a red color, the solutions were left to stir for 24 h before
any further characterization was performed, and the samples were subsequently stored at
room temperature.

The total volume of the solutions was 3 mL and the final HAuCl4 concentration
was 0.5 mM. The volumes of water, EG, LiOH, and HAuCl4 were therefore adjusted to
investigate 10, 20, 30, 40 or 50 v.% EG and LiOH/HAuCl4 molar ratios of 2.5, 3.0, 3.5, 4.0,
4.5, 5.0, 6.0, 9.0, 12.0, or 15.0, as summarized in Table 1. These relatively low values for EG
contents and the amount of base were preferred to develop relatively green syntheses, i.e.,
with low amounts of alcohols and low amounts of base.

Table 1. Overview of the parametric space investigated for the synthesis of Au NPs using EG as the
reducing agent. The final concentration of HAuCl4 was 0.5 mM, the final volume 3 mL, and LiOH
was used as the base.

EG v.% in Water LiOH/HAuCl4 Molar Ratio

10 2.5, 3.0, 3.5, 4.0, 4.5, 6.0, 9.0, 12.0, 15.0
20 2.5, 3.0, 3.5, 4.0, 4.5, 6.0, 9.0, 12.0, 15.0
30 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 9.0, 12.0, 15.0
40 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 9.0, 12.0, 15.0
50 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 9.0, 12.0, 15.0

2.3. Characterization
2.3.1. UV-vis Spectroscopy

UV-vis spectra were acquired with a Thermo Scientific Genesys 10S UV-vis spectropho-
tometer with measurements performed in the range 300–800 nm. The measurements were
performed on the as-prepared colloids in the liquid phase. A mixture with the same wa-
ter:EG ratio as the sample was used as a baseline, without base. The as-prepared solutions
were placed in dedicated UV-vis polystyrene cuvettes with a 1 cm width for absorption
measurements.

Due to their pronounced surface plasmon resonance (spr) properties, Au NPs can easily
yet comprehensively be characterized by UV-vis [38,39] with a relatively high throughput
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method relevant to characterizing the relatively high number of samples considered in
the present study (over 70 overall). Various metrics specific to Au NPs are reported in the
literature and are summarized in Table 2. Au NMs show a signal in UV-vis characterization
that corresponds to a size-, shape-, and solvent-dependent localized spr signal [39]. λspr is
the wavelength at the spr, which corresponds to the maximum absorption peak intensity
(Aspr) at around 520 nm. λspr values provide information on the size of spherical NPs. In
a first approximation, if 525 < λspr < 579 nm, the smaller λspr values indicate smaller NPs
(although very small Au NPs below 3–4 nm do not show a pronounced Aspr) [38]. For
larger NMs or aggregated NPs, the plasmon peak position shifts to higher wavelengths.
The relative width at 90% of Aspr, ∆λ/λspr, evaluates the broadness of the spr peak, and
indirectly gives an indication on the broadness of the size distribution [40]. Aspr/A450
(where A450 is the absorbance at 450 nm) gives an indication of the size of the NPs. The
equations derived from the Mie theory and the values typically used were obtained in pure
water and cannot be directly used here in mixtures of water and alcohol [38,39]. A lower
Aspr/A450 value corresponds to smaller NPs [38]. A650/Aspr (where A650 is the absorbance
at 650 nm) indicates the extent of the aggregation of the NPs [41,42]. Higher A650/Aspr
ratios indicate more aggregated NPs (note that this is only true if the NPs are characterized
by a well-defined plasmon resonance peak). A380/A800 (where A380 is the absorbance at
380 nm and A800 is the absorbance at 800 nm) indicates the stability of the colloids. The
most stable colloids display a higher ratio [43]. The relative intensity measured at 400 nm
(A400) indicates the relative amount of Au0 in the sample, and so provides an estimation of
the relative yields of the syntheses [39].

Table 2. Overview of the Au NPs properties retrieved from UV-vis spectroscopy.

