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Abstract: Linear and cyclic acenes are polycyclic aromatic hydrocarbons that can be viewed as
building blocks of graphene nanoribbons and carbon nanotubes, respectively. While short linear
acenes demonstrated remarkable efficiency in several optoelectronic applications, the longer members
are unstable and difficult to synthesize as their cyclic counterparts. Recent progress in on-surface
synthesis, a powerful tool to prepare highly reactive species, opens promising perspectives and
motivates the computational investigations of these potentially functional molecules. Owing to their
di- and poly-radical character, low-lying excited states dominated by doubly excited configurations
are expected to become more important for longer members of both linear and cyclic molecules.
In this work, we investigate the lowest-lying La and the doubly excited (DE) state of linear acenes
and cyclacenes, with different computational approaches, to assess the influence of the di-/poly-
radical characters (increasing with the molecular dimensions) on their relative order. We show that
DFT/MRCI calculations correctly reproduce the crossing of the two states for longer linear acenes,
while TDUDFT calculations fail to predict the correct excitation energy trend of the DE state. The
study suggests a similarity in the excited electronic state pattern of long linear and cyclic acenes
leading ultimately to a lowest lying dark DE state for both.

Keywords: linear acenes; cyclacenes; carbon nanobelts; conjugated di-radicals; doubly-excited state;
excited states; TDDFT; DFT/MRCI

1. Introduction

Linear acenes ([n]-acenes, Figure 1a), are polycyclic aromatic hydrocarbons (PAHs)
formed by n linearly fused benzene rings and characterized by exposing two zig-zag
edges. As such, linear acenes can be considered as one-dimensional strips of graphene and
possible building blocks of carbon nanoribbons. Furthermore, oligoacenes are among the
most efficient candidates for high-performance organic field-effect transistors (OFETs) and
numerous optoelectronic applications [1–4].

Due to the topology of their ring fusion, acenes share only one single Clar’s sextet
among all six-membered rings, which implies small energy gaps between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
compared to conjugated hydrocarbons of similar size. A small HOMO-LUMO gap is a
typical feature of di-radical molecules and indeed acenes can be classified as Kekulé-type
di-radicals, but their poly-radical character has also been demonstrated [5–7]. As other
conjugated di-radicals, longer acenes also feature small singlet/triplet energy separation
and characteristic absorption in the NIR region [8]. The increasing open-shell character,
with the extension of the conjugation length explains the reactivity of longer acenes and
their difficult synthesis. Nonetheless, several experimental studies have reported successful
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preparation of longer acenes in recent years, under matrix-isolation conditions or taking
advantage of on-surface synthesis [4,8–22].
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Figure 1. Chemical structure of: (a) [n]-acenes; (b) [n]-CC carbon nanobelts. In both cases, n is the 
number of fused rings. 

In this context, the objective of this study is to investigate the low-lying excited states 
of [n]-acenes and [n]-CCs, focusing on the relative energy order of the 𝐿௔ and DE states. 
To this end, low-lying excited states of [n]-acenes with n = 2–9 and [n]-CCs with n = 6–12 
are investigated with several computational approaches, including a flavor of DFT-based 
approaches encompassing TDDFT, TDUDFT, and spin-flip TDDFT (SF-TDDFT) [75,76], 
along with DFT/MRCI [48,49] and second-order perturbation theory NEVPT2 [77]. The 
objective is to assess the quality of such different excited state approaches against the ex-
perimental data available for linear acenes and to extrapolate the results to the so-far un-
available data for [n]-CC carbon nanobelts. 

2. Computational Methods 
The equilibrium structures of linear acenes and cyclacenes were determined with 

DFT calculations employing the B3LYP functional and the 6-31G* basis set. The geometry 
optimization was first carried out with the restricted approach to determine a closed-shell 
(CS) equilibrium structure. For most of the systems investigated, a more stable open-shell 
broken-symmetry (BS) solution was found at the CS geometry, and therefore the equilib-
rium structure corresponding to the BS solution was readily determined. The overall CS-
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the CS structure computed with restricted DFT and the energy of the BS structure com-
puted with UDFT. At the same time, the stabilization energy only due to wavefunction 
relaxation at the same CS geometry was also determined and compared with the overall 
stabilization. Energies and shapes of frontier molecular orbitals (FMOs), both at CS and 
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The excitation energies of low-lying excited states were determined with several 
DFT-based computational schemes, encompassing standard TDDFT based on a CS refer-
ence configuration (only to predict the 𝐿௔ state) and other flavors of the TD approach. 

