
Citation: Kleiner, Y.; Bauer, A.;

Hammann, P.; Schuler, S.M.M.;

Pöverlein, C. Total Synthesis of

Floyocidin B: 4,5-Regioselective

Functionalization of 2-Chloropyridines.

Chemistry 2023, 5, 168–178. https://

doi.org/10.3390/chemistry5010014

Academic Editors: Angelo Frongia

and George O’Doherty

Received: 25 November 2022

Revised: 2 January 2023

Accepted: 9 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Total Synthesis of Floyocidin B: 4,5-Regioselective
Functionalization of 2-Chloropyridines
Yolanda Kleiner 1, Armin Bauer 2, Peter Hammann 3,4, Sören M. M. Schuler 1,4,* and Christoph Pöverlein 2,*

1 Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources,
35392 Giessen, Germany

2 Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, 65926 Frankfurt, Germany
3 Sanofi-Aventis Deutschland GmbH, R&D Infectious Diseases, 65926 Frankfurt, Germany
4 Evotec International GmbH Infectious Diseases—Natural Product Research, 37079 Goettingen, Germany
* Correspondence: soeren.schuler@evotec.com (S.M.M.S.); christoph.poeverlein@sanofi.com (C.P.);

Tel.: +49-551-505580 (S.M.M.S.); +49-69-305-18399 (C.P.)

Abstract: The recently discovered natural product (NP) (+)-floyocidin B with antimicrobial activity
against Mycobacterium tuberculosis displays a hitherto unknown dihydroisoquinolinone scaffold in
the class of the epoxyquinone NPs. The 4,5-regioselective functionalization of 2-chloropyridines
was identified as a suitable strategy leading to the total syntheses of (+)-floyocidin B and analogs.
In this paper, we present the long and winding evolution process to the final synthetic pathway,
including model systems for route scouting and elucidation of side products, which enabled us
to understand the unique reactivity of this unprecedented scaffold. A special focus was laid on
method studies with different 2-chloropyridines, disclosing an unexpected effect of the 2-chloro
substituent on the regioselectivity compared to 2-unsubstituted or carbon-substituted pyridines.
Finally, a head-to-head comparison with the previously described synthesis of all four stereoisomers
of the NP (−)-avicennone C revealed significant differences in the reactivity of these structurally
closely related scaffolds.

Keywords: natural products; total synthesis; (+)-floyocidin B; (−)-avicennone C; 2-chloropyridines;
bromine–magnesium exchange; antimicrobial activity; Mycobacterium tuberculosis

1. Introduction

The class of the epoxyquinone natural products (NPs) [1] is known for its structural
novelty and compounds with interesting biological activities. Antimicrobially active (+)-
ambuic acid (1) [2] represents a prominent example, which inspired synthetic chemists to de-
velop several total syntheses for this epoxyquinone (Figure 1) [3–5]. During a recent activity-
guided screening campaign for new antitubercular NPs, further natural epoxyquinone
congeners such as (+)-floyocidin A (3) and B (4) were discovered (Figure 1) [6]. Similarly to
the structurally related NP (−)-avicennone C (2), for which the relative stereochemistry
was misassigned based on nuclear magnetic resonance (NMR) data [7,8], structure eluci-
dation of (+)-floyocidin B (4) was only possible by total synthesis [6]. Subsequently, the
active-to-hit evaluation with (+)-floyocidin B (4) as a starting point resulted in synthetic
analogs with even higher activities against Mycobacterium tuberculosis [6].

Our previously reported syntheses of all four stereoisomers of the NPs (−)-avicennone
C (2) [8] and the newly discovered (+)-floyocidin B (4) [6] for structure elucidation were the
results of extensive route scouting [9]. Due to their structural similarity, the development of
the total syntheses of 2 and 4 was performed simultaneously, and all gathered information
about the chemical behavior was mutually adapted. Within this publication, we intend
to present the full story of our route scouting as a case study with a special focus on
the 4,5-regioselective functionalization of 2-chloropyridines, which may be of interest for
further synthetic applications, e.g., in the field of medicinal chemistry.
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Figure 1. Structures of NPs (+)-ambuic acid (1), (−)-avicennone C (2), and structurally related NPs 

(+)-floyocidin A (3) and (+)-floyocidin B (4). 
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For the total synthesis of (+)-floyocidin B (4) [6], chloro intermediate 5 was chosen as 

a key intermediate since it strategically allows not only for a late introduction of the pen-

tenyl chain via Suzuki coupling, but also for a flexible decoration of the scaffold, which is 

advantageous for structure–activity relationship (SAR) investigations. Retrosynthetically, 

intermediate 5 was simplified to 2-chloro-4,5-substituted pyridines 6, which should be 

accessible from readily available 2-chloropyridines (Scheme 1). After an extensive litera-

ture search on regioselective pyridine functionalizations, we focused on three strategies 

considered to be promising for further investigations: (1) the 5-selective functionalization 

of 2-chloroisonicotinic acid (7) [10–12], (2) the 4-selective functionalization of 2-chloronic-

otinic acid (8) [13,14] or 2-chloro-5-bromopyridine (9) [15], and, finally, (3) the 5-selective 

halogen–metal exchange of the trihalogenated 2-chloro-4,5-dibromopyridine (10), which 

was unprecedented at the time when we started our investigations. 

 

Scheme 1. Retrosynthetic analysis of 2-chloro-4,5-substituted pyridines 6 [10–15]. 

2. Materials and Methods 

Synthetic procedures and corresponding analytic data can be found in the Supple-

mentary Materials. 

