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Abstract: This paper provides insight into the various studies that have been carried out to date on
liquid crystalline materials based on copper(I) complexes. Although the study of copper(I) complexes
with respect to their liquid crystalline property is quite limited, metallomesogens prepared with
different structural components and ligands from groups such as azamacrocycles, alkythiolates,
ethers, isocyanides, phenanthroline, Schiff bases, pyrazolates, phosphines, biquinolines, and ben-
zoylthioureas are reported and summarized in this review. A special section is dedicated to the
discussion of emission properties of copper(I) metallomesogens.
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1. Introduction

Liquid crystals are generally referred to as substances that blend the structure and
properties of solid and liquid states; they share with liquids the ability to flow but also
exhibit some structural arrangement similarities with solids. This intriguing combination of
the properties of both liquid and solid states gives liquid crystals the ability to induce certain
properties that enable useful applications in the displays of devices such as wristwatches,
calculators, portable computers, and flat-screen televisions, as well as in sensors, smart
windows, optical switches, etc. [1].

With so many compounds synthesized, liquid crystals containing metals, also known
as metallomesogens, have become a major subject of study [2]. The incorporation of metal
into organic matrices enhances and induces unique magnetic, spectroscopic, and redox
properties of the resulting materials [3–9]. At least one liquid crystalline complex has been
reported in the literature for most metals. However, issues often encountered with these
complexes include those relating to the high transition temperatures (usually >100 ◦C) and
the low thermal stability associated with metallomesogens at elevated temperatures, which
are major drawbacks that hinder the study of the physical properties of these materials. The
performance parameters in electro-optical applications should be enhanced by lumines-
cent liquid crystals, which offer anisotropic long-range order and consequently polarized
emission [10,11]. Therefore, the preceding challenges make it difficult to observe light
emission (luminescence) at elevated temperatures due to strong tendencies of the excited
states to undergo deactivation through non-radiative transitions. Therefore, luminescence
studies on metallomesogens in many cases were performed with samples in the solid state
or dissolved in organic solvents [12].

Copper(I) complexes have not been studied to a great extent as luminescent materials
in the liquid crystalline state, but they do possess luminescence properties with great
potentials [13–22]. Copper, which is somewhat abundant and affordable, is a suitable
alternative to noble metal complexes [23,24]. The ratio of triplet to singlet excitons is 3:1;
consequently, for luminescent materials to be used in OLEDs, they should essentially be
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able to harvest all the excitons. Because copper(I) complexes exhibit various metal-to-ligand
charge-transfer (MLCT) behaviors, they can induce spin orbital coupling of the triplet and
singlet states, leading to small energy separations between the energy levels [25]. This
allows for reverse intersystem crossing (RISC), i.e., singlet harvesting, resulting in thermally
activated delayed fluorescence (TADF) [26]. Therefore, liquid crystals based on copper(I)
complexes have considerable promise for producing effective luminescent materials for a
wide range of optical or electro-optical applications due to the large diversity of possible
structures, including mononuclear or polynuclear complexes, and the great potential of
emission behavior. In addition, the range of coordination geometries (such as linear, plan-
trigonal, or tetrahedral) combined with the ligands’ structural design provide a significant
benefit for controlling the LC properties, including their enhanced thermal stability and
mesophase type related to both calamitic and discotic materials.

A number of reviews have provided an overview of the luminescent properties of
copper(I) complexes and their use in various applications [27–31]; however, a systematic
review specific to copper (I) metallomesogens has not been reported. Liquid crystalline
materials obtained from metal complexes of copper(I) exist in a variety of forms and struc-
tural geometries. These complexes have been designed using a wide variety of ligands from
various groups, including azamacrocycles, alkythiolates, ethers, isocyanides, phenanthrolines,
Schiff bases, pyrazolates, phosphines, biquinolines, and benzoylthioureas. In this paper, we
review studies relevant to our interest in research on liquid crystalline materials in the form of
copper(I) complexes from 1994 to the present. Furthermore, the known luminescent properties
of these copper(I) complexes in their mesophase are highlighted.