In recent works, we have shown that, for systems with well-localized BS frontier 
MOs, TDUDFT calculations can be used to predict the excitation energy of the DE state as 
well as the 𝐿௔ state since both excited states are described in terms of singly excited con-
figurations at the TDUDFT level [36,38,39]. Double excitations can be recovered from 
TDDFT calculations also with the SF scheme [75,76]. Spin-flipping excitations enable SF-
TDDFT to treat ground- and excited-state electron correlation on the same footing, while 
also incorporating some doubly excited configurations that are important for di-radicals. 
Accordingly, these two approaches were employed to investigate the excitation energy of 
the low lying DE state of the investigated systems. 

Geometry optimization, TDDFT, and TDUDFT calculations were carried out with the 
Gaussian16 suite of programs [78] while SF-TDDFT calculations were carried out in the 
collinear approximation as implemented in the GAMESS 2016 package [79]. 
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number of fused rings.

While DFT calculations carried out at restricted level indicated a triplet ground state
for longer acenes [23], a singlet ground state with open-shell character was predicted
by unrestricted DFT calculations [24,25]. Notably, the singlet ground state for long linear
acenes is also supported by thermally assisted occupation (TAO) DFT [26–28] and by higher
levels of theory, including both static and dynamic correlation effects [5,29,30].

Acenes possess very characteristic electronic absorption spectra dominated by three
band systems known as the Bb, Lb, and La, according to Platt’s notation [31]. These
lowest lying excited states of acenes [31–33] are determined by excitations within an orbital
space that includes two occupied (HOMO and HOMO-1) and two unoccupied (LUMO
and LUMO+1) molecular orbitals (MOs). Specifically, Bb and Lb states are dominated by
HOMO-1→LUMO and HOMO→LUMO+1 excitations, while the La is dominated by the
HOMO→LUMO excitation and appears at lower energies than the Lb state except for
2-acene. However, due to their di-radical character, the simple two-electron in two-orbital
(2e–2o) model [34] also predicts a low-lying, doubly excited (DE) dark state dominated
by the HOMO,HOMO→LUMO,LUMO excitation, which has been identified for several
conjugated di-radicaloids [35–39] and for heptacene [18].

The Lb and La states display a different nature (covalent and ionic) challenging time
dependent DFT (TDDFT) calculations, whose quality strongly depends on the type of func-
tional [40–44]. Because double excitations contribute to these low-lying excited states [33],
a balanced description was reported by employing double hybrid functionals [45] and care-
fully assessed [46] for a set of non-empirical double-hybrid density functionals developed in
recent years [47]. Low-lying excited states were also investigated at other levels of theory, in-
cluding DFT combined with multi-reference configuration interaction (DFT/MRCI) [48,49],
particle–particle random-phase approximation (pp-RPA) [30], complete active space self-
consistent field (CASSCF) supplemented with multi-reference second-order perturbation
theory (CASPT2) [50] or multi-configuration-coupled electron pair approximation (MC-
CEPA) [18]. Despite the impressive amount of computational investigations, the DE state
of linear acenes has received comparably less attention [18,30,48].