Figure 1. Structures of NPs (+)-ambuic acid (1), (−)-avicennone C (2), and structurally related NPs
(+)-floyocidin A (3) and (+)-floyocidin B (4).

For the total synthesis of (+)-floyocidin B (4) [6], chloro intermediate 5 was chosen
as a key intermediate since it strategically allows not only for a late introduction of the
pentenyl chain via Suzuki coupling, but also for a flexible decoration of the scaffold,
which is advantageous for structure–activity relationship (SAR) investigations. Retrosyn-
thetically, intermediate 5 was simplified to 2-chloro-4,5-substituted pyridines 6, which
should be accessible from readily available 2-chloropyridines (Scheme 1). After an exten-
sive literature search on regioselective pyridine functionalizations, we focused on three
strategies considered to be promising for further investigations: (1) the 5-selective func-
tionalization of 2-chloroisonicotinic acid (7) [10–12], (2) the 4-selective functionalization of
2-chloronicotinic acid (8) [13,14] or 2-chloro-5-bromopyridine (9) [15], and, finally, (3) the
5-selective halogen–metal exchange of the trihalogenated 2-chloro-4,5-dibromopyridine
(10), which was unprecedented at the time when we started our investigations.
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Scheme 1. Retrosynthetic analysis of 2-chloro-4,5-substituted pyridines 6 [10–15].

2. Materials and Methods

Synthetic procedures and corresponding analytic data can be found in the
Supplementary Materials.

3. Results and Discussion

Our first strategy to access key intermediate 2-chloro-4,5-substituted pyridine 6 was
based on the work of Basarab et al. [10], who reported a selective functionalization of
2-chloroisonicotinic acid (7) in position 5 by directed ortho-lithiation using lithium tetram-
ethylpiperidine (LiTMP), followed by trapping of the lithium species with DMF and conver-
sion to the ethyl ester 11. However, we wanted to avoid the formation of a reactive aldehyde
resulting from using DMF as the electrophile. Therefore, we chose benzaldhehyde as the
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test electrophile. The reaction resulted in lactone 12 as a single product, which was spon-
taneously formed from the initial addition product during aqueous work-up (Scheme 2).
NMR analyses indicated functionalization at position 3, which is in accordance with the
results reported by Boral et al. [11] and Haga et al. [12]. In order to evaluate the influence
of the 2-chloro substituent on the regioselectivity of the metalation, 2-alkenyl-substituted
isonicotinic acid 14 was used, which was obtained from methyl ester 13 by Suzuki cross-
coupling and saponification. Lithiation of 14 and reaction with benzaldehyde exclusively
gave lactone 15 with the desired regioselectivity (Scheme 2). To the best of our knowledge,
no examples of functionalization of 2-alkyl-, 2-alkenyl-, and 2-aryl-substituted isonicotinic
acids by lithiation are known in the literature. However, Johnston et al. published a directed
ortho-arylation by palladium-catalyzed C–H activation of 2-alkyl-substituted isonicotinic
acids with the same regioselectivity [16].
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Scheme 2. Functionalization of 2-substituted isonicotinic acids 7 and 14 [10]. Conditions: (a) n-BuLi,
TMP, THF, −78 ◦C to −30 ◦C, 5 min; 7, −60 ◦C to −25 ◦C, 30 min; PhCHO, −78 ◦C, 2 h; (b) APhos
Pd G3 (0.1 eq.), Cs2CO3, trans-1-penten-1-ylboronic acid pinacol ester, 1,4-dioxane/H2O 8:1, 100 ◦C;
(c) LiOH, THF/H2O 10:1; (d) n-BuLi, TMP, THF, −78 ◦C to −30 ◦C, 5 min; 14, −60 ◦C to −25 ◦C,
30 min; PhCHO, −78 ◦C, 2 h.

Strategy two relied upon work on the lithiation of 2-chloronicotinic acid (8) and its
di-isopropyl amide (18) with LiTMP, which is reported to proceed with excellent selectivity
for the 4-position [13,14,17,18]. Additionally, Hyde et al. reported a lithiation of 2-chloro-5-
bromopyridine (9) using LDA with the same regioselectivity [15]. However, a bromo- or
iodo- in place of a carbonyl substituent would be advantageous for the execution of our
envisaged cyclization strategies towards 4. Therefore, 9 served as the starting point for
the synthesis of model compounds for cyclization. Trapping of lithiated 9 with Weinreb
amides 21, 22, and 23 (Appendix A1) gave access to the putative cyclization precursors 24
(Appendix A2), 25, and 26 (Scheme 3).

Precursors 25 and 26 enabled us to evaluate potential cyclization strategies on sim-
plified model systems. Those reactions served as pilots for our total syntheses of the NPs
(−)-avicennone C [8] and (+)-floyocidin B [6]. Under standard Heck conditions, slow
conversion of 25 into the exomethylene cylohexenone 27 and its aromatic isomer 28 was
observed. Increased temperature led to full conversion of the starting material but yielded
28 as the major product, which pointed to the fact that for an improved synthesis strategy,
a higher substituted cyclization precursor would be required to prevent aromatization via
tautomerization and isomerization (Scheme 4). Guided by these findings, the palladium-
catalyzed cyclization for the total synthesis of (−)-avicennone C (2) was developed [8]. The
main differences lay in the presence of the aldehyde moiety instead of the terminal double
bond and in a higher functionalized precursor preventing aromatization (Scheme 8) [8].
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(0.05 eq.), NEt3, MeCN, reflux, 24 h; 4% for 27, 4% for 28, 56% reisolated