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Abstract: Currently, there is neither a cure for Alzheimer’s disease (AD) nor a way to stop the
progressive death of neuronal cells associated with this devastating aliment. To date, there are only
medications that temporarily slow its progression, and do not interfere with its pathogenesis. One
of the hallmarks of AD is the presence of amyloid-beta plaques derived from the metabolism of the
amyloid precursor protein, via the cleavage by beta followed by gamma secretase. Homotaurine, a
naturally occurring small molecule found in some seaweeds, and curcumin, a phenolic antioxidant
found in Curcuma longa, have been extensively studied as potential compounds to prevent/reverse
plaque formation. In this study, libraries of chalcones and extended chalcones based on curcumin, as
well as aminopropylsulfonamides inspired by homotaurine, were synthesized. Using fluorescence
spectroscopic analysis with Thioflavin T, the anti-aggregation effect on Aβ42 was determined. A
select number of newly synthesized chalcones and extended chalcone analogs were revealed to be
potential anti-amyloidogenic agents. These were further evaluated with regard to their neurotoxic-
ity/neuroprotection. The extended chalcone analogs that displayed the most anti-aggregation effect
on Aβ42 were further analyzed in an MTT assay. Although none of the compounds alone displayed
any neurotoxicity, none were able to provide neuroprotection against Aβ42.

Keywords: Alzheimer’s disease; anti-amyloidogenic; aminopropylsulfonamides; extended chalcones

1. Introduction

Alzheimer’s disease (AD), the most prominent form of dementia, is an irreversible
multifaceted, progressive brain disorder that displays slow cognitive decline [1]. The
etiology of AD is not fully understood, however, studies have demonstrated that AD is
related to low levels of acetylcholine [2], aggregates of amyloid-beta peptide (Aβ) [3],
hyperphosphorylation of tau proteins [4], and oxidative stress [5]. The amyloid cascade
hypothesis suggested that a sequence of abnormalities in the cleavage of the amyloid
precursor protein (APP) [6] leads to the production and accumulation of insoluble Aβ

peptides, with the most common isoforms being 40 (Aβ40) or 42 (Aβ42) amino acids
in length [7]. The Aβ peptides can aggregate into oligomers, forming insoluble fibrils,
ultimately leading to plaques. These plaques interfere in neuronal signaling which disrupts
brain cell functions. The result is a loss of neuronal synapses, progressive decline in
neurotransmitter activity, inflammation, and neuronal cell death. The amyloid cascade
hypothesis suggests that the Aβ plaques initiate mitochondrial oxidative stress and promote
hyperphosphorylation of tau proteins, resulting in neurotoxicity [8]. Amyloid inhibitor
therapies have been attempted to reduce Aβ peptide production, either via: α-secretase
stimulation, inhibition of γ-secretase, and/or inhibition of β-secretase [9]. Earlier this
year, aducanumab, a monoclonal antibody developed by Biogen which targets the Aβ

aggregates, was approved by the FDA and became the first drug to treat AD [10].
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Homotaurine (Figure 1) is a natural product found in marine red algae and has been
chemically synthesized [11]. It was clinically tested through Phase 3, as a potential anti-
amyloidogenic agent for AD [12] Unfortunately, it failed to show statistically significant
superiority over the placebo [12]. Curcumin (Figure 1), an orange-yellow polyphenol found
in turmeric, underwent clinical study in 2008. A six-month randomized, placebo-controlled,
double-blind, clinical trial failed to show health benefits [13]. It was suggested that cur-
cumin may act on AD by Aβ disaggregation, anti-inflammation, and/or antioxidation [13].
In vitro studies revealed that curcumin inhibited Aβ40 aggregation and prevented Aβ42
oligomer formation at concentrations between 0.1 and 1.0 µM but may have BBB perme-
ability issues [14]. We thus aimed to design a series of sulfonamides and chalcone derivates
based upon the structures of homotaurine and curcumin, respectively, and determined
their activity as possible anti-amyloidogenic agents.
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Figure 1. Chemical structures of homotaurine and curcumin. 

2. Results and Discussion 
2.1. Homotaurine-Based Analogues 

We hypothesized that homotaurine’s lack of clinical success may have been related 
to the highly anionic nature and subsequent low logP. The low logP was attributed to 
possessing both sulfonic acid and amine moieties, thus hindering membrane permeabil-
ity. Thus, we looked at replacing this moiety with a weak acid, specifically sulfonamide. 
We synthesized sulfonamide derivatives from 3-chloropropanesulfonyl chloride (Scheme 
1) whereby several primary and secondary amines could be employed. It was crucial that 
we utilized a primary amine in the first step to ensure the presence of an acidic proton in 
the final sulfonamide product. The reaction of sulfonyl chloride with various amines was 
carried out in THF at 0 °C, as this was a highly exothermic reaction. In the second step, it 
was determined that the addition of KI facilitated the nucleophilic attack on the alkyl chlo-
ride, reducing the reaction time from >96 to 48 h. We avoided using water to allow for 
easier purification of this potential zwitterion via flash chromatography. The final chemi-
cal yields ranged from 9 to 71%, primarily driven by sterics of the amine. 
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Scheme 1. Synthesis of sulfonamide derivative compound (1–13). 

The in vitro anti-aggregation of the amyloid-beta (1–42) peptide was conducted with 
all compounds initially at 100 μM and incubated at 37 °C, in the presence of Thioflavin T 
(200 μM) over 120 min. Homotaurine itself did not significantly affect the aggregation, 
while our positive control (Phenol red) showed a significant decrease over 2 h (Figure 2). 
Unfortunately, none of the sulfonamide derivatives showed any noticeable effect on the 

Figure 1. Chemical structures of homotaurine and curcumin.

2. Results and Discussion
2.1. Homotaurine-Based Analogues

We hypothesized that homotaurine’s lack of clinical success may have been related
to the highly anionic nature and subsequent low logP. The low logP was attributed to
possessing both sulfonic acid and amine moieties, thus hindering membrane permeability.
Thus, we looked at replacing this moiety with a weak acid, specifically sulfonamide. We
synthesized sulfonamide derivatives from 3-chloropropanesulfonyl chloride (Scheme 1)
whereby several primary and secondary amines could be employed. It was crucial that
we utilized a primary amine in the first step to ensure the presence of an acidic proton in
the final sulfonamide product. The reaction of sulfonyl chloride with various amines was
carried out in THF at 0 ◦C, as this was a highly exothermic reaction. In the second step,
it was determined that the addition of KI facilitated the nucleophilic attack on the alkyl
chloride, reducing the reaction time from >96 to 48 h. We avoided using water to allow for
easier purification of this potential zwitterion via flash chromatography. The final chemical
yields ranged from 9 to 71%, primarily driven by sterics of the amine.
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Scheme 1. Synthesis of sulfonamide derivative compound (1–13).

The in vitro anti-aggregation of the amyloid-beta (1–42) peptide was conducted with
all compounds initially at 100 µM and incubated at 37 ◦C, in the presence of Thioflavin
T (200 µM) over 120 min. Homotaurine itself did not significantly affect the aggregation,
while our positive control (Phenol red) showed a significant decrease over 2 h (Figure 2).
Unfortunately, none of the sulfonamide derivatives showed any noticeable effect on the
aggregation of the Aβ peptide. In fact, the kinetic curves of all synthesized sulfonamides
were similar to the homotaurine and, at the same time, similar to the peptide without the
inhibitor (Figure 2), thus, the IC50 values could only be estimated as >100 µM (Table 1).
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2.2. Curcumin-Based Analogues 
With knowledge that curcumin has been reported to display anti-amyloidogenic ac-

tivity [14], we synthesized nine chalcones (14–22) in addition to two hybrid chalcone-sul-
fonamide derivatives (23, 24). Most of the chalcones were synthesized via a classic con-
densation coupling of an acetophenone and a benzaldehyde (Scheme 2). This one-step 
synthesis yielded our products without the need for further purification. Due to the fact 
that the final products were not soluble in the cold water/ethanol solution, while the start-
ing materials were, simple filtration and washing were utilized. A few chalcones (21–24) 
were synthesized by using boron trifluoride etherate (BF3.Et2O) as a condensing agent in 
the reaction. This BF3.Et2O-assisted method produces higher chemical yields, requiring 
shorter reaction times, with minimal side reactions [15]. 

 
Scheme 2. Synthesis of chalcone derivatives (14–24). 