[n]-cyclacenes, ([n]-CCs) (Figure 1b) are the cyclic analogues of acenes formed by the
fusion of n benzene rings. Considered as the narrowest zig-zag carbon nanotubes, cy-
clacenes are expected to be highly reactive, not only due to the strain inherent in the forma-
tion of carbon nanobelts but also based on their predicted open-shell character [6,23,51–53].
Several attempts to synthesize cyclacenes have been reported [54–59] and there have been
recent breakthroughs in the field [57,60–62]. In addition to conventional chemistry, on-
surface synthesis, which has emerged as a powerful tool to prepare highly reactive species,
opens promising perspectives [51,63].
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Their open-shell electronic structure, di-radical character, singlet/triplet gap, and mag-
netic interactions have been determined at the DFT level and with several wavefunction-
based multi-reference approaches [6,23,28,46,52,64–69]. Due to their di- and poly-radical
character, excited states dominated by doubly excited configurations are expected to appear
among the lowest-lying as for [n]-acenes. Notably, the energy location of the DE state
in long linear acenes and [n]-CCs may influence the outcome of photoinduced events,
including singlet fission processes [70–74]. While experimental information on [n]-CCs is
not available, for linear acenes, a crossing between the DE and the La state is documented
to occur between 6-acene and 7-acene [18].

In this context, the objective of this study is to investigate the low-lying excited states
of [n]-acenes and [n]-CCs, focusing on the relative energy order of the La and DE states.
To this end, low-lying excited states of [n]-acenes with n = 2–9 and [n]-CCs with n = 6–12
are investigated with several computational approaches, including a flavor of DFT-based
approaches encompassing TDDFT, TDUDFT, and spin-flip TDDFT (SF-TDDFT) [75,76],
along with DFT/MRCI [48,49] and second-order perturbation theory NEVPT2 [77]. The
objective is to assess the quality of such different excited state approaches against the
experimental data available for linear acenes and to extrapolate the results to the so-far
unavailable data for [n]-CC carbon nanobelts.

2. Computational Methods

The equilibrium structures of linear acenes and cyclacenes were determined with
DFT calculations employing the B3LYP functional and the 6-31G* basis set. The geometry
optimization was first carried out with the restricted approach to determine a closed-shell
(CS) equilibrium structure. For most of the systems investigated, a more stable open-
shell broken-symmetry (BS) solution was found at the CS geometry, and therefore the
equilibrium structure corresponding to the BS solution was readily determined. The overall
CS-BS stability (∆E(CS-BS)) was determined as the energy difference between the energy of
the CS structure computed with restricted DFT and the energy of the BS structure computed
with UDFT. At the same time, the stabilization energy only due to wavefunction relaxation
at the same CS geometry was also determined and compared with the overall stabilization.
Energies and shapes of frontier molecular orbitals (FMOs), both at CS and BS geometries,
are collected in Tables S1–S4 and Figures S1–S4.

The excitation energies of low-lying excited states were determined with several DFT-
based computational schemes, encompassing standard TDDFT based on a CS reference
configuration (only to predict the La state) and other flavors of the TD approach.

In recent works, we have shown that, for systems with well-localized BS frontier
MOs, TDUDFT calculations can be used to predict the excitation energy of the DE state
as well as the La state since both excited states are described in terms of singly excited
configurations at the TDUDFT level [36,38,39]. Double excitations can be recovered from
TDDFT calculations also with the SF scheme [75,76]. Spin-flipping excitations enable SF-
TDDFT to treat ground- and excited-state electron correlation on the same footing, while
also incorporating some doubly excited configurations that are important for di-radicals.
Accordingly, these two approaches were employed to investigate the excitation energy of
the low lying DE state of the investigated systems.

Geometry optimization, TDDFT, and TDUDFT calculations were carried out with the
Gaussian16 suite of programs [78] while SF-TDDFT calculations were carried out in the
collinear approximation as implemented in the GAMESS 2016 package [79].

The La and DE excitation energies were also estimated for selected molecular systems,
with DFT/MRCI and CASSCF/NEVPT2 calculations. The DFT/MRCI method combines
DFT (which gives information about dynamic correlation) and truncated MRCI expansions
(to take the static correlation into account). In the original work [80] different parameter
sets were employed for singlet and triplet state calculations. More recently, a spin-invariant
parameterization has been introduced [81] which incorporates less empiricism compared
to the original formulation while preserving its computational efficiency. We have carried
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out DFT/MRCI calculations using the DFT/MRCI software [82] with the def2-SVP basis
set, and both sets of parameters are hereafter labeled as original [80] and R2018 [81].