2. Copper(I) Metallomesogens with Sulfur-Containing Ligands

A series of cationic macrocyclic copper(I) complexes based on non-mesogenic
bis[4-(n-alkyloxy) benzamide derivatives of 1,10-diaza-4,7,13,16-tetrathiacyclooctadecane
was reported in 1994 by Ghedini et al. [32]. The studied complexes had transition temper-
atures from the solid to liquid crystalline states ranging from 93 to 123 ◦C. Complex 1e
(Figure 1) demonstrated the clearest mesomorphism among the series, with sufficient ther-
mal stability, so the research group focused their X-ray analysis on it, and the study revealed
an X-ray diffraction pattern consistent with a disordered layered structure associated with
a smectic phase of A or C type.
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Alkyl thiolates (R-SH) are strong ligands that can bind to metals via the donor S atom
to obtain metal thiolates. In 1999, Espinet et al. [33] reported the preparation of a series of
copper(I) thiolates, [CuSCnH2n+1], where n = 4, 6, 8, 10, 12, 14, 16, and 18. X-ray diffraction
analysis of the polycrystalline sample revealed a layered structure in the solid state, contrary
to previously reported work by Dance et al. (1991) [34]. However, the authors suggested
that the discrepancies might have been due to the methodology used, indicating that the
preparative method of the complex influences its stability towards oxidation. The textures of
the complexes show a columnar mesophase based on stacking of cyclic [Cu4(µ2-SCnH2n+1)4]
aggregates, with transition temperatures ranging from 56 to 210 ◦C.

A new class of copper(I) metallomesogens based on copper(I) halide complexes with
thiourea-based ligands with long-chain alkoxy groups and a perfluorooctyl group were
reported in 2018 by Ilis and Cîrcu [35] (Figure 2). They found no liquid crystalline behavior
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for the ligand but observed a hexagonal columnar phase for both complexes 2a and 2b at
high temperatures above 100 ◦C via a combined study of POM, DSC, and XRD, while the
thermal stability studied by TGA indicated a higher stability (180 ◦C) for the corresponding
copper(I) complexes compared to that of the BTU (160 ◦C) ligand.
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Figure 2. Copper(I) complexes with benzoylthiourea ligands. Transition temperatures are in ◦C. Inset:
POM image of the Colh phase of 2a at 85 ◦C [35].

3. Copper(I) Metallomesogens with N-Donor Ligands

Many copper(I) complexes with N-donor ligands integrating pyrazole, 2,2’-bypiridine,
1,10-phenantroline moieties, or Schiff bases have been described to date. Copper(I) metal-
lomesogens with three-coordinate geometry were first reported by Lin et al. in 2001 [36].
The complexes were derived from bis{2-[3’-(3”,4”-dialkoxyphenyl)-5’-methyl-1’-pyrazolyl]ethyl}
ethers and from bis{2-[3’-(3”,4’,5’-trialkoxyphenyl)-5’-methyl-1’-pyrazolyl]ethyl} ethers.
These novel complexes were obtained by complexing the ethers with [Cu(MeCN)4]BF4
(Figure 3). The reported copper(I) complexes with four or six alkoxy chains exhibited liquid
crystalline behavior and are characteristic of columnar discotics. DSC analysis results indi-
cated a higher enthalpy for the melting transitions at lower temperatures and a relatively
lower enthalpy for the isotropization transitions at higher temperatures. The attachment
of an additional alkoxy chain on the terminal benzene ring resulted in lower transition
temperatures, while preserving the mesophase type (Colhd).
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Schiff bases are a diverse group of compounds formed by the nucleophilic substitution
reaction of an aldehyde or ketone with an amine. These compounds are characterized by the
presence of a double bond linking carbon and nitrogen atoms, the functionalities of which are
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generated in many ways to combine a variety of alkyl or aryl substituents useful for the design
of liquid crystalline materials, either organic or metallomesogens [37–42]. The lone pair of elec-
trons on nitrogen provides a basis for making complexes with metals, including copper(I).
Diverse liquid crystalline copper(I) complexes have been prepared with these ligands; the
resulting complexes are indicated in Figure 4. Dinuclear copper(I) complexes (4a and 4b)
with Schiff bases based on the α,α’-imino-substituted 2,2’-bipyridine unit were developed
by El-ghayoury et al. [43]. The two ligands adopt a rather unusual coordination mode in
which the central unit bridges the two copper(I) centers. The tetrahedral surrounding is
completed by the coordination of the two imino groups of each Schiff base ligand with
the iminopyridine fragment chelated in a cis fashion to provide a symmetric structure.
Complex 4a is non-mesomorphic, owing to the unsuitable balance between the aliphatic
chains and the aromatic core. The optical textures observed upon slow cooling of the
isotropic melt of complex 4b clearly indicate the existence of a viscous columnar phase at
temperatures as low as 25 ◦C.
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Although non-mesogenic, upon complexation with copper(I), free ligands L5 and L6