We again tested each of the chalcones in the same ThT assay, initially at 100 μM for 
120 min. Modest activity for the majority of the chalcones possessing a 4-dimethylamino 
group on ring B was observed, with a kinetic curve being similar to Phenol red (Figure 3). 
The chalcone-sulfonamide hybrid compounds (23,24) again displayed a lack of activity 
towards Aβ aggregation. Therefore, we abandoned any further homotaurine analogs. 
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2.2. Curcumin-Based Analogues

With knowledge that curcumin has been reported to display anti-amyloidogenic
activity [14], we synthesized nine chalcones (14–22) in addition to two hybrid chalcone-
sulfonamide derivatives (23, 24). Most of the chalcones were synthesized via a classic
condensation coupling of an acetophenone and a benzaldehyde (Scheme 2). This one-step
synthesis yielded our products without the need for further purification. Due to the fact that
the final products were not soluble in the cold water/ethanol solution, while the starting
materials were, simple filtration and washing were utilized. A few chalcones (21–24) were
synthesized by using boron trifluoride etherate (BF3.Et2O) as a condensing agent in the
reaction. This BF3.Et2O-assisted method produces higher chemical yields, requiring shorter
reaction times, with minimal side reactions [15].
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Scheme 2. Synthesis of chalcone derivatives (14–24).

We again tested each of the chalcones in the same ThT assay, initially at 100 µM for
120 min. Modest activity for the majority of the chalcones possessing a 4-dimethylamino
group on ring B was observed, with a kinetic curve being similar to Phenol red (Figure 3).
The chalcone-sulfonamide hybrid compounds (23,24) again displayed a lack of activity
towards Aβ aggregation. Therefore, we abandoned any further homotaurine analogs.
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Figure 3. Select ThT fluorescence assay of chalcone compounds 14, 16, and 20 at 100 µM. Phenol red
100 µM is a positive control. Fluorescence was recorded every 5 min for 120 min.

Curcumin’s extended conjugation (specifically in its enol tautomeric form) inspired
us to extend our chalcone derivatives. We synthesized a diversity of extended chal-
cones with different substitution patterns as well as the inclusion of some with fused
ring systems (31–33) via the condensation of an acetophenone and a cinnamaldehyde
(Scheme 3). A noticeable improvement in anti-amyloidogenic profiles for those possessing
a 4-dimethylamino group on ring B was observed (Figure 4).
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thylamino group on ring B was observed (Figure 4).  
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 µM.
Active compounds were defined as those displaying a kinetic curve, similar to or superior
to Phenol red. These were further tested to obtain IC50 values (determined by linear
regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four chalcones
(16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the micromolar range
(Table 2). Moreover, five extended chalcones (26,27,29,34,35) also displayed noticeable anti-
amyloidogenic activity (Table 2)—the most potent being compound 26 from the extended
chalcone library with an IC50 value of 2.43 µM. Again, generally the most active compounds
possessed the 4-dimethylamino on ring B. Overall, it was clear that the extended chalcones
displayed superior activity over the simple chalcones with the same substituent pattern on
the aromatic rings. For example, 20 had an IC50 value of 40.2 µM, compared to the extended
chalcone counterpart (i.e., 34) of 18.7 µM. This was also observed with 17 compared to 27
(6.9 vs. 3.4 µM, respectively) and 16 compared to 26 (66.2 vs. 2.4 µM, respectively). Other
electron-donating (OMe) or -withdrawing groups (CN, Cl, or NO2) on ring B for either the
chalcone or extended chalcone showed no activity. Conversely, both electron-donating and
-withdrawing groups (Cl, Me, CF3) or fused rings (29 and 35) on ring A displayed good
anti-amyloidogenic activity as long as the 4-dimethylamino on ring B was present.
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Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended
chalcones. Data reported as triplicates.

Cmpd # IC50 Structure Cmpd # IC50 Structure

14 >100 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 
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28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 

 

19 >100 μM 

 

30 >100 μM 

 

20 40.2 μM 

 

31 >100 μM 

 

15 >100 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 

14 >100 μM 
O

 
25 >100 μM 

 

15 >100 μM 
 

26 2.4 μM 

 

16 65.2 μM 

 

27 3.4 μM 

 

17 6.9 μM 

 

28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 
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16 65.2 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 

14 >100 μM 
O

 
25 >100 μM 

 

15 >100 μM 
 

26 2.4 μM 

 

16 65.2 μM 

 

27 3.4 μM 

 

17 6.9 μM 

 

28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 
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27 3.4 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 

14 >100 μM 
O

 
25 >100 μM 

 

15 >100 μM 
 

26 2.4 μM 

 

16 65.2 μM 

 

27 3.4 μM 

 

17 6.9 μM 

 

28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 

 

19 >100 μM 

 

30 >100 μM 

 

20 40.2 μM 

 

31 >100 μM 

 

17 6.9 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 

14 >100 μM 
O

 
25 >100 μM 

 

15 >100 μM 
 

26 2.4 μM 

 

16 65.2 μM 

 

27 3.4 μM 

 

17 6.9 μM 

 

28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 

 

19 >100 μM 
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31 >100 μM 

 

28 >100 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 

14 >100 μM 
O

 
25 >100 μM 

 

15 >100 μM 
 

26 2.4 μM 

 

16 65.2 μM 

 

27 3.4 μM 

 

17 6.9 μM 

 

28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 

 

19 >100 μM 

 

30 >100 μM 

 

20 40.2 μM 

 

31 >100 μM 

 

18 33.6 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 

14 >100 μM 
O

 
25 >100 μM 

 

15 >100 μM 
 

26 2.4 μM 

 

16 65.2 μM 

 

27 3.4 μM 

 

17 6.9 μM 

 

28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 

 

19 >100 μM 

 

30 >100 μM 

 

20 40.2 μM 

 

31 >100 μM 

 

29 17.40 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 

14 >100 μM 
O

 
25 >100 μM 

 

15 >100 μM 
 

26 2.4 μM 

 

16 65.2 μM 

 

27 3.4 μM 

 

17 6.9 μM 

 

28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 

 

19 >100 μM 

 

30 >100 μM 

 

20 40.2 μM 

 

31 >100 μM 

 

19 >100 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
This was also observed with 17 compared to 27 (6.9 vs. 3.4 μM, respectively) and 16 com-
pared to 26 (66.2 vs. 2.4 μM, respectively). Other electron-donating (OMe) or -withdraw-
ing groups (CN, Cl, or NO2) on ring B for either the chalcone or extended chalcone showed 
no activity. Conversely, both electron-donating and -withdrawing groups (Cl, Me, CF3) or 
fused rings (29 and 35) on ring A displayed good anti-amyloidogenic activity as long as 
the 4-dimethylamino on ring B was present. 

Table 2. IC50 values of (left) chalcone and chalcone-homotaurine hybrids and (right) extended chal-
cones. Data reported as triplicates. 

Cmpd # IC50 Structure Cmpd # IC50 Structure 

14 >100 μM 
O

 
25 >100 μM 

 

15 >100 μM 
 

26 2.4 μM 

 

16 65.2 μM 

 

27 3.4 μM 

 

17 6.9 μM 

 

28 >100 μM 
 

18 33.6 μM 

 

29 17.40 μM 

 

19 >100 μM 

 

30 >100 μM 

 

20 40.2 μM 

 

31 >100 μM 

 