Concerning CASSCF calculations, these were carried out with the state averaged
approach, using the same weight for the lowest singlet states. The active spaces considered
ranged between 8 electrons in 8 π orbitals (8,8) up to 14 electrons in 14 orbitals (14,14) (see
the Supplementary Materials for further details) and were followed by second-order pertur-
bation theory NEVPT2 [77] calculations carried out with the strongly correlated approach
to include dynamical electron correlation. All the CASSCF and NEVPT2 calculations were
performed using the ORCA 5.0.1 program [83] using the def2-SVP basis set. The resolution
of identity approximation and the related basis sets for both Coulomb and HF exchange
integrals were used (RI-JK)[84].

Two descriptors of the di-radical/multi-radical character were employed. The first
is the yi parameter which, in the spin-unrestricted single-determinant formalism can be
determined in the spin-projection scheme as [85,86]:

yPUnrestricted
i = 1− 2Ti

1 + T2
i

(1)

with Ti calculated as:

Ti =
nHONO−i − nLUNO+i

2
(2)

and n is the occupation number of the frontier natural orbitals (NO). The di-radical character
corresponds to i = 0 while the tetraradical character is obtained for i = 1. NO occupation
numbers were determined at the UHF level and UB3LYP level, namely employing the
same functional used for the geometry optimization. According to the use of the spin-
projection scheme, the level of theory employed to calculate the yi parameters will be
hereafter indicated with the labels PUHF and PUB3LYP.

The second parameter considered is based on finite temperature DFT (FT-DFT) and is
the NFOD value, which is the integral of the fractional orbital density (FOD) ρFOD(r), over
all space.

NFOD =
∫

ρFOD(r)dr (3)

The ρFOD(r) is defined as [87,88]:

ρFOD(r) =
N

∑
i
(δ1 − δ2 fi)|ϕi(r)|2 (4)

where δ1 and δ2 are two constants set such that only fractionally occupied orbitals are taken
into account; ϕi are molecular spin orbitals; and fi are the fractional orbital occupancies
(0 ≤ fi ≤ 1) determined by the Fermi–Dirac distribution. In other words, the so-defined
FOD yields, for each point in real space, only the contribution of the ‘hot’ or strongly
correlated electrons and is therefore an analysis tool of static correlation. The y0 and NFOD
parameters were computed at the CS and BS geometries for the entire set of di-radicals
shown in Figure 1. The NFOD parameter was computed with the ORCA 5.0.1 program [83]
with the default setting (TPSS/def2-TZVP level with Tel = 5000 K).

3. Results
3.1. Stabilization of Open-Shell Structures

Because geometry optimizations at the same level of theory were reported in previous
works for linear acenes [24] and [n]-CCs [52,64,66], we do not discuss geometrical detail that
can be found elsewhere. However, it is interesting to consider the stabilization associated
with the open-shell character that develops for linear acenes only for n ≥ 6 and for all
the [n]-CCs investigated. In each panel of Figure 2, the stabilization only due to the
constraint relaxation in the unrestricted wavefunction (orange bars) is compared with the
total stabilization including also the contribution associated with the geometrical relaxations
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from the CS to the BS structure (blue bars) (numerical data collected in Table S5). As
previously observed, the overall stabilization increases with molecular size for both linear
acenes and carbon nanobelts on account of their increasing di-/poly-radical characters. It
is also commonly found that a large fraction of the total stabilization is due to relaxation of
wavefunction constraints.
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Figure 2. Comparison between the total stabilization energy (∆E at BS geometry) and the stabilization
energy due to the relaxation of the constraint of same spatial occupation for α and β electrons in the
unrestricted wavefunction (∆E at CS geometry). From B3LYP/6-31G* calculations: (a) [n]-acenes
displaying an open-shell structure and (b) even and odd [n]-CCs.