showed mesogenic character, as described by the DSC and POM experiments. The results
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indicated that complex 6 showed high stability after several heating cycles relative to com-
plex 5, which was thought to be due to the lack of substituents at position 6. In addition,
the optical textures observed for complex 6 during slow cooling from the isotropic melt
are typical of a columnar phase (with pseudo-focal-conic textures [45]. Similarly, Douce
and coworkers prepared new complexes (7a–c) by modifying the organic ligands to enable
scrutiny of the nature of the packing in the liquid crystalline phase. In their work, the au-
thors reported the preparation of new ligands with various chain lengths (n = 8, 12, and 16)
bearing an additional methyl fragment in the α-position of the pyridine ring in order
to protect the copper complex (5) against oxidation and decomplexation. The prepared
complexes displayed hexagonal columnar mesophases with a transition temperature range
of 30 to 56 ◦C [44].

A study by Ziessel et al. (2004) [46] presented mesomorphic materials based on
copper(I) complexes with phenanthroline-based ligands (Figure 5). The authors aimed to
engineer a structural framework with additional supramolecular binding factors (hydrogen
bonding) so as to stabilize the mesophase both as a free ligand and within the complex. The
thermotropic properties of the ligands and complexes of the phenanthroline derivatives
were investigated via a combination of POM, DSC, and XRD methods. The ligand used
for complexes 8b and 8c showed distinct cubic and disordered lamellar mesophases at
different temperature regions in the reported XRD measurements. Neither the ligand with
the shortest chain (n = 8) nor the corresponding copper(I) complex (8a) displayed any
mesomorphic behavior in the investigated temperature region, but as expected, the related
copper(I) complexes with longer chains (8b (n = 12) and 8c (n = 16)) showed mesomorphic
behaviors, displaying mesophases characteristic of an oblique columnar phase. In effect, the
complexation of the metal center with the organic ligand resulted in a distinct change in the
mesomorphic properties. It was observed that the mesophase stability was enhanced upon
coordination with copper(I), as reflected by the large increase in the clearing temperature by
nearly 50 ◦C, whereas the melting temperature remained almost the same for the ligands,
as well as for the corresponding complexes.
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4. Copper(I) Metallomesogens with Isocyanide Ligands

Isocyanides are a class of organic compounds of the R-NC type, where R is a combina-
tion of groups obtained by the removal of a hydrogen atom from an organic compound
and the carbon therein is triply bonded to nitrogen, the site of which is also capable of
coordinating with metals. The isocyanides are isomers of the nitriles and are largely used
in coordination chemistry [47]. These kinds of ligands have been used to design a large
variety of transition metal complexes [48] and copper(I); metallomesogens are also well
known for this. In general, the reaction of isocyanides with CuX (X is halide) resulted in
a mononuclear complex; on the contrary, reaction of two equivalents of the isocyanide
derivatives with CuX yielded binuclear copper(I) complexes, as depicted in Figure 6.
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L14