30 >100 µM
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All chalcones (14–24) and extended chalcones (25–35) were initially screened at 100 
μM. Active compounds were defined as those displaying a kinetic curve, similar to or 
superior to Phenol red. These were further tested to obtain IC50 values (determined by 
linear regression parameter), again utilizing the ThT assay [16–18]. Encouragingly, four 
chalcones (16–18, and 20) inhibited Aβ peptide aggregation with IC50 values in the mi-
cromolar range (Table 2). Moreover, five extended chalcones (26,27,29,34,35) also dis-
played noticeable anti-amyloidogenic activity (Table 2)—the most potent being com-
pound 26 from the extended chalcone library with an IC50 value of 2.43 μM. Again, gen-
erally the most active compounds possessed the 4-dimethylamino on ring B. Overall, it 
was clear that the extended chalcones displayed superior activity over the simple chal-
cones with the same substituent pattern on the aromatic rings. For example, 20 had an IC50 
value of 40.2 μM, compared to the extended chalcone counterpart (i.e., 34) of 18.7 μM. 
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In addition, we wanted to determine whether the compounds showing low IC50 val-
ues, (26, 27, and 34) exhibited any neuroprotection using a neuronal cell line; specifically, 
neuroblastoma SH-SY5Y cells. The cells were obtained from the neuroblastoma cell line 
SK-N-SH and maintained in DMEM:F12 media. Of note, a plethora of cytotoxicity assays 
have been reported; however, these are not necessarily useful in these studies for a variety 
of reasons. For example, the lactate dehydrogenase (LDH) release assay was attempted 
[19]; unfortunately, we did not obtain reportable data from this study. This was due to the 
fact that the LDH release assay assesses necrotic cell death, whereas amyloid beta causes 
apoptotic cell death in SH-SY5Y cells. We next performed a CellTiter-Glo assay [20], which 
determines the number of viable cells by quantifying the amount of ATP. This assay did 
not produce positive data since ATP is required for amyloid-beta-induced apoptosis. The 
MTS assay [21] also did not yield any significant data. Ultimately, the cell viability/cell 
cytotoxicity-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
assay was performed according to the previous literature (Figure 5) [22]. The cell viability 
of SH-SY5Y cells exposed to compounds 26, 27, and 34 were measured at their IC50 values. 
All three compounds displayed no significant changes in cell viability at these concentra-
tions. Conversely, the addition of Aβ42 led to a ~40% decrease in cell viability, highlighting 
its known neuro-cytotoxicity. Unfortunately, the co-administration of compounds 26, 27, 
or 34 at their IC50 concentration did not demonstrate significant decreases in Aβ42-induced 
cytotoxicity in SH-SY5Y cells. 
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In addition, we wanted to determine whether the compounds showing low IC50
values, (26, 27, and 34) exhibited any neuroprotection using a neuronal cell line; specifically,
neuroblastoma SH-SY5Y cells. The cells were obtained from the neuroblastoma cell line
SK-N-SH and maintained in DMEM:F12 media. Of note, a plethora of cytotoxicity assays
have been reported; however, these are not necessarily useful in these studies for a variety
of reasons. For example, the lactate dehydrogenase (LDH) release assay was attempted [19];
unfortunately, we did not obtain reportable data from this study. This was due to the
fact that the LDH release assay assesses necrotic cell death, whereas amyloid beta causes
apoptotic cell death in SH-SY5Y cells. We next performed a CellTiter-Glo assay [20], which
determines the number of viable cells by quantifying the amount of ATP. This assay did
not produce positive data since ATP is required for amyloid-beta-induced apoptosis. The
MTS assay [21] also did not yield any significant data. Ultimately, the cell viability/cell
cytotoxicity-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay was performed according to the previous literature (Figure 5) [22]. The cell viability of
SH-SY5Y cells exposed to compounds 26, 27, and 34 were measured at their IC50 values. All
three compounds displayed no significant changes in cell viability at these concentrations.
Conversely, the addition of Aβ42 led to a ~40% decrease in cell viability, highlighting its
known neuro-cytotoxicity. Unfortunately, the co-administration of compounds 26, 27, or
34 at their IC50 concentration did not demonstrate significant decreases in Aβ42-induced
cytotoxicity in SH-SY5Y cells.
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measured as an MTT reduction, and data ± SEM (n = 3) were normalized as % vehicle control (black 
column). Asterisk (*) indicates significant difference from vehicle controls as determined by one-
way ANOVA followed by Tukey’s post hoc test (p < 0.05); ns, not significant. 
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neuroprotection was observed. Future studies will focus upon ascertaining what modifi-
cations are necessary to translate positive ThT assay outcomes into cell viability results. 
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Figure 5. Amyloid beta alone significantly decreases cell viability in SH-SY5Y cells with compounds
26, 27, and 34 (at IC50 concentrations), providing no significant neuroprotection. Cell viability was
measured as an MTT reduction, and data ± SEM (n = 3) were normalized as % vehicle control (black
column). Asterisk (*) indicates significant difference from vehicle controls as determined by one-way
ANOVA followed by Tukey’s post hoc test (p < 0.05); ns, not significant.

3. Conclusions

Unfortunately, the synthesized homotaurine-inspired library displayed no anti-amyloid
genic activity even at very high concentrations. However, some of our curcumin-based
analogous, whether chalcones or extended chalcones, did display activity against Aβ ag-
gregation. Those with an electron-donating group, specifically 4-dimethylamino on the B
side, displayed the greatest activity. Currently, it is unclear whether electron-withdrawing
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or -donating groups on the A side increases activity. When neurotoxicity studies were
performed on the three extended chalcones with the greatest activity, no notable neuropro-
tection was observed. Future studies will focus upon ascertaining what modifications are
necessary to translate positive ThT assay outcomes into cell viability results.

4. Materials and Methods

All chemicals were purchased from Millipore Sigma and used without further purifi-
cation. All synthesized compounds were purified using flash column chromatography.
1H-NMR and 13C-NMR were recorded at 300 MHz on a Varian instrument using VnmrJ ver-
sion 4.2A. NMR spectroscopy for compounds 21–24 was performed on a Bruker AVANCE
III 400 MHz spectrometer. For in vitro studies, a fluorometric assay was performed in 96
non-binding microplates from Greiner Bio-One with a clear bottom on a Synergy Bio-tek
HTS plate reader.

4.1. Preparation and Characterization of Homotaurine and Curcumin Analogues

1. N-(isobutyl)-3-(isobutylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (0.89 g, 5.03 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby isobutyl amine (4 mL,
0.04 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel and
dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and isobutyl amine
(0.89 mL, 8.95 mmol) were added and the mixture was heated to 130 ◦C for 48 h. The
resulting yellow liquid was filtered and the excess of toluene was evaporated. The resulting
mixture was purified using flash column chromatography (gradient elution-ethyl acetate:
hexane with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.52 g,
42%). 1H NMR (300 MHz, CDCl3) δ 0.90 (d, J = 6.7 Hz, 6H), 0.95 (d, J = 6.7 Hz, 6H), 1.76
(m, 2H), 1.98 (quint, J = 6.5 Hz, 1H), 2.40 (d, J = 6.8 Hz, 2H), 2.73 (t, J = 6.4 Hz, 2H), 2.91 (d,
J = 6.8 Hz, 2H), 3.11 (t, J = 7.3 Hz, 2H). 13C NMR (75 MHz, DMSO-d) δ 54.91, 50.25, 48.82,
46.53, 28.86, 26.25, 21.18, 20.68, 20.40.

2. N-(isobutyl)-3-(diethylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (0.58 g, 3.27 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby isobutyl amine (4 mL,
0.04 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel
and dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and diethyl amine
(0.42 mL, 5.7 mmol) were added and the mixture was heated to 130 ◦C for 48 h. The
resulting yellow liquid was filtered and the excess of toluene was evaporated. The resulting
mixture was purified using flash column chromatography (gradient elution-ethyl acetate:
hexane with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.15 g,
18%). 1H-NMR (300 MHz, CDCl3) δ 0.95 (d, J = 6.7 Hz, 6H), 1.00 (t, J = 7.2 Hz, 6H), 1.78 (m,
1H), 1.94 (quint, J = 7.4 Hz, 2H), δ 2.52 (m, 6H), δ 2.90 (t, J = 5.2 Hz, 2H), 3.07 (t, J = 7.6 Hz,
2H). 13C-NMR (75 MHz, CDCl3) δ 51.14, 50.72, 50.54, 46.48, 29.00, 21.54, 19.89, 11.42.

3. N-(t-butyl)-3-(diethylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.52 g, 8.57 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby t-butyl amine (4 mL,
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0.04 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel
and dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and diethyl amine
(2 mL, 19.2 mmol) were added and the mixture was heated to 130 ◦C for 48 h. The resulting
yellow liquid was filtered and the excess of toluene was evaporated. The resulting mixture
was purified using flash column chromatography (gradient elution-ethyl acetate: hexane
with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (1.00 g, 46%).
1H-NMR (300 MHz, CDCl3) δ 0.98 (t, J = 7.15 Hz, 6H), 1.36 (s, 9H), 1.92 (quint, J = 7.2 Hz,
2H), 2.5 (m, 6H), 3.06 (t, J = 7.7 Hz, 2H). 13C-NMR (75 MHz, CDCl3) δ 54.47, 54.40, 51.05,
46.56, 30.34, 22.00, 11.61.

4. N-butyl-3-(diethylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.46 g, 8.22 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby n-butyl amine (4 mL,
0.04 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel
and dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and diethyl amine
(0.42 mL, 5.7 mmol) were added and the mixture was heated to 130 ◦C for 48 hrs. The
resulting yellow liquid was filtered and the excess of toluene was evaporated. The resulting
mixture was purified using flash column chromatography (gradient elution-ethyl acetate:
hexane with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (1.46 g,
71%). 1H-NMR (300 MHz, CDCl3) δ 0.91 (t, J = 7.4 Hz, 3H), 0.98 (t, J = 7.1 Hz 6H), 1.36 (m,
2H), 1.52 (quint, J = 7.8 Hz, 2H), δ 1.92 (quint, J = 7.2 Hz, 2H), 2.50 (m, 6H), 3.06 (m, 4H).
13C-NMR (75 MHz, CDCl3) δ 51.23, 50.84, 46.46, 42.93, 32.41, 21.63, 19.78, 13.63, 11.46.