Thus, for linear acenes (Figure 2a), the total stabilization energy is mainly due to the
BS wavefunction with a non-negligible contribution from geometry relaxation. However,
this trend is exasperated for [n]-CCs, with an increased contribution from wavefunction
relaxation (orange bars) for all [n]-CCs. A careful inspection of Figure 2b reveals a dif-
ference between even and odd [n]-CCs, with the former displaying an almost negligible
stabilization due to structural relaxations, in contrast with the more relevant contribution
documented for odd [n]-CCs. Notably, the large contribution of wavefunction relaxation
(ca. 98% of the total stabilization) in even [n]-CCs can be rationalized by the non-bonding
nature of the FMOs (Figure S2) and implies very similar CS and BS geometries.

Such different trends in stabilization energies can be traced back to the cryptoannu-
lenic effect [89,90], which is due to the nature of peripheral circuits of cyclacenes. These
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peripheral circuits are formed either by 4k or 4k + 2 carbon atoms (where k is an integer),
depending on the number of benzene rings in the n-cyclacene. The different character of
the peripheral circuits in odd and even [n]-CCs results in several other different properties
for the two sub-classes of [n]-CCs. Odd and even members of the series display rather
different electronic structure, with molecules bearing an odd number of rings exhibiting a
pair of degenerate HOMOs and LUMOs in contrast to even [n]-CCs [6].

3.2. Di- and Poly-Radical Characters of [n]-acenes and [n]-CCs

In previous works, the di-/poly-radical characters of linear and cyclic acenes have
been thoroughly discussed [5–7,52,88]. Here, we consider NFOD and yi values and analyze
them in view of their significance for the description of low-lying excited states of both
linear and cyclic acenes. Our computed NFOD values confirm previous results and show a
good linear correlation with the di-radical index y0 computed at PUHF or PUB3LYP level
for linear acenes (Figure S5). As previously noted [36], the y0 values are dependent on the
chosen level of theory (PUHF or PUDFT) adopted to calculate natural orbital occupation
numbers, with PUB3LYP values always smaller than PUHF data (Tables S6 and S7) [36].
More importantly, the trends are similar and independent from the method chosen to
calculate such descriptors.

Recalling that NFOD values correspond to the number of correlated electrons, the
computed values indicate that longer acenes, featuring NFOD > 2, acquire a poly-radical
character. This trend is even more marked for carbon nanobelts, where NFOD values are
crucially above 2 for all odd [n]-CCs and for even [n]-CCs with (n > 8). The computed
NFOD values correlate well with the tetra-radical index y1 (Figure S6) when the two sub-
classes of [n]-CCs are considered separately since y1 assumes considerably larger values for
odd [n]-CCs on account of its degenerate FMOs. Such crucial differences between even and
odd [n]-CCs can be appreciated by the different slopes of the linear correlation between
y0 (computed at the PUB3LYP level) and the total stabilization energy of BS structures
computed at the same level (Figure 3).
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The combination of the two descriptors (NFOD and yi) discussed above gives comple-
menting information on the reliability of the simple 2e–2o approach [34,36,38,39] to describe
linear and cyclic acenes. When the NFOD value exceeds 2, it is expected that more than two
electrons should be correlated for a proper description of ground and excited states. Such
deviation from the ideal 2e–2o model preferentially affects odd [n]-CCs, owing to their
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more marked poly-radical character. Thus, in the following excited state investigations, we
will restrict the attention to even [n]-CCs as well as [n]-acenes.

We now consider how the localization of computed BS orbitals is intimately related
with the di-radical character y0. Within the 2e–2o model, the BS HOMO and LUMO orbitals
of the unrestricted wavefunction can be described as linear combinations of the delocalized
HOMO and LUMO obtained from the CS solution (HCS and LCS). Following previous
works [85,86], we can write the BS orbitals as a function of cos θ and sin θ, with θ the angle
of rotation with respect to the CS set of orbitals (see Table S8) and also y0 can be recast as a
function of θ [38,39,85]:

y0 = 2
(

sin4 θ
)

/
(

1− 2
(

sin2 θ
)(

cos2 θ
))

. (5)

The linear combination of the BS frontier orbitals of each investigated molecule was
determined by projecting each BS frontier orbital over the set of CS orbitals. The correspond-
ing combination coefficients, from which the θ values can be determined, are collected in
Figures S1 and S2.