14a (X = Cl):  Cr 106 Cr' 167 Iso
14b (X = Br):  Cr 165 Iso
14c (X = I):     Cr 168 Iso

OCnH2n+1

OCnH2n+1

OCnH2n+1

16a (X = Cl; n = 4):   Cr 77 (Colh 67) Iso
16b (X = Cl; n = 6):   Cr 29 Colh 84 Iso
16c (X = Cl; n = 8):   Colr 56 Colh 78 Iso
16d (X = Cl; n = 10): Colh 77 Iso
16e (X = Cl; n = 12): Cr 14 Colh 73 Iso
16f  (X = Br; n = 4):   Cr 79 (Colh 70) Iso
16g (X = Br; n = 12): Cr 10 Cr' 27 Colh 75 Iso
16h (X = I; n = 4):     Cr 88 (Colh 52) Iso
16I  (X = I; n = 12):    Cr 14 Colh 82 Iso

RNC-CuX

[CuXL9]

[CuXL10]

[CuXL11]
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[CuXL13]
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SmC mesophases, while complexes 10b–e and 11a–d were found to display only SmA 
phases [52]. Further study indicated that the range of the SmC phase increases and that of 
the SmA phase decreases as the length of the chain increases. All the copper isocyanides 
reported in Figure 6 are mesogenic, except complexes 10a, 12a, 12b, 13a, 14a–c, 20, 17a,b, 
and 20b. The isocyanide ligands L12 and L13, with a single aromatic ring, did not appear to 
be mesogenic, but upon complexation with copper(I), all the complexes (except 13a with 
the shortest chain (n = 4)) showed liquid crystalline behavior.  

After the successful preparation of stable linear copper(I) liquid crystals (complexes 
9–13) with isocyanide ligands reported in [52], in 2002, the same research group subse-
quently reported another series of binuclear copper(I) complexes (14–16) with mesogenic 
properties. The free isocyanide ligands were reported as promesogenic, with nematic 
and/or smectic A phases. Copper complexes 14a–c lack mesogenic properties, whereas, 
copper complexes 15a–i were found to be mesogenic. On the other hand, although the 
uncomplexed isocyanide ligands (L13) are not liquid crystals, all their dinuclear copper 
isocyanide complexes (16a–i) had liquid crystalline properties, displaying columnar 
mesophases [53]. These liquid crystalline binuclear copper(I) complexes with isocyanide 

Figure 6. Mononuclear and dinuclear copper(I) isocyanide complexes. Transition temperatures
are in ◦C [49–53].

The first set of liquid crystals based on copper(I) isocyanide complexes was reported
in 2001 by Benouazzane et al. [52]. Some of the isocyanide ligands (L9–11) were reported
to display nematic and/or smectic A phases. The copper complexes (9a–e) showed SmA
and SmC mesophases, while complexes 10b–e and 11a–d were found to display only SmA
phases [52]. Further study indicated that the range of the SmC phase increases and that of
the SmA phase decreases as the length of the chain increases. All the copper isocyanides
reported in Figure 6 are mesogenic, except complexes 10a, 12a, 12b, 13a, 14a–c, 20, 17a,b,
and 20b. The isocyanide ligands L12 and L13, with a single aromatic ring, did not appear to
be mesogenic, but upon complexation with copper(I), all the complexes (except 13a with
the shortest chain (n = 4)) showed liquid crystalline behavior.