5. N-isopropyl-3-(diethylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (0.59 g, 3.33 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby isopropyl amine (4 mL,
0.05 mol) was added dropwise. The mixture was stirred for 20 min, after which time THF
and the excess of amine were evaporated under reduced pressure. The remaining residue
was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid (10 mL).
The organic layer was dried over magnesium sulfate, filtered, and evaporated. 1H-NMR
was run on this intermediate to confirm complete conversion and used without further
purification. The resulting liquid product was transferred to a pressure vessel and dissolved
in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and diethyl amine (1 mL, 9.6 mmol)
were added and the mixture was heated to 130 ◦C for 48 h. The resulting yellow liquid was
filtered and the excess of toluene was evaporated. The resulting mixture was purified using
flash column chromatography (gradient elution-ethyl acetate: hexane with an increase in
ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.55 g, 70%). 1H-NMR (300 MHz,
CDCl3) δ 1.02 (d, J = 7.4 Hz, 6H), δ 2.04 (quint, J = 7.2 Hz, 2H), 2.93 (t, J = 7.6 Hz, 2H), 3.35
(m, 1H), 3.5 (m, 4H).

6. N-isobutyl-3-(dipropylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.30 g, 7.32 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby isobutyl amine (4 mL,
0.04 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
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residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel and
dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and dipropyl amine
(2 mL, 14.62 mmol) were added and the mixture was heated to 130 ◦C for 48 h. The resulting
yellow liquid was filtered and the excess of toluene was evaporated. The resulting mixture
was purified using flash column chromatography (gradient elution-ethyl acetate: hexane
with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.41 g, 20%).
1H-NMR (300 MHz, CDCl3) δ 0.86 (t, J = 7.3 Hz, 6H), 0.95 (d, J = 6.7 Hz, 6H), 1.42 (sextet,
J = 7.4 Hz, 4H), 1.79 (m, 1H), 1.92 (m, 2H), 2.35 (t, J = 7.4 Hz, 4H), 2.51 (t, J = 6.5 Hz, 2H),
2.92 (t, J = 6.3 Hz, 2H), 3.08 (t, J = 7.6 Hz, 2H). Yield: 70%. 13C-NMR (75 MHz, CDCl3) δ
55.83, 52.41, 50.84, 50.61, 29.01, 21.84, 20.10, 19.88, 11.91.

7. N-isopropyl-3-(dipropylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.01 g, 5.70 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby isopropyl amine (4 mL,
0.05 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel and
dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and dipropyl amine
(2 mL, 14.62 mmol) were added and the mixture was heated to 130 ◦C for 48 hrs. The
resulting yellow liquid was filtered and the excess of toluene was evaporated. The resulting
mixture was purified using flash column chromatography (gradient elution-ethyl acetate:
hexane with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.22 g,
14%). 1H-NMR (300 MHz, CDCl3) δ 0.82 (t, J = 7.4 Hz, 6H), 1.19 (d, J = 6.5 Hz, 6H), 1.39
(m, 4H), 1.88 (quint, J = 6.8 Hz, 2H), 2.32 (t, J = 7.5 Hz, 4H), 2.47 (t, J = 6.4 Hz, 2H), 3.04 (t,
J = 7.8 Hz, 2H). 13C-NMR (75 MHz, CDCl3) δ 55.68, 52.16, 51.94, 46.00, 24.19, 21.73, 19.99,
11.83, 11.81, 11.79.

8. N-butyl-3-(dipropylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.31 g, 7.39 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby n-butyl amine (4 mL,
0.04 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel and
dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and dipropyl amine
(2 mL, 14.62 mmol) were added and the mixture was heated to 130 ◦C for 48 hrs. The
resulting yellow liquid was filtered and the excess of toluene was evaporated. The resulting
mixture was purified using flash column chromatography (gradient elution-ethyl acetate:
hexane with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.19 g,
10%). 1H-NMR (300 MHz, CDCl3) δ 0.85 (t, J = 7.3 Hz, 6H), 0.91 (t, J = 7.3 Hz, 3H), 1.40 (m,
6H), 1.53 (quint, J = 7.6 Hz, 2H), 1.92 (quint, J = 7.5 Hz, 2H), 2.36 (t, J = 7.5 Hz, 4H), 2.52 (t,
J = 6.5 Hz, 2H), 3.07 (m, 4H). 13C-NMR (75 MHz, CDCl3) δ 55.64, 52.27, 50.68, 42.98, 32.39,
21.67, 19.89, 19.79, 13.64, 11.90.

9. N-(t-butyl)-3-(dipropylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.33 g, 7.52 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby t-butyl amine (4 mL,
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0.04 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel and
dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and dipropyl amine
(2 mL, 14.62 mmol) were added and the mixture was heated to 130 ◦C for 48 h. The resulting
yellow liquid was filtered and the excess of toluene was evaporated. The resulting mixture
was purified using flash column chromatography (gradient elution-ethyl acetate: hexane
with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.74 g, 35%).
1H-NMR (300 MHz, CDCl3) δ 0.86 (t, J = 7.3 Hz, 6H), 1.41 (m, 13H), 1.92 (quint, J = 6.8 Hz,
2H), 2.35 (t, J = 7.5 Hz, 4H), 2.50 (t, J = 6.8 Hz, 2H), 3.10 (t, J = 7.8 Hz, 2H), 4.32 (s, 1H).
13C-NMR (75 MHz, CDCl3) δ 55.86, 54.44, 54.40, 52.31, 30.33, 22.14, 20.17, 11.91.

10. N-isopropyl-3-(butyl(ethyl)amino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.43 g, 8.07 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby isopropyl amine (4 mL,
0.05 mol) was added dropwise. The mixture was stirred for 20 min, after which time THF
and the excess of amine were evaporated under reduced pressure. The remaining residue
was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid (10 mL).
The organic layer was dried over magnesium sulfate, filtered, and evaporated. 1H-NMR
was run on this intermediate to confirm complete conversion and used without further
purification. The resulting liquid product was transferred to a pressure vessel and dissolved
in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and N-ethylbutyl amine (2 mL,
16.75 mmol) were added and the mixture was heated to 130 ◦C for 48 h. The resulting
yellow liquid was filtered and the excess of toluene was evaporated. The resulting mixture
was purified using flash column chromatography (gradient elution-ethyl acetate:hexane
with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.22 g, 10%).
1H-NMR (300 MHz, CDCl3) δ 0.92 (t, J = 7.5 Hz, 3H), 1.04 (t, J = 7.0 Hz, 3H), 1.24 (d,
J = 6.5 Hz, 6H), 1.29 (m, 2H), 1.44 (m, 2H), 1.99 (quint, J = 7.2 Hz, 2H), 2.48 (t, J = 7.8 Hz,
2H), 2.60 (m, 4H), 3.08 (t, J = 7.5 Hz, 2H), δ 3.64 (quint, J = 6.5 Hz, 1H). 13C-NMR (75 MHz,
CDCl3) δ 52.70, 52.03, 51.46, 47.01, 46.18, 28.49, 24.34, 21.46, 20.61, 14.02, 11.09.

11. N-benzyl-3-(t-butylamino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.22 g, 6.89 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby benzyl amine (4 mL,
0.03 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel and
dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and t-butyl amine (2 mL,
19.03 mmol) were added and the mixture was heated to 130 ◦C for 48 hrs. The resulting
yellow liquid was filtered and the excess of toluene was evaporated. The resulting mixture
was purified using flash column chromatography (gradient elution-ethyl acetate:hexane
with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (1.07 g, 54%).
1H-NMR (300 MHz, CDCl3) δ 1.01 (s, 9H), 1.92 (quint, J = 6.8 Hz, 2H), 2.63 (t, J = 6.2 Hz,
2H), 3.07 (t, J = 6.2 Hz, 2H), 3.69 (s, 1H), 4.28 (d, J = 7.8 Hz, 2H), 7.32 (m, 5H).

12. N-isopropyl-3-(butyl(methyl)amino)propane-1-sulfonamide

3-chloropropanesulfonyl chloride (0.88 g, 4.96 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby isopropyl amine (4 mL,
0.05 mol) was added dropwise. The mixture was stirred for 20 min, after which time THF
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and the excess of amine were evaporated under reduced pressure. The remaining residue
was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid (10 mL).
The organic layer was dried over magnesium sulfate, filtered, and evaporated. 1H-NMR
was run on this intermediate to confirm complete conversion and used without further
purification. The resulting liquid product was transferred to a pressure vessel and dissolved
in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and N-methylbutyl amine (1.6 mL,
12.66 mmol) were added and the mixture was heated to 130 ◦C for 48 h. The resulting
yellow liquid was filtered and the excess of toluene was evaporated. The resulting mixture
was purified using flash column chromatography (gradient elution-ethyl acetate:hexane
with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.16 g, 9%).
1H-NMR (300 MHz, CDCl3) δ 0.89 (t, J = 7.1 Hz, 3H), 1.21 (d, J = 6.5 Hz, 6H), 1.28 (m, 2H),
1.41 (m, 2H), 1.94 (m, 2H), 2.18 (s, 3H), 2.31 (t, J = 7.4 Hz, 2H), 2.42 (t, J = 6.6 Hz, 2H), 3.06 (t,
J = 7.6 Hz, 2H), 3.61 (quint, J = 6.4 Hz, 1H). 13C-NMR (75 MHz, CDCl3) δ 57.34, 55.86, 52.18,
46.07, 41.79, 29.25, 24.36, 21.74, 20.62, 14.06.