For the set of molecules investigated, the θ values were determined either from the
expression of the BS HOMO in terms of CS orbitals or from the expression of the BS LUMO
in terms of the CS orbitals. Crosses are then placed in Figure 4 in correspondence to the
computed θ and y0 (PUB3LYP level) values, both determined at the same level of theory.
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Figure 4. Dependence of the di-radical character y0 (PUB3LYP) as a function of BS orbital rotation
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In Figure 4 (red curve), Equation (5) is also plotted for reference. Note that orbital
rotation of 45◦ implies the formation of fully localized BS orbitals and corresponds to the
maximum di-radical character y0 = 1. When the rotation angle is smaller, y0 decreases
and becomes = 0 when CS and BS orbitals coincide. There is a general good agreement
between the orbital rotation angle determined from the BS and CS orbitals of each molecule
and the theoretical red curve. The largest deviations observed for [n]-CCs compared to
[n]-acenes mainly arise from additional contributions to the BS orbitals from other CS
occupied/unoccupied orbitals. Such extra contributions are in line with the generally larger
tetra-radical character of [n]-CCs compared to [n]-acenes and suggest that in these cases
the 2e–2o model may not fully apply.
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3.3. The La Excited State of [n]-acenes and [n]-CCs

Several investigations have focused on the prediction of the excitation energy of the
La state of [n]-acenes and in Figure 5a we collect the most relevant results taken from the
literature along with our computed results and compare them with the experimental data.
We should note that the acene geometries adopted in this work are not the same as those
used in other studies, which can cause some differences in computed excitation energies.
Inspection of the collection of data shows, clearly, the poor predictions of TDB3LYP, a
trend well-known for hybrid functionals. Additionally, the SF-TDB3LYP results are un-
satisfactory probably due to the use of a functional featuring an inadequate amount of
exchange correlation [75] combined with the spin contamination derived by the incomplete
spin-space of these calculations. Notably, an improvement over TDB3LYP is documented
for longer acenes by the TDUB3LYP results. The recent TD calculations [46] carried out
with non-empirical double-hybrid density functionals [47] clearly outperform the results
obtained here from hybrid functionals and favorably compare with other wave-function
based correlated approaches. The pp-RPA computed excitation energies [30] and our
DFT/MRCI results nicely reproduce experimental data and small differences are obtained
using the original or the R2018 parametrizations for the latter approach. Finally, NEVPT2
calculations, carried out for the longer acenes, are also in nice agreement with experiment.
In summary, the excitation energy of the La state is reliably described by several com-
putational approaches for [n]-acenes. Extrapolating the results of [n]-acenes to [n]-CCs
(Figure 5b), we can conclude that DFT/MRCI results should give a reliable prediction of
the La state of [n]-CCs, while the much lower TDB3LYP computed values suffer from the
same limited accuracy and underestimation documented for linear acenes. In this context,
we note that TDUB3LYP excitation energies are in qualitative agreement with DFT/MRCI
results but show an incorrect energy trend as a function of the dimension of the [n]-CC.
The NEVPT2 predictions also underestimate the excitation energy and are in contrast with
the accurate results obtained for [n]-acenes, an inconsistency that may be traced back to a
limited dimension of the CASSCF space [91] employed in these preliminary calculations
and will require more systematic investigations.