Values Property Indicates

λspr spr Size
(lower values correspond to smaller sizes)

∆λ/λspr Broadness of the peak at 90% of Aspr
Size distribution

(higher values correspond to larger size distributions)

Aspr/A450
Ratio of absorbances at

λspr and 450 nm
Size

(lower values correspond to smaller sizes)

A650/Aspr
Ratio of absorbances at

650 nm and λspr

Aggregation
(lower values correspond to less aggregated samples)

A380/A800
Ratio of absorbances at

380 and 800 nm
Stability

(higher values correspond to more stable colloids)
A400 Absorbance at 400 nm Relative yields

2.3.2. Scanning Transmission Electron Microscopy (STEM)

STEM micrographs were obtained on an FEI Talos F200X operated at 200 kV equipped
with a High-Angle Annular Dark-Field (HAADF) detector. The as-prepared colloidal
dispersions were dopped on Nickel TEM grids (Quantifoil) after dilution in ethanol. The
solvent was left to evaporate and so the measurements were performed on dried NPs. The
size of the NPs was retrieved from the analysis of over 500 NPs with the software ImageJ.

3. Results

The objective of this study was to investigate the possibility of using EG as a reducing
agent in the synthesis of surfactant-free colloidal NPs and to investigate how different
experimental parameters impact the size, shape, and stability of the Au NPs. Due to the
relatively large number of experiments performed (over 70 overall), not all samples could
be analyzed by all possible techniques and UV-vis was preferred to assess the resulting
properties, as detailed in the Materials and Methods section. During the screening, focus was
on the influence of the Base/HAuCl4 molar ratio (also equivalent to the Base/Au molar
ratio) and the amount of EG in the solvent. To develop green syntheses, a driving force in
the performed parametric study was to investigate how little of these chemicals is needed
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to obtain stable surfactant-free Au NPs. To maximize the use of Au, an incentive was to
develop small size NPs and the development of an optimized synthesis was guided by the
values retrieved from UV-vis characterization (e.g., to achieve lower λspr values indicative
of smaller sizes).

3.1. Ethylene Glycol as Reducing Agent for Au NP Synthesis

Using EG as a reducing agent leads to Au NPs with a well-defined spr. Upon adding
HAuCl4 to an alkaline mixture of water and EG, the solution turns dark, then grey, then
purple, and finally red as illustrated in Figure 1a. This color change takes from between a
few minutes to ca. 1 h to be observed. This color is typical of Au NPs and confirms that
the reactions have proceeded using EG, as further assessed by the characteristic UV-vis
spectrum obtained and reported in Figure 1b, with a pronounced spr peak at around
520 nm. The formation of Au NPs is further confirmed by STEM data reported in Figure 1c.
An analysis of the data retrieved confirmed that ca. 10 nm NPs are obtained.
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Figure 1. (a) Schematic of the reaction, (b) example of UV-vis spectrum and relevant features, and
(c) examples of STEM micrographs with size distribution for Au NPs in the inset, obtained using
40 v.% EG and a LiOH/Au molar ratio of 4. The concentration of HAuCl4 was 0.5 mM.

3.2. Influence of the Base/HAuCl4 Ratio and EG Content

To investigate the effect of different variables, a range of experiments were performed for
which the experimental conditions are summarized in Table 1. The results obtained are sum-
marized in Figure 2, as well as in Figures S1–S3 and Table S1 in the Supplementary Materials.
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Figure 2. (a) λspr, (b) ∆λ/λspr, (c) A650/Aspr, and (d) A400/A400-max values for samples prepared
under different synthetic conditions. The size of the data points corresponding to a given v.% of
EG and LiOH/HAuCl4 molar ratio is proportional to the (a) λspr, (b) ∆λ/λspr, (c) A650/Aspr, and
(d) A400/A400-max values. A400-max corresponds to the maximum value of A400 for the dataset. To
guide the readers, the desirable data point corresponding to small NP sizes, narrow size distribution,
high stability, and higher relative yield are represented in red. The concentration of HAuCl4 was
0.5 mM. An X indicates that no stable colloids were obtained. The related values are given in Table S1.

4. Discussion
4.1. Trends and Optimal Synthesis Conditions

From the performed parametric study, it is established that EG is a suitable reducing
agent with which to prepare surfactant-free Au NPs, see Figure 1. The size range around
10 nm is equivalent to what has been reported using glycerol [24,36]. EG is less viscous than
glycerol and this presents an advantage for the later use and upscaling of the synthesis.

From the results presented in Figure 2, we first used λspr and ∆λ/λspr values as
indicators of the NP size and size distribution, respectively. In Figure 2a, lower λspr
values are associated with smaller size NPs (alternatively, the λspr/A450 values provided in
Figure S1a can also be considered, where lower values are associated with smaller NPs). In
Figure 2b, lower ∆λ/λspr values are associated with more monodispersed NPs. λspr values
are around 520 nm and as low as 517 nm, and ∆λ/λspr are typically around 6%. From the
parametric study performed, it is concluded that, overall, (i) the NP size increases as the EG
content increases and (ii) at too-low or too-high base contents, NPs are not formed (too-low
base content) or larger NPs are formed (too-high base content).