13. N-isopropyl-3-morpholinopropane-1-sulfonamide

3-chloropropanesulfonyl chloride (1.44 g, 8.15 mmol) was added to a round-bottom
flask at 0 ◦C and dissolved in THF (3 mL) under argon, whereby isopropyl amine (4 mL,
0.05 mol) was added dropwise. The mixture was stirred for 20 min, after which time
THF and the excess of amine were evaporated under reduced pressure. The remaining
residue was dissolved in dichloromethane (10 mL) and washed with 1 M hydrochloric acid
(10 mL). The organic layer was dried over magnesium sulfate, filtered, and evaporated.
1H-NMR was run on this intermediate to confirm complete conversion and used without
further purification. The resulting liquid product was transferred to a pressure vessel and
dissolved in toluene (4 mL). Potassium iodide (10 mg, 0.06 mmol) and morpholine (1 mL,
11.49 mmol) were added and the mixture was heated to 130 ◦C for 48 hrs. The resulting
yellow liquid was filtered and the excess of toluene was evaporated. The resulting mixture
was purified using flash column chromatography (gradient elution-ethyl acetate: hexane
with an increase in ethyl acetate from 66% to 100%) to obtain a yellow liquid (0.16 g, 32%).
1H-NMR (300 MHz, CDCl3) δ 1.20 (d, J = 6.7 Hz, 6H), 1.95 (quint, J = 7.5 Hz, 2H), 2.41
(m, 6H), 3.06 (t, J = 7.7 Hz, 2H), 3.59 (m, J = 6.7 Hz, 1H), 3.67 (t, J = 4.6 Hz, 4H), 4.67 (d,
J = 7.6 Hz, 1H). 13C-NMR (75 MHz, CDCl3) δ 66.84, 56.76, 53.41, 51.90, 46.12, 24.34, 20.87.

14. (E)-Chalcone

A solution of acetophenone (1.05 g, 8.17 mmol) in absolute ethanol (10 mL) was added
to an aqueous solution of 10% NaOH (30 mL) at 0 ◦C. The mixture was stirred for 15 min,
after which time benzaldehyde (1.0347 g, 9.75 mmol) was added. The reaction mixture was
then stirred at room temperature for 24 h. The precipitated product was vacuum-filtered
and washed with small portions of water/ethanol to yield the desired chalcone as a white
solid (1.52 g, 75%). 1H-NMR (300 MHz, CDCl3) δ 7.42 (m, 3H), 7.54 (m, 4H), 7.65 (m,
2H), 7.82 (d, J = 15.7 Hz, 1H), 8.02 (d, J = 9 Hz, 2H). 13C-NMR (75 MHz, CDCl3) δ 190.59,
144.88, 138.20, 134.87, 132.82, 130.58, 128.98, 128.65, 128.52, 128.47, 122.06. Melting point:
52.6–55.3 ◦C.

15. (E)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one

A solution of 1-(4-methoxyphenyl)ethan-1-one (1.02 g, 6.82 mmol) in absolute ethanol
(10 mL) was added to an aqueous solution of 10% NaOH (30 mL) at 0 ◦C. The mixture was
stirred for 15 min, after which time benzaldehyde (1.0324 g, 9.72 mmol) was added. The
reaction mixture was then stirred at room temperature for 24 h. The precipitated product
was vacuum-filtered and washed with small portions of water/ethanol to yield the desired
chalcone as a white solid (1.87 g, 81%). 1H-NMR (300 MHz, CDCl3) δ 3.89 (s, 3H), 6.98 (d,
J = 8.9 Hz, 2H), 7.42 (m, 3H), 7.55 (d, J = 15.7 Hz, 1H), 7.64 (m, 2H), 7.80 (d, J = 15.7 Hz, 1H),
8.05 (d, J = 8.9 Hz, 2H). 13C-NMR (75 MHz, CDCl3) δ 188.74, 163.43, 143.99, 135.07, 130.83,
130.35, 128.93, 128.37, 125.76, 121.86, 113.85, 55.52. Melting point: 104.0–107.4 ◦C.

16. (E)-1-(4-chlorophenyl)-3-(4-(dimethylamino) phenyl) prop-2-en-1-one
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A solution of 1-(4-chlorophenyl)ethan-1-one (1.24 g, 8.03 mmol) in absolute ethanol
(10 mL) was added to an aqueous solution of 10% NaOH (30 mL) at 0 ◦C. The mixture was
stirred for 15 min, after which time 4-(dimethylamino)benzaldehyde (1.0524 g, 7.05 mmol)
was added. The reaction mixture was then stirred at room temperature for 24 h. The
precipitated product was vacuum-filtered and washed with small portions of water/ethanol
to yield the desired chalcone as an orange solid (1.59 g, 79%). 1H-NMR (300 MHz, CDCl3)
δ 3.05 (s, 6H), 6.69 (d, J = 8.9 Hz, 2H), 7.29 (d, J = 15.4 Hz, 1H), 7.45 (d, J = 8.6 Hz, 2H), 7.5
(d, J = 8.9 Hz, 2H), 7.80 (d, J = 15.4 Hz, 1H), 7.95 (d, J = 8.6 Hz, 1H). 13C-NMR (75 MHz,
CDCl3) δ 188.74, 163.43, 143.99, 135.07, 130.83, 130.35, 128.93, 128.37, 125.76, 121.86, 113.85,
55.52. Anal. Calcd for C17H16ClNO: C, 71.45; H, 5.64; Cl, 12.41; N, 4.90. Found: C, 71.44;
H, 5.68; Cl, 12.21; N, 4.98. Melting point: 137.9–141.9 ◦C.

17. (E)-3-(4-(dimethylamino)phenyl)-1-(p-tolyl)prop-2-en-1-one

A solution of 1-(p-tolyl)ethan-1-one (1.37 g, 10.2 mmol) in absolute ethanol (10 mL)
was added to an aqueous solution of 10% NaOH (30 mL) at 0◦C. The mixture was stirred for
15 min, after which time 4-(dimethylamino)benzaldehyde (1.1548 g, 7.74 mmol) was added.
The reaction mixture was then stirred at room temperature for 24 h. The precipitated
product was vacuum-filtered and washed with small portions of water/ethanol to yield
the desired chalcone as an orange solid (1.44 g, 70%). 1H-NMR (300 MHz, CDCl3) δ 2.42 (s,
3H), 3.04 (s, 6H), 6.77 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 7.8 Hz, 2H), 7.35 (d, J = 15.5 Hz, 1H),
7.55 (d, J = 8.3 Hz, 2H), 7.78 (d, J = 15.5 Hz, 1H), 7.92 (d, J = 7.6 Hz, 2H). 13C-NMR (75 MHz,
CDCl3) δ 190.20, 145.38, 142.89, 136.40, 130.35, 129.17, 128.46, 116.94, 111.87, 40.21, 21.66.
Anal. Calcd for C18H19NO: C, 81.47; H, 7.22; N, 5.28. Found: C, 81.70; H, 7.17; N, 5.26.
Melting point: 118.6–120.9 ◦C.

18. (E)-3-(4-(dimethylamino)phenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one

A solution of 1-(3-(trifluoromethyl) phenyl)ethan-1-one (1.08 g, 5.74 mmol) in absolute
ethanol (10 mL) was added to an aqueous solution of 10% NaOH (30 mL) at 0 ◦C. The
mixture was stirred for 15 min, after which time 4-(dimethylamino)benzaldehyde (1.0043 g,
6.73 mmol) was added. The reaction mixture was then stirred at room temperature for
24 h. The precipitated product was vacuum-filtered and washed with small portions of
water/ethanol to yield the desired chalcone as an orange solid (1.42 g, 66%). 1H-NMR
(300 MHz, CDCl3) δ 3.06 (s, 6H), 6.70 (d, J = 8.9 Hz, 2H), 7.30 (d, J = 15.4 Hz, 1H), 7.61
(m, 4H), 7.83 (m, 2H), 8.20 (m, 2H). 13C-NMR (75 MHz, CDCl3) δ 189.05, 152.29, 147.10,
139.67, 131.46, 130.75, 129.08, 128.55, 128.50, 125.12, 125.07, 122.19, 115.75, 111.78, 40.12.
Anal. Calcd for C18H16F3NO: C, 67.70; H, 5.05; F, 17.85; N, 4.39. Found: C, 66.94; H, 4.96; F,
17.87; N, 4.22. Melting point: 85.2–86.4 ◦C.