3.4. The DE Excited State of [n]-acenes and [n]-CCs

In contrast with the singly excited La state, comparably fewer investigations have
considered the prediction of the DE state of [n]-acenes, and in Figure 6a we collect the most
relevant results taken from the literature, along with our computed results. In this case,
little experimental data are available for [n]-acenes: for the smaller acenes, two-photon
absorption (TPA) investigations [92,93] identified a low-lying state of Ag symmetry. Notably,
while for [3]-acene the experimental data from TPA (black empty squares in Figure 6) are
nicely reproduced by most calculations, for [2]-acene, the experimental excitation energy
of the TPA active state is much lower compared to the predictions of the DE state. This
can be reconciled in the light of our DFT/MRCI wavefunction analysis. These calculations
show two low-lying excited states of Ag symmetry for naphthalene, the highest of which
is the DE state while the lowest is only marginally affected by doubly excitations and its
computed excitation energy (red isolated circle and square in Figure 6a, for the R2018 and
original parametrizations, respectively) is in much better agreement with the experimental
TPA data. On the computational side, apart from [2]-acene, the lowest Ag excited state
is always the DE state for longer acenes. Overall, we note that DFT/MRCI calculations
with both parametrizations are in very good agreement with the available experimental
data [18,92,93] and with the results of pp-RPA calculations [30]. SF-TDB3LYP excitation
energies show an acceptable trend, with a slightly too-steep energy decrease with the acene
length. NEVPT2 and MCCEPA [18] appear to overestimate the excitation energy of the
DE state for longer [n]-acenes. Finally, an unexpected excitation energy increase with
the extension of the oligoacene is determined by TDUB3LYP calculations. Similar trends
characterize the predictions of the DE state for [n]-CCs and, extrapolating from [n]-acenes,
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we can conclude that the quality of the DFT/MRCI results is expected to be comparable to
the pp-RPA calculations also for the carbon nanobelts.
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excitation) described for different computational approaches. The excitation energy scale is the
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energy of the La state for [n]-acenes as a function of the number of rings: (red circles) DFT/MRCI
R2018 parametrization; (red squares, dashed line) DFT/MRCI original parametrization; (pink circles)
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MCCEPA from ref. [18]. (b) Excitation energy of the La state for [n]-CCs as a function of the number
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4. Discussion

Based on the results of the previous section, we focus here on two subjects. First, we
rationalize the unusual excitation energy trends predicted by TDUB3LYP calculations for
the DE state, and second, we discuss the occurrence of the La/DE state inversion in both
[n]-acenes and [n]-CCs in view of the relevant effects on their photophysical properties.

4.1. Assessment of TDUDFT Results

The results of TDUDFT calculations can be critically analyzed by considering the na-
ture of the wavefunction describing the DE state at the TDUDFT level [38,39], which reads:

ψDE state = sin 2θ√
2

∣∣HCSHCS 〉+ sin 2θ√
2

∣∣ LCSLCS
〉

+ cos(2θ) 1√
2

(∣∣HCSLCS〉−
∣∣LCS HCS〉

) (6)
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where the first two terms correspond to singlet-spin contributions and the latter identifies
the triplet-spin component. Equation (6) shows that the wavefunction of the DE state is a
combination of singlet and triplet spin contributions, which implies that spin contamination
can be a relevant issue. In Figure 7 we report the two spin contributions (the square of the
coefficient of the triplet spin wavefunction component in blue and that of the singlet-spin
component in red) for angles increasing from 0 to 45◦. The graph shows that the DE state
wavefunction is a pure singlet state only for fully localized BS orbitals (θ = 45◦), while
decreasing the θ rotation angle, the triplet component becomes more and more important,
and for θ = 0, the state becomes a pure triplet state. On the same figure, we also placed the
investigated molecules with crosses, based on their computed θ rotation angles obtained
from calculations.
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Figure 7. Contributions of the singlet and triplet components to the DE state described at TDUDFT
level according to Equation (6) as a function of BS orbital rotation angle θ. The investigated linear
and cyclic acenes are placed on the graph with crosses based on their computed BS orbital rotation
angle θ.

Since θ is related to the di-radical character y0 as shown in a previous section, the
above results demonstrate that for very small rotation angles (and di-radical character), the
triplet contribution dominates and the predicted TDUB3LYP result is unreliable because of
the mixed spin nature of the state, which implies a large spin contamination. As shown
in Figure 7, the longer acenes and [n]-CCs display a θ larger than 25◦. Only [6]-acene
corresponds to a very small θ, a region in which the wavefunction of the DE state is
dominated by the triplet component and is therefore unreliable. This explains the poor
TDUB3LYP excitation energy of the DE state reported in Figure 6a for [6]-acene. Longer
acenes and [n]-CCs fall in θ regions where the dominant contribution to the DE state
is of singlet spin. Thus, according to the θ value, the di-radical character for [8]-acene
and [9]-acene is large enough to guarantee a singlet-spin description of the DE state and
an acceptable excitation energy at TDUB3LYP would be expected. However, at the same
time the NFOD exceeds 2, indicating that more than two electrons need to be correlated.
This implies that the 2e–2o model does not hold and the TDUB3LYP calculations, which
provide a good description only for systems featuring large di-radical character within the
2e–2o model (only two electrons are localized, i.e., correlated), fail in such cases. Similar
considerations hold for [n]-CCs featuring a large di-radical character (with θ close to 40◦)
but also a relevant tetra-radical character. Thus, the unexpected excitation energy increase
of the DE state by TDUB3LYP calculations is attributed to the limits of this approach to
describe poly-radicals.
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4.2. Crossing of the DE and La States in [n]-acenes and [n]-CCs