The effect of changing the EG contents is less pronounced than the effect of changing
the amount of base. This can be explained by the fact that alkoxides formed from EG are
expected to play the role of reducing agent [22]. Therefore, at too-high EG content, too much
reducing agent likely leads to the overgrowth of the Au NPs. At a too-low base amount,
there is not enough reducing agent formed (regardless of the amount of EG present) and
at a too-high base amount, too much reducing agent is formed. Another explanation can
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be added to the previous to account for the observation reported. HAuCl4 is more easily
reduced in its acid form than in its basic form [7,24]. In too-alkaline conditions (higher
Base/Au molar ratios), it could be that the pathway for the reduction of the precursor is not
favored and is therefore slower. Assuming that the classical nucleation theory applies [44],
these conditions lead to the formation of a few seeds that (over)grow with time, leading
to NPs with broader features in UV-vis and higher λspr values. Lower λspr values and
more monodispersed samples were also observed using a lower amount of glycerol and a
relatively low amount of base [36]. In a similar way, here, when higher amounts of base
were used, smaller NPs were obtained at higher glycerol contents [24].

A worst-case scenario is then a combination of high EG content and a high concentra-
tion of base. A best-case scenario seems to use a Base/Au molar ratio of around 4. This is
in agreement with previous work using ethanol as a reducing agent [45,46]. Considering a
Base/Au molar ratio of around 4, the comparison of the different λspr/A450 provided in
Figure S1a suggests that slightly smaller NPs are obtained at lower EG contents.

To discuss the aggregation and stability of the NPs, A650/Aspr values are first consid-
ered, where lower values indicate less agglomerated and more stable NPs in Figure 2c. The
lowest values are also obtained for a Base/Au molar ratio of around 4. It is also observed
that higher EG contents also lead to relatively stable Au NPs regardless of the base content,
which is attributed to the higher viscosity of the solutions containing a high amount of
EG. However, considering the A380/A800 values provided in Figure S1b, it is observed that
higher EG contents actually lead to less stable Au NPs than lower contents. It is therefore
concluded that an optimal amount of EG must be not too high nor too low and therefore
around 30 v.%.

Regarding the relative yield of the Au NPs synthesis, this question is more challenging
to address since the UV-vis spectra are influenced by the properties of the surrounding
media, so comparing data obtained in media containing different v.% of EG and/or base
can be misleading. This comparison is nevertheless proposed in Figure 2d, where the
relative yields are estimated using A400 as a proxy. The highest relative yields are obtained
for a Base/Au molar ratio of around 4. It is also observed that higher EG contents lead to
higher yields.

Taking into account all these observations, it is concluded that the desired combination
of small size and monodispersed surfactant-free NPs obtained with relatively high yield
and with promising stability are obtained with a Base/Au molar ratio of 4 for EG content
of around 30 v.%. It is also concluded that, overall, changing the Base/Au molar ratio has a
stronger effect on size, size distribution, stability, and yield than changing the EG content.

4.2. Reproducibility

Reproducibility in NPs synthesis is a general challenge [16,47]. To the best of our
knowledge, this aspect of room temperature surfactant-free syntheses of Au NPs has not
been discussed in detail in previous work using glycerol [24,36], although triplicates are
mentioned in [36]. Using a Base/Au molar ratio of 4, we assessed the reproducibility of the
synthesis by performing the same experiments three times with different EG contents, for
which the results are reported in Figure 3. The trend previously discussed is still observed.
At a given Base/Au molar ratio of 4, the λspr values are relatively independent of the EG
content, with a trend of observing slightly larger λspr values as the EG content increases,
see Figure 3a. Considering the λspr/A450 values, it is confirmed that smaller NPs (i.e., lower
λspr/A450 values) tend to form at lower EG contents, see Figure S2a. The reproducibility of
the values of ∆λ/λspr is the best for 30 v.% EG, see Figure 3b. The stability of the Au NPs
is about the same for all EG contents considering the A650/Aspr values in Figure 3c or the
A380/A800 values reported in Figure S2b. However, the results obtained with EG contents
lower than 30 v.% and, in particular, 20 v.%, show less reproducibility (higher standard
deviation for the parameters considered here). Finally, it is confirmed that higher viscosity
media lead to higher apparent relative yields, see Figure 3d.
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Figure 3. (a) λspr, (b) ∆λ/λspr, (c) A650/Aspr and (d) A400/A400-max values and standard deviations
for three different experiments, for samples prepared for different v.% of EG as indicated and a
LiOH/HAuCl4 ratio of 4. The concentration of HAuCl4 was 0.5 mM.