19. (E)-1-(4’-bromo-[1,1’-biphenyl]-4-yl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one

A solution of 1-(4’-bromo-[1,1’-biphenyl]-4-yl)ethan-1-one (1.03 g, 3.74 mmol) in abso-
lute ethanol (10 mL) was added to an aqueous solution of 10% NaOH (30 mL) at 0 ◦C. The
mixture was stirred for 15 min, after which time 4-(dimethylamino)benzaldehyde (1.1178 g,
7.49 mmol) was added. The reaction mixture was then stirred at room temperature for
24 h. The precipitated product was vacuum-filtered and washed with small portions of
water/ethanol to yield the desired chalcone as a yellow solid (2.25 g, 74%). 1H-NMR
(300 MHz, CDCl3) δ 3.06 (s, 6H), 6.70 (d, J = 7.5 Hz, 2H), 7.36 (d, J = 15.4 Hz, 1H), 7.59 (m,
8H), 7.84 (d, J = 15.3 Hz, 1H), 8.09 (d, J = 6.9 Hz, 2H). 13C-NMR (75 MHz, CDCl3) δ 189.91,
152.08, 145.97, 143.54, 139.06, 138.12, 132.05, 130.50, 129.02, 128.83, 126.93, 122.59, 122.42,
116.65, 111.82, 40.15. Anal. Calcd for C23H20BrNO: C, 67.99; H, 4.96; Br, 19.67; N, 3.45.
Found: C, 67.68; H, 5.05; Br, 19.46; N, 3.39. Melting point: 183.2–187.6 ◦C.

20. (E)-3-(4-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one

A solution of acetophenone (1.08 g, 9.01 mmol) in absolute ethanol (10 mL) was added
to an aqueous solution of 10% NaOH (30 mL) at 0 ◦C. The mixture was stirred for 15 min,
after which time 4-(dimethylamino)benzaldehyde (0.9784 g, 6.55 mmol) was added. The
reaction mixture was then stirred at room temperature for 24 h. The precipitated product
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was vacuum-filtered and washed with small portions of water/ethanol to yield the desired
chalcone as an orange solid (1.33 g, 81%). 1H-NMR (300 MHz, CDCl3) δ 3.05 (s, 6H), 6.70
(d, J = 8.8 Hz, 2H), 7.33 (d, J = 15.5 Hz, 1H) 7.52 (m, 5H), 7.79 (d, J = 15.5 Hz, 1H), 8.00 (d,
J = 6.9 Hz, 2H). 13C-NMR (75 MHz, CDCl3) δ 190.72, 152.02, 145.89, 139.08, 139.06, 130.44,
128.47, 128.32, 122.61, 116.87, 111.82, 40.16. Anal. Calcd for C17H17NO: C, 81.24; H, 6.82; N,
5.57. Found: C, 80.81; H, 6.82; N, 5.50. Melting point: 106.9–110.3 ◦C.

21. (E)-3-(3-(3-hydroxyphenyl)-3-oxoprop-1-en-1-yl)benzonitrile

Boron trifluoride etherate (48% BF3, 781 mg, 5.5 mmol) was added to a stirred solu-
tion of 3′-hydroxyacetophenone (150 mg, 1.1 mmol) and 3-cyanobenzaldehyde (289 mg,
2.2 mmol) in 1,4-dioxane (10 mL), and the reaction mixture was heated at 80 ◦C for 14–24 h.
After cooling, the resultant solution was partitioned with EtOAc, washed with 10% HCl
(aq), distilled water, and brine, dried over anhydrous Na2SO4, and concentrated in vacuo.
The residue was purified using column chromatography (n-hexane:EtOAc = 3:1, 1:1) to
obtain 21 as a solid (114 mg, 41%). 1H-NMR (400 MHz, DMSO-d6) δ 9.84 (s, 1H), 8.50 (s,
1H), 8.19 (d, J = 7.8 Hz, 1H), 8.04 (d, J = 15.8 Hz, 1H), 7.90 (dt, J = 7.8, 1.3 Hz, 1H), 7.73 (dt,
J = 15.7 Hz, 1H), 7.70–7.63 (m, 2H), 7.51–7.48 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.08 (ddd,
J = 8.1, 2.6, 1.0 Hz, 1H).

22. (E)-3-(3-(4-hydroxyphenyl)-3-oxoprop-1-en-1-yl)benzonitrile

The procedure applied to the synthesis of 21 was used with boron trifluoride ether-
ate (48% BF3, 781 mg, 5.5 mmol), 4-hydroxy acetophenone (150 mg, 1.1 mmol) and
3-cyanobenzaldehyde (289 mg, 2.2 mmol) to obtain 22 as a yellow solid (92 mg, 34%)
(Scheme 4). 1H-NMR (400 MHz, DMSO-d6) δ 10.48 (s, 1H), 8.48 (s, 1H), 8.17 (d, J = 8.0 Hz,
1H), 8.13–8.06 (m, 3H), 7.88 (dt, J = 8.0, 1.6 Hz, 1H), 7.69 (d, J = 15.6 Hz, 1H), 7.66 (t,
J = 8.0 Hz, 1H), 6.93–6.89 (m, 2H).
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23. (23a) 4-Acetyl-N,N-dipropylbenzenesulfonamide

A mixture of 4-acetylbenzenesulfonyl chloride (300 mg, 1.37 mmol), dipropylamine
(151 mg, 1.50 mmol), and triethylamine (277 mg, 2.74 mmol) in anhydrous THF (10 mL)
was stirred at room temperature overnight. Water was added, and the reaction mixture
was extracted with EtOAc (3 times). The combined organic layer was washed with brine
(100 mL), dried over Na2SO4, and filtered. The removal of solvent in vacuo presented as
yellow oil (154 mg, 40%).

(23) (E)-4-(3-(3-cyanophenyl)acryloyl)-N,N-dipropylbenzenesulfonamide
The procedure applied to the synthesis of 21 was used with boron trifluoride etherate

(48% BF3, 325 mg, 2.29 mmol), 23a (130 mg, 0.46 mmol), and 3-cyanobenzaldehyde (120 mg,
0.92 mmol) to obtain 23 as an ivory fluffy solid (81 mg, 45%) after purification by column
chromatography (n-hexane:EtOAc = 10:1, 5:1). 1H-NMR (400 MHz, DMSO-d6) δ 8.52 (s,
1H), 8.35 (d, J = 8.6 Hz, 2H), 8.22 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 15.7 Hz, 1H), 7.99 (d,
J = 8.5 Hz, 2H), 7.92 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 15.7 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 3.09
(d, J = 7.6 Hz, 4H), 1.49 (sextet, J = 7.6 Hz, 4H), 0.82 (t, J = 7.6 Hz, 6H).

24. (24a) 4-Acetyl-N,N-dipentylbenzenesulfonamide
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The procedure applied to the synthesis of 23a was used with 4-acetylbenzenesulfonyl
chloride (300 mg, 1.37 mmol), diamylamine (235 mg, 1.50 mmol), and triethylamine (277 mg,
2.74 mmol) to obtain 24a as yellow oil (187 mg, 40%).

(24) (E)-4-(3-(3-cyanophenyl)acryloyl)-N,N-dipentylbenzenesulfonamide
The procedure applied to the synthesis of 21 was used with boron trifluoride etherate

(48% BF3, 271 mg, 1.91 mmol), 24a (130 mg, 0.38 mmol), and 3-cyanobenzaldehyde (100 mg,
0.77 mmol) to obtain 24 as an off-white crystal (37 mg, 21%) after purification by column
chromatography (n-hexane:EtOAc = 10:1). 1H-NMR (400 MHz, DMSO-d6) δ 8.51 (s, 1H),
8.35 (d, J = 8.6 Hz, 2H), 8.22 (d, J = 7.6 Hz, 1H), 8.13 (d, J = 15.7 Hz, 1H), 7.97 (d, J = 8.8 Hz,
2H), 7.92 (dt, J = 7.7, 1.2 Hz, 1H), 7.81 (d, J = 15.7 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 3.11 (t,
J = 7.6 Hz, 4H), 1.46 (quintet, J = 7.6 Hz, 4H), 1.29–1.18 (m, 8 H), 0.84 (t, J = 7.2 Hz, 6H).

25. (2E,4E)-1-(4-methoxyphenyl)-5-phenylpenta-2,4-dien-1-one

4′-methoxyacetophenone (200 mg, 1.33 mmol) and trans-cinnamaldehyde (0.168 mL,
1.33 mmol) were dissolved in absolute ethanol (10 mL) at room temperature. To this stirring
solution, 6M NaOH (1 mL) was added dropwise. Precipitate formed instantaneously and
the mixture was stirred for 15 min at room temperature. A few chips of ice were added,
and the reaction mixture was cooled in an ice bath for 15 min. The precipitate was vacuum-
filtered and washed with small portions of cold water/ethanol solution to yield the desired
chalcone as a bright yellow powder (321 mg, 91%). 1H-NMR (300 MHz, Chloroform-d) δ
8.00 (d, J = 8.0 Hz, 2H), 7.69–7.53 (m, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.42–7.27 (m, 3H), 7.11 (d,
J = 14.5 Hz, 1H), 7.04–6.88 (m, 4H), 3.86 (s, 3H). 13C-NMR (75 MHz, Chloroform-d) δ 188.66,
163.33, 144.04, 141.43, 136.17, 131.06, 130.70, 129.12, 128.84, 127.25, 127.04, 125.20, 113.81,
55.48. Melting point: 73–76 ◦C.