After the successful preparation of stable linear copper(I) liquid crystals (complexes 9–13)
with isocyanide ligands reported in [52], in 2002, the same research group subsequently reported
another series of binuclear copper(I) complexes (14–16) with mesogenic properties. The free
isocyanide ligands were reported as promesogenic, with nematic and/or smectic A phases.
Copper complexes 14a–c lack mesogenic properties, whereas, copper complexes 15a–i were
found to be mesogenic. On the other hand, although the uncomplexed isocyanide ligands
(L13) are not liquid crystals, all their dinuclear copper isocyanide complexes (16a–i) had
liquid crystalline properties, displaying columnar mesophases [53]. These liquid crystalline
binuclear copper(I) complexes with isocyanide ligands reported by Benouazzane et al. were
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the first examples of liquid crystals with a core formed by two tetrahedral structures sharing
an edge. Dendrimers based on isocyanides were first reported by Coco et al. (2008) [51]. The
authors found that whereas all the free, highly branched isocyanide ligands (L17 and L18)
and the metal complexes (17a and 17b) were not liquid crystals, complexes 18a and 18b
showed a cubic mesophase.

Chico et al. [50] reported two isocyano-triphenylene copper(I) complexes (19a and 19b),
both of which displayed good thermal stability in the range of study. The free isocyanide
ligand appeared not to be mesomorphic, as observed by POM. The identification of the
columnar mesophase for 19a and 19b was achieved by small-angle X-ray scattering on
powder samples, which was measured as a function of temperature, consistent with the
DSC and POM experiments. For these complexes, the columnar mesophases were stable in
the temperature range of 46 to 79 ◦C.

The effect of incorporating a fluorinated chain in an isocyanide ligand with respect
to its mesomorphic behavior when compared to its hydrocarbon derivative was studied
by Dembinski and coworkers [49]. Previously, several studies [54–56] had investigated
the fluorophobic effect of single aromatic ring-containing organic molecules containing a
perfluoroalkyl chain; as such, a study was carried out on fluorinated analogs of hydrocarbon
complexes in which mesomorphic behaviors had not been previously observed. The semi-
perfluorinated isocyanide ligand (L20), in contrast to its alkyl analog, exhibited liquid
crystalline properties, showing a smectic A mesophase upon both heating and cooling. This
was attributed to the fluorophobic effect, allowing for the mesogenicity of the isocyanide
compound with a single benzene unit. The corresponding mononuclear copper complex
retained the mesophase but with a high crystalline–mesophase transition temperature
(152 ◦C), while the dinuclear analog did not show liquid crystalline properties [49].

5. Luminescent Metallomesogens Based on Copper(I) Complexes

A major drawback in the study of the physical properties of metallomesogens is as-
sociated with issues relating to their high transition temperature and stability at elevated
temperatures. It becomes increasingly difficult to study the emissions at such high tem-
peratures due to strong tendencies of the excited electrons to undergo deactivation via
non-radiative transitions [12]. Few attempts have been made in this regard, and interesting
findings have been reported. The luminescence data of the copper(I) complexes discussed
in this section are summarized in Table 1.

Table 1. Summary of luminescence data for copper(I) metallomesogens reported in [57–60].

Complex Phase (T/◦C) λmax
em [λexc] (nm) t (µs) QY (%)

21a
Iso (80) 650 [280] - -

Cr (20) [na] 640 [280] 11 -
Cr (20) [a] 615 [280] 9 -

21b
Iso (80) 650 [280] - -

Cr (20) [na] 650 [280] 15 -
Cr (20) [a] 610 [280] 14 -

22
Cr (20) [na] 650 [280] 7 -
Cr (20) [a] 640 [280] - -

23a Colh (25) 661 [290] 28 42

23b
Cr (25) 664 [290] 26 14

Colh (50) 664 [290] 22 -

23c Cr (25) 663 [290] 21 24

24 SmA (25) 404, 519 [280], 519 [400] - -
g (-196) 401, 487, 522 [280], 490, 522 [400] - 9

24 [pg] SmA (25) 385, 549 [280], 536 [400] - -
g (-196) 397, 494, 529 [280], 496, 529 [400] - 1
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Table 1. Cont.