In light of these results, to develop a green synthesis, minimizing the amount of
chemicals required and yet achieving control over small size NPs with a reasonable yield in
a reproducible way, an EG content of 30–40 v.% seems recommendable. This is lower than,
for instance, the amounts of glycerol typically considered in previous investigations [24,36].

4.3. Long Term Stability

A final important aspect of the Au NPs is their stability over time, especially consider-
ing here that no surfactants were used. Stability can be improved by storing the samples in
the fridge, as it was reported for glycerol-based syntheses [24]. However, we here assessed
the relatively stability of different samples stored in the dark but at room temperature to
assess a ‘worst-case’ scenario. Using the example of Au NPs synthesized with a Base/Au
molar ratio of 4 and different EG contents, it is observed that, while the NPs show good
stability for ca. a week (7 days), more pronounced changes are observed for longer periods
of storage, see Figure 4 as well as Figure S3. The λspr, ∆λ/λspr, A650/Aspr, and relative
yield values are rather stable for 7 days of storage in the dark and at room temperature,
as well as Aspr/A450 and A380/A800 values. After 14 days of storage, however, the UV-vis
characterization suggests that NPs grow (higher λspr, ∆λ/λspr and Aspr/A450 values) and
are less stable (higher A650/Aspr values and lower A380/A800 values). The more constant
values indicative of more stable Au NP colloidal dispersions are obtained when 30 v.% EG
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is used. These results further stress that a fine balance of not only the base concentration
but also the amount of EG must be controlled to achieve stable Au NPs.
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Figure 4. (a) λspr, (b) ∆λ/λspr, (c) A650/Aspr and (d) A400/A400-max values for samples prepared for
different v.% of EG as indicated and an LiOH/HAuCl4 ratio of 4. The concentration of HAuCl4 was
0.5 mM. The UV-vis characterization was performed 1, 7, or 14 days after synthesis, as indicated.

The relatively low values of 30 v.% EG identified in this study are in contrast with
results obtained with glycerol, where an equal or higher v.% of glycerol is typically preferred
to lead to stable colloids [24]. This difference can be attributed to the different viscosities of
the EG and glycerol, where the more viscous glycerol might prevent further reaction of the
Au NPs.

5. Conclusions

We here showed that EG is a suitable reducing agent with which to develop surfactant-
free colloidal syntheses of Au NPs, ca. 10 nm in size. An optimal synthesis to minimize
the Au NP size, dispersity, stability, and relative yield was performed with a relatively low
LiOH/Au molar ratio of ca. 4 and a relatively low EG content of ca. 30 v.%. These results
show that substituting glycerol with EG can lead to several benefits, not only using a less
viscous solvent but potentially fewer chemicals (less base and less alcohol). It is also shown
that, despite the absence of surfactants, the Au NPs are relatively stable over several days
of storage.

There is certainly room to achieve finer size control to further develop and exploit
the green features of the approach proposed here. For instance, we preferred LiOH as a
base rather than the NaOH more commonly used for similar syntheses [24,36,46]. The
assumption driving this choice was that LiOH will lead to a stronger interaction with the
metal surface and will lead to more stable NPs [48,49], although LiOH is more expensive
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and harmful to the environment than NaOH. Given the results discussed here, the viscosity
of EG does not seem to be a major factor in the stabilization of the Au NPs that can be
obtained at a relatively low EG content of 30 v.%. It could also be relevant to explore the
potential of alcohol contents lower than 10 v.% for a finer size control, although lower
relative yields are expected. It will also be valuable in the future to assess the effect(s)
of NaOH for a deeper understanding of possible cations effect(s) in the stabilization of
surfactant-free Au NPs in non-/less- viscous solvents [48], but also to develop even greener
and more cost-effective room temperature and surfactant-free syntheses of Au NPs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemistry5020061/s1, Figure S1: λspr/A450 and λ380/A800 values
for the parametric study; Figure S2: λspr/A450 and λ380/A800 values for replicated experiments;
Figure S3: λspr/A450 and λ380/A800 values for time studies; Table S1: Parameters retrieved from
UV-vis analysis for all samples.
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