26. (2E,4E)-1-(4-chlorophenyl)-5-(4-(dimethylamino)phenyl)penta-2,4-dien-1-one

4′-chloroacetophenone (0.250 mL, 1.92 mmol), and 4-(dimethylamino)cinnamaldehyde
(305 mg, 1.75 mmol) were dissolved in absolute ethanol (15 mL) and THF (1 mL) at 50 ◦C.
The solution was slowly cooled to room temperature, and 6M NaOH (1 mL) was added
dropwise during this time. Precipitate slowly formed, and the reaction mixture was stirred
for 1 h at room temperature. A few chips of ice were added, and the reaction mixture was
cooled in an ice bath for 15 min. The precipitate was vacuum-filtered and washed with
small portions of cold water/ethanol solution to yield the desired chalcone as an orange
powder (486 mg, 81%). 1H-NMR (300 MHz, Chloroform-d) δ 7.91 (d, J = 8.5 Hz, 2H), 7.63
(dd, J = 14.7, 10.9 Hz, 1H), 7.44 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.9 Hz, 3H), 7.04–6.77 (m, 3H),
6.68 (d, J = 8.9 Hz, 2H), 3.02 (s, 6H). 13C-NMR (75 MHz, Chloroform-d) δ 189.07, 151.14,
146.96, 143.74, 138.55, 137.00, 129.70, 129.05, 128.76, 123.96, 122.17, 121.82, 111.96, 40.22.
Melting point: 161–164 ◦C.

27. (2E,4E)-5-(4-(dimethylamino)phenyl)-1-(p-tolyl)penta-2,4-dien-1-one

4′-methylacetophenone (0.250 mL, 1.88 mmol) and 4-(dimethylamino)cinnamaldehyde
(300 mg, 1.71 mmol) were dissolved in absolute ethanol (15 mL) and THF (1 mL) at 50 ◦C.
The solution was slowly cooled to room temperature, and 6M NaOH (1 mL) was added
dropwise during this time. Precipitate slowly formed, and the reaction mixture was stirred
for 1 h at room temperature. A few chips of ice were added, and the reaction mixture was
cooled in an ice bath for 15 min. The precipitate was vacuum-filtered and washed with
small portions of cold water/ethanol solution to yield the desired chalcone as a bright red
powder (351 mg, 71%). 1H-NMR (300 MHz, Chloroform-d) δ 7.89 (d, J = 8.2 Hz, 2H), 7.63
(dd, J = 14.8, 10.6 Hz, 1H), 7.40 (d, J = 8.9 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.00–6.87 (m,
3H), 6.68 (d, J = 8.9 Hz, 2H), 3.02 (s, 6H), 2.42 (s, 3H). 13C-NMR (75 MHz, Chloroform-d) δ
190.06, 151.03, 145.96, 143.01, 142.81, 136.08, 129.18, 128.85, 128.42, 124.22, 122.64, 122.51,
112.00, 40.23, 21.66. Melting point: 158–160 ◦C.

28. (2E,4E)-1-(4-chlorophenyl)-5-phenylpenta-2,4-dien-1-one

To a stirring solution of 4′-chloroacetophenone (0.250 mL, 1.92 mmol) and trans-
cinnamaldehyde (0.250 mL, 1.99 mmol), in absolute ethanol (10 mL), 6 M NaOH (1 mL)
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was added dropwise at room temperature. Precipitate formed instantaneously and the
reaction mixture was stirred for an additional 15 min at room temperature. A few chips
of ice were added, and the reaction mixture was cooled in an ice bath for 15 min. The
precipitate was vacuum-filtered and washed with small portions of cold water/ethanol
solution to yield the desired chalcone as a yellow green powder (445 mg, 95%). 1H-NMR
(300 MHz, Chloroform-d) δ 7.92 (d, J = 8.6 Hz, 2H), 7.69–7.55 (m, 1H), 7.54–7.43 (m, 4H),
7.37 (m, 3H), 7.10–6.91 (m, 3H). 13C-NMR (75 MHz, Chloroform-d) δ 189.09, 145.34, 142.43,
139.06, 136.48, 135.96, 129.79, 129.78, 129.38, 128.89, 127.35, 126.74, 124.74. Melting point:
138–139 ◦C.

29. (E)-2-((E)-3-(4-(dimethylamino)phenyl)allylidene)-2,3-dihydro-1H-inden-1-one

1-indanone (200 mg, 1.51 mmol) and 4-(dimethylamino)cinnamaldehyde (240 mg,
1.38 mmol) were dissolved in absolute ethanol (15 mL) and THF (1 mL) at 50 ◦C. The solu-
tion was slowly cooled to room temperature, and 6M NaOH (1 mL) was added dropwise
during this time. Precipitate slowly formed, and the reaction mixture was stirred for 1 h at
room temperature. A few chips of ice were added, and the reaction mixture was cooled in
an ice bath for 15 min. The precipitate was vacuum-filtered and washed with small portions
of cold water/ethanol solution to yield the desired chalcone as an orange powder (327 mg,
82%). 1H-NMR (300 MHz, Chloroform-d) δ 7.87 (d, J = 7.6 Hz, 1H), 7.56 (m, 2H), 7.48–7.35
(m, 4H), 6.99 (d, J = 15.3 Hz, 1H), 6.84 (dd, J = 15.2, 11.4 Hz,10H), 6.68 (d, J = 8.8 Hz, 2H),
3.82 (s, 2H), 3.02 (s, 6H). 13C-NMR (75 MHz, Chloroform-d) δ 193.63, 151.06, 148.85, 143.14,
139.74, 134.96, 133.89, 133.35, 128.93, 127.34, 126.12, 124.43, 123.96, 119.81, 111.99, 40.22,
30.54. Melting point: 168–170 ◦C.

30. (E)-6-methoxy-2-((E)-3-(4-methoxyphenyl)allylidene)-3,4-dihydronaphthalen-1(2H)-one

6-methoxy-1-tetralone (250 mg, 1.42 mmol) and 4-methoxycinnamaldehyde (230 mg,
1.42 mmol) were dissolved in absolute ethanol (10 mL) at room temperature and 6M NaOH
(1 mL) was added dropwise. Precipitate slowly formed, and the reaction mixture was
stirred for 30 min at room temperature. A few chips of ice were added, and the reaction
mixture was cooled in an ice bath for 15 min. The precipitate was vacuum-filtered and
washed with small portions of cold water/ethanol solution to yield the desired chalcone
as a bright yellow powder (248 mg, 55%). 1H-NMR (300 MHz, Chloroform-d) δ 8.09 (d,
J = 8.7 Hz, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.46 (d, J = 8.6 Hz, 2H), 7.10–6.79 (m, 5H), 6.72
(s, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 2.98 (s, 4H). 13C-NMR (75 MHz, Chloroform-d) δ 186.26,
163.28, 160.21, 145.84, 140.28, 135.83, 133.36, 130.52, 129.55, 128.57, 127.45, 121.49, 114.23,
113.15, 112.33, 55.44, 55.36, 29.19, 25.99. Melting point: 139–140 ◦C.

31. (2E,4E)-5-(4-chlorophenyl)-1-(4-nitrophenyl)penta-2,4-dien-1-one

4′-nitroacetophenone (161 mg, 0.972 mmol) and 4-chlorocinnamaldehyde (162 mg,
0.972 mmol) were dissolved in absolute ethanol (15 mL) at 50 ◦C. The solution was slowly
cooled to room temperature, and 6 M NaOH (1 mL) was added dropwise during this
time. Precipitate formed instantaneously, and the reaction mixture was stirred at room
temperature for 15 min. A few chips of ice were added, and the reaction mixture was
cooled in an ice bath for 15 min. The precipitate was vacuum-filtered and washed with
small portions of cold water/ethanol solution to yield the desired chalcone as a yellow
green powder (252 mg, 83%). 1H-NMR (300 MHz, Chloroform-d) δ 8.34 (d, J = 8.9 Hz, 2H),
8.10 (d, J = 9.0 Hz, 2H), 7.62 (ddd, J = 14.9, 6.5, 3.9 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H), 7.36
(d, J = 8.7 Hz, 2H), 7.11–6.97 (m, 3H). 13C-NMR (75 MHz, Chloroform-d) δ 188.77, 149.97,
146.29, 142.93, 141.99, 135.44, 134.22, 129.29, 129.20, 128.60, 126.95, 124.81, 123.87. Melting
point: 122–123 ◦C.