Complex Phase (T/◦C) λmax
em [λexc] (nm) t (µs) QY (%)

25a

Cr (25) 578 [570] - 2.4
Lcolg (50) - - 0.7
Lcol (80) - - 0.2

Lcol (100) - - 0.06

25b

Cr (25) 578 [570] - 2.2
Lcolg (50) - - 0.5
Lcol (80) - - 0.2

Lcol (100) - - 0.04

26a

Cr (25) 560 [570] - 1.5
Colh (50) - - 0.4
Colh (80) - - 0.1
Iso (100) - - <0.01

26b

Cr (25) 560 [570] - 1.1
Colh (50) - - 0.4
Colh (80) - - 0.2
Iso (100) - - <0.01

t = averaged lifetime; QY = absolute quantum yield; λem = wavelength of maximum emission; λexc = excitation
wavelength; na = non-aged; a = aged; Pg = ground sample; SmA = smectic A phase; g = glassy state; Cr = crystalline
phase; Iso = isotropic liquid; Lcol = lamello-columnar phase; Colh = columnar hexagonal phase; Lcolg = frozen
lamello-columnar phase.

Kishimura et al. were the first to describe the emission properties of copper(I) com-
plexes in their liquid crystalline phase [57] in 2005. They reported a number of dendritic
copper(I) pyrazolate complexes 21 and 22 (Figure 7), which were used to produce some
thermally rewritable phosphorescent papers useful for security purposes.

The luminescence investigation of complexes from the pyrazolate ligands L21 [57]
revealed dichroism at room temperature for the solid form of complex 21a. Cooling of the
hot melt (which emitted a red luminescence at λmax650 nm) naturally or by slow cooling
led to blue-shift emission 640 and 610 nm. In essence, the red and yellow luminescence
observed for 21a could be thermally changed from one form to the other, depending on the
manner and rate of cooling, which was also found to be the case for its liquid crystalline
properties. Both the analyze complex (21a), both in aged and non-aged form, appeared
to be phosphorescent, which is thought to a result of Cu(I) to Cu(I) interactions [57]. The
photoluminescent data are summarized in Table 1.

Furthermore, XRD analysis of the aged sample of complex 21a showed diffraction
patterns synonymous with a one-dimensional columnar phase, and the same complex (21a)
viewed under a polarized optical microscope showed a fan-shaped texture characteristic
of discotic liquid crystals; accordingly, it was concluded that the aged complex (21a) was
composed of long-range discotic columnar assembly. The XRD pattern of the non-aged
complex after natural cooling also indicated the presence of a columnar structure. DSC
measurements carried out on the aged and non-aged complex (21a) revealed patterns
based on which it was concluded that the discotic columnar assembly, which is believed to
involve metallophilic interactions of Cu(I) to Cu(I) units with long alkyl chains, is formed
in the aging process at about 40–50 ◦C. The stability of the dichroic luminescence was
therefore found to be dependent on the pyrazolate ligand structure. Complex 21b exhibited
similar phosphorescent properties as complex 21b upon rapid and slow cooling of its
hot melt; however, the red luminescence turned yellow spontaneously, even at very low
temperatures. For complex 22 (Figure 7), which has more dendritic units than the other
studied complexes, did not show a clear luminescence dichroism, and aging of the complex
22 by slow cooling of its hot melt resulted in only a 10 nm red shift of the luminescence [57].

Building on the aforementioned work by Kishimura and coworkers, Gimenez et al.
(2020) [58] recently reported a series of liquid crystals achieved with cyclic trinuclear copper(I)
complexes (23a and 23b) prepared using 3,5-dimethyl-4-(trialkoxyphenyl) pyrazolate ligands
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(Figure 7). The compounds displayed well-organized hexagonal columnar mesophases, which
were found to be stable at room temperature or near room temperature (Figure 8).