The relative energy location of the DE state in long linear acenes and [n]-CCs may influ-
ence the outcome of photoinduced events, such as singlet fission processes [70–74] TPA and
luminescence efficiency. While experimental data are not available for [n]-CCs, a crossing
between the DE and the La states is experimentally documented to occur between [6]-acene
and [7]-acene [18]. From previous sections, the method of choice to describe both excited
states, among the DFT-based approaches tested, is DFT/MRCI. We can thus gauge the
quality of DFT/MRCI calculations by comparing the predicted dependence of the two
lowest-lying excited states as a function of the number of rings in [n]-acenes. This is shown
in Figure 8a and Figure S7 for calculations carried out with the R2018 and the original
parameterizations, respectively. Both DFT/MRCI parametrizations predict a crossing of
the two states, with the DE state becoming the lowest excited state for longer acenes, in
excellent agreement with experiment. Such crossing occurs for slightly longer acenes than
experimentally observed when the R2018 parametrization is used, but we cannot rule out
an influence of the chosen acene geometry on the exact crossing position. These good
results for [n]-acenes let us believe that a similar quality also applies to [n]-CCs. As shown
in Figure 8b, such crossing is predicted to occur between [8]-CCs and [10]-CCs when the
R2018 parametrization is considered, while for the original parametrization, the DE state is
the lowest excited state also for smaller carbon nanobelts. In summary, longer [n]-acenes
and [n]-CCs are predicted to feature a lowest lying dark DE state.
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5. Conclusions

In this work we considered the two classes of [n]-acenes and [n]-CCs and focused the
attention on the influence of their increasing di-/poly-radical characters and the implica-
tions on the relative order of the two lowest-lying La and DE excited states.

As in previous studies, the open-shell character of these PAHs was described by deter-
mining BS optimized geometries within the UDFT formalism. Generally, the contribution
of geometry relaxation (from CS to BS) is remarkable in most conjugated di-radicals and
linear acenes substantially confirmed such trend. In contrast, the total stabilization of
cyclacenes was shown to be mainly due to the relaxation of constraints in the unrestricted
wavefunction. Besides being a minor fraction of the total stabilization, the contribution of
the geometry relaxation was shown to follow a different trend for even [n]-CCs and odd
[n]-CCs, an additional manifestation of the cryptoannulenic effect which is also reflected in
a larger poly-radical character of the latter sub-class of carbon nanobelts.

Several DFT based approaches encompassing TDUDFT, SF-TDDFT, and DFT/MRCI
were employed to compute excitation energies of the La and DE states. Among TD-based
approaches, the SF-TDDFT was previously shown to capture correctly the DE state and
such aptitude was confirmed here also for [n]-acenes. An unexpected excitation energy
increase of the DE state as a function of molecular dimension was determined at the
TDUDFT level. Such erroneous behavior was traced back to the increasing poly-radical
character of longer [n]-acenes and [n]-CCs. Among the selected computational approaches,
DFT/MRCI provided a balanced representation of both La and DE states, while further
systematic investigations will be required to assess the NEVPT2 results.

Based on the results presented here we can conclude that the electronic and optical
properties of even [n]-CCs are strongly related to those of linear acenes such that the lowest
excited state of both longer [n]-acenes and even [n]-CCs is the DE state, a dark state in one
photon spectroscopy.
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