32. (E)-2-((E)-3-(4-(dimethylamino)phenyl)allylidene)-2,3-dihydro-1H-inden-1-one

1,3-indandione (200 mg, 1.37 mmol) and trans-cinnamaldehyde (0.190 mL, 1.51 mmol)
were dissolved in absolute ethanol (15 mL) at room temperature, and 6 M NaOH (1 mL)
was added dropwise. The reaction mixture was stirred at room temperature overnight,
then cooled in an ice bath for 15 min. The precipitate was vacuum-filtered and washed
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with small portions of cold water/ethanol solution to yield the desired chalcone as a yellow
powder (90 mg, 25%). 1H-NMR (300 MHz, Chloroform-d) δ 8.45 (dd, J = 15.5, 12.0 Hz, 1H),
8.03–7.91 (m, 2H), 7.84–7.75 (m, 2H), 7.72–7.59 (m, 3H), 7.43 (m, 3H), 7.34 (d, J = 15.5 Hz,
1H). 13C-NMR (75 MHz, Chloroform-d) δ 151.16, 144.68, 142.14, 135.51, 135.15, 135.03,
130.94, 129.05, 128.70, 123.62, 123.14, 122.97. Melting point: 151–152 ◦C.

33. (E)-2-((E)-3-(2-nitrophenyl)allylidene)-3,4-dihydronaphthalen-1(2H)-one

1-tetralone (0.210 mL, 1.58 mmol) and 2-nitrocinnamaldehyde (250 mg, 1.41 mmol)
were dissolved in absolute ethanol (20 mL) and THF (2 mL) at 50 ◦C. The solution was
slowly cooled to room temperature, and 6 M NaOH (1 mL) was added dropwise during this
time. Precipitate formed instantaneously and the reaction mixture was stirred for 15 min at
room temperature. A few chips of ice were added, and the reaction mixture was cooled in
an ice bath for 15 min. The precipitate was vacuum-filtered and washed with small portions
of cold water/ethanol solution to yield the desired chalcone as a yellow powder (260 mg,
60%). 1H-NMR (300 MHz, Chloroform-d) δ 7.86 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H),
7.59 (d, J = 7.9 Hz, 1H), 7.44 (t, J = 7.9 Hz, 1H), 7.35–7.21 (m, 4H), 7.15 (t, J = 7.5 Hz, 1H),
7.08 (d, J = 7.6 Hz, 1H), 6.95 (dd, J = 15.1, 11.7 Hz, 1H), 2.83 (s, 6H). 13C-NMR (75 MHz,
Chloroform-d) δ 186.93, 147.71, 143.29, 136.61, 134.59, 134.40, 133.25, 133.21, 133.16, 131.87,
128.95, 128.30, 128.22, 127.96, 127.83, 126.90, 124.69, 28.46, 26.02. Melting point: 188–189 ◦C.

34. (2E,4E)-5-(4-(dimethylamino)phenyl)-1-phenylpenta-2,4-dien-1-one

Acetophenone (0.200 mL, 1.71 mmol) and 4-(dimethylamino)cinnamaldehyde (275 mg,
1.56 mmol) were dissolved in absolute ethanol (10 mL) and THF (1 mL) at 50 ◦C. The
solution was slowly cooled to room temperature, and 6 M NaOH (1 mL) was added
dropwise during this time. Precipitate slowly formed, and the reaction mixture was stirred
for 1 h at room temperature. A few chips of ice were added, and the reaction mixture was
cooled in an ice bath for 15 min. The precipitate was vacuum-filtered and washed with
small portions of cold water/ethanol solution to yield the desired chalcone as a red flaky
solid (327 mg, 76%). 1H-NMR (300 MHz, Chloroform-d) δ 7.98 (d, J = 6.8 Hz, 2H), 7.64 (dd,
J = 14.8, 10.6 Hz, 1H), 7.58–7.44 (m, 3H), 7.40 (d, J = 8.9 Hz, 2H), 7.04–6.78 (m, 3H), 6.68
(d, J = 8.9 Hz, 2H), 3.01 (s, 6H). 13C-NMR (75 MHz, Chloroform-d) δ 190.55, 151.09, 146.45,
143.18, 138.71, 132.28, 128.94, 128.48, 128.29, 124.13, 122.58, 122.41, 112.00, 40.22. Melting
point: 153–154 ◦C.

35. (E)-2-((E)-3-(4-(dimethylamino) phenyl)allylidene)-3,4-dihydronaphthalen-1(2H)-one

1-tetralone (0.200 mL, 1.50 mmol) and 4-(dimethylamino)cinnamaldehyde (240 mg,
1.36 mmol) were dissolved in absolute ethanol (15 mL) and THF (1 mL) at 50 ◦C. The solution
was slowly cooled to room temperature, and 6 M NaOH (1 mL) was added dropwise during
this time. Precipitate slowly formed, and the reaction mixture was stirred for 1 h at room
temperature. A few chips of ice were added, and the reaction mixture was cooled in an ice
bath for 15 min. The precipitate was vacuum-filtered and washed with small portions of cold
water/ethanol solution to yield the desired chalcone as a red powder (191 mg, 46%). 1H-NMR
(300 MHz, Chloroform-d) δ 8.11 (d, J = 7.7 Hz, 1H), 7.60 (dd, J = 8.1, 2.3 Hz, 1H), 7.44 (m, 3H),
7.35 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 6.5 Hz, 1H), 7.05–6.85 (m, 2H), 6.68 (d, J = 8.7 Hz, 3H), 3.02
(s, 6H), 3.00 (s, 4H). 13C-NMR (75 MHz, Chloroform-d) δ 187.25, 150.88, 143.36, 142.10, 137.61,
134.16, 132.68, 131.51, 128.72, 128.06, 127.97, 126.86, 124.77, 119.12, 112.04, 40.26, 28.79, 25.77.
Melting point: 145–147 ◦C softening, 275–285 ◦C melting.

4.2. In Vitro Assay

To test the anti-aggregation effects of the different compounds, the SensoLyte Thioflavin
T β-Amyloid (1–42) Aggregation kit was purchased, and assays were performed as de-
scribed in the literature [16–18].
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4.2.1. Thioflavin T (ThT) Fluorescence Assay

Samples of ThT (final concentration of 200 µM) and amyloid-beta (1–42) peptide (final
concentration of 35 µM) were incubated at 37 ◦C in a black µClear bottom 96-well plate.
The ThT fluorescence intensity of each sample was immediately measured every 5 min
for 120 min with 440⁄485 nm excitation/emission filters and with 15 s shaking between
reads to facilitate aggregation. An inhibitor control contained Aβ42 and an aggregation
inhibitor was supplied (either Morin or Phenol Red) at a final concentration of 100 µM.
Positive control contained Aβ42 without inhibitor. The vehicle control contained the assay
buffer and DMSO, of concentrations that did not exceed 1%. The tested compound wells
contained Aβ42 peptide and either the homotaurine, chalcone, or homotaurine/chalcone
derivatives at various concentrations. All the wells were brought to 100 µL as a final
volume [16–18].

4.2.2. In Vitro Cell Viability Assay
Cell Culture and Exposure

SH-SY5Y cells (CRL-2266, ATCC, Manassas, VA) were maintained in Dulbecco’s Modified
Eagle’s Medium and Ham’s F-12 Medium (DMEM:F12) supplemented with 10% fetal bovine
serum and 1% penicillin/streptomycin and incubated at 37 ◦C, 5% CO2, and 90% humidity.
For the MTT assay, cells were subcultured using trypsin-ethylenediaminetetraacetic acid
(EDTA) (0.25%) solution into 96-well plates at a density of 2 × 104 cells/well and allowed to
adhere for 24 h. Following the removal of growth media, compounds (IC50), Aβ42 at a final
concentration of 20 µM, compound + Aβ42, along with positive (500 µM H2O2) and vehicle
controls were added to separate wells in triplicate. Cells were then incubated for 48 h.

Failures

We evaluated LDH release [19], CellTiter Glo [20], and MTS assays [21]. These did not
produce any useful results.

MTT Assay and Cell Viability

The MTT [22] assay was used as a measure of cell viability with metabolically active
cells reducing the MTT reagent into insoluble formazan. Briefly, following the removal
of media, 100 µL of 0.5 mg/mL MTT reagent was added to each well, and the plate was
incubated at 37 ◦C, 5% CO2, and 90% humidity for 3 h. At the end of this incubation, the
MTT reagent was removed, and 100 µL of DMSO was added to dissolve the insoluble
formazan. Following a 1 h incubation with DMSO at 37 ◦C, 5% CO2, and 90% humidity,
the plate was read at 570 nm.

Statistical Analysis

All statistical analyses were performed using GraphPad Prism 9 (GraphPad, LaJolla,
CA). Data were compared by one-way ANOVA followed by Tukey’s post hoc test to
compare the differences between all treatment groups (p < 0.05 considered significant). The
results are expressed as the mean ± S.E.M. of multiple experiments where n represents the
number of individual cell passages.
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