Both complexes 23a and 23b were reported to have orange–red-colored emissions at
room temperature, and the photoluminescence exhibited a broad band centered around
661–664 nm (Figure 9). A landmark reported in this study [58] is the high quantum yield
(QY) value of 42% measured in the liquid crystalline state, which is the highest recorded to
date for any copper(I) metallomesogen. The QY obtained for 23a in its liquid crystalline
state was higher than that obtained in the crystalline states of complexes 23b and 23c. Thus,
the work carried out by Giminez et al. [58] showed that low-temperature phosphorescent
metallomesogens can be obtained from the more affordable and abundant copper metal.

Camerel et al. (2016) [59] reported a new class of copper(I) liquid crystals with a
cubane core and based on phosphine ligands functionalized with promesogenic gallate-
based moieties bearing either long alkyl chains of C8, C12, and C16 or cyanobiphenyl
(CBP) fragments (Figure 10). Copper(I) cubanes are known for their ability to display both
luminescence mechanochromism and thermochromism behavior [61–64].
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Figure 8. (a) Microphotograph of the region between crossed polarizers observed for the texture
of the Colh phase of 23a upon cooling of the isotropic liquid at 126 ◦C. (b) Microphotograph of the
region between crossed polarizers observed for the texture of the Colh phase of 23b upon cooling of
the isotropic liquid at 98 ◦C. (c) DSC thermogram of 23a. (d) XRD patterns of the Colh phase of 23a.
The arrow indicates the halo corresponding to the stacking distance. (e) Self-assembly in the hexagonal
columnar mesophase. (Reproduced from ref. [58] with permission from the Royal Society of Chemistry).
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thermochromism for all the studied compounds; however, complex 24 displayed an un-
classical behavior, which was attributed to the intrinsic luminescence properties of the 
cyanobiphenyl moiety itself, with a dual-emissive system that presented interesting 
emission properties. In addition to its liquid crystalline properties, compound 24 dis-
played luminescence mechanochromism with a modification of the emission wavelength 
in response to grinding (Figure 11). 

Figure 9. Photoluminescence spectrum in the columnar mesophase for 23a at 25 ◦C (excitation
wavelength, 290 nm) and emission of the film observed under irradiation with a 254 nm handheld
lamp (reproduced from ref. [58] with permission from the Royal Society of Chemistry).
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Figure 10. General structure of the functionalized [Cu4I4(L24)4] copper iodide clusters with phosphine
ligands [59].

This study is an inventive example of integrating luminescence characteristics of copper
iodide clusters [Cu4I4(L24)4] with the flexible self-assembly of liquid crystals. Only the
compound functionalized with a cyanobiphenyl group (CBP), i.e., 24, showed liquid crystalline
behavior, displaying an SmA mesophase from room temperature to about 100 ◦C.

All the complexes reported in the work by Camerel et al. [59] revealed luminescence
thermochromism for all the studied compounds; however, complex 24 displayed an un-
classical behavior, which was attributed to the intrinsic luminescence properties of the
cyanobiphenyl moiety itself, with a dual-emissive system that presented interesting emis-
sion properties. In addition to its liquid crystalline properties, compound 24 displayed
luminescence mechanochromism with a modification of the emission wavelength in re-
sponse to grinding (Figure 11).
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6. Conclusions 
This review provides an overview of the different strategies imagined by chemists to 

control the LC properties of copper(I) complexes, focusing on their luminescent proper-
ties. Examples of copper(I) metallomesogens based on isocyanide ligands are, by far, the 
most prevalent. By utilizing suitable mesogenic groups, their LC characteristics can be 
simply modified. While a few other isocyanides produced hexagonal and rectangular 
columnar phases, as well as a cubic phase for the dendritic isocyanide supermolecules, 
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2-iminopyridin-, and picoline-substituted imino ligands and those of alkyl thiolates all 
displayed varying columnar mesophases with different transition temperature ranges. 

Figure 11. Photos of 24 under 365 nm (UV lamp) before and after grinding at 298 and 77 K. Reprinted
(adapted) with permission from Chem. Mater. 2016, 28, 22, 8190–8200 (ref. [59]). Copyright 2016
American Chemical Society.

Cretu et al. (2018) [60] reported a new class of Cu(I) coordination complexes (25a,
25b, 26a, and 26b) with 4,4’-bisubstituted-2,2’-biquinolines as depicted in Figure 12, which
showed low-temperature lamello-columnar and columnar hexagonal thermotropic liquid
crystalline phases. The highest deduction from the luminescence study is the presence
of a medium–low-intensity band with a series of shoulders at 578 nm for 25a and 25b
and at 560 nm for 26a and 26b, which is believed to be due to metal-to-ligand charge-
transfer (MLCT) electronic transitions. When the solid samples were heated, they moved
towards the liquid crystalline phases and retained the luminescence displayed in the solid state;
however, with increased temperature, the intensity of the luminescence band decreased, and
at temperatures over 120 ◦C, luminescence was completely quenched, although reversed with
subsequent cooling of the samples. This behavior is attributed to the gain of the non-radiative
kinetic constants when vibrational modes were enhanced by heating the samples [60].
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tropic liquid crystalline phases. The highest deduction from the luminescence study is 
the presence of a medium–low-intensity band with a series of shoulders at 578 nm for 25a 
and 25b and at 560 nm for 26a and 26b, which is believed to be due to metal-to-ligand 
charge-transfer (MLCT) electronic transitions. When the solid samples were heated, they 
moved towards the liquid crystalline phases and retained the luminescence displayed in 
the solid state; however, with increased temperature, the intensity of the luminescence 
band decreased, and at temperatures over 120 °C, luminescence was completely 
quenched, although reversed with subsequent cooling of the samples. This behavior is 
attributed to the gain of the non-radiative kinetic constants when vibrational modes were 
enhanced by heating the samples [60].  
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most prevalent. By utilizing suitable mesogenic groups, their LC characteristics can be 
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columnar phases, as well as a cubic phase for the dendritic isocyanide supermolecules, 
the bulk of these complexes exhibit calamitic behavior with either SmA or SmC phases. 
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2-iminopyridin-, and picoline-substituted imino ligands and those of alkyl thiolates all 
displayed varying columnar mesophases with different transition temperature ranges. 

Figure 12. Copper(I) complexes with bisubstituted biquinoline ligands [60].

6. Conclusions

This review provides an overview of the different strategies imagined by chemists to
control the LC properties of copper(I) complexes, focusing on their luminescent properties.
Examples of copper(I) metallomesogens based on isocyanide ligands are, by far, the most
prevalent. By utilizing suitable mesogenic groups, their LC characteristics can be simply
modified. While a few other isocyanides produced hexagonal and rectangular columnar
phases, as well as a cubic phase for the dendritic isocyanide supermolecules, the bulk of
these complexes exhibit calamitic behavior with either SmA or SmC phases. The reported
copper(I) complexes of Schiff-base-type ligands of bipyridine imine-, 2-iminopyridin-,
and picoline-substituted imino ligands and those of alkyl thiolates all displayed varying
columnar mesophases with different transition temperature ranges. Both the ether type and
benzoyl thiourea ligands displayed characteristics of a hexagonal columnar mesophase for
the corresponding metallomesogens, while the copper(I) complexes from phenanthroline
ligands had an oblique columnar mesophase. Furthermore, interesting luminescent proper-
ties in liquid crystalline states were observed for copper(I) complexes from ligands with
pyrazolate derivatives, phosphine ligands functionalized with copper iodide, and those of
bisubstituted biquinoline ligands. The complex from the functionalized phosphine ligand
displayed interesting mechanochromic luminescence characteristics. A high quantum yield
of 42% in the liquid crystalline phase of the copper(I) metallomesogens from a pyrazolate
ligand was reported. This work provides a basis for the design and preparation of many
new multifunctional materials based on more copper(I) complexes with liquid crystalline
behavior and improved luminescent properties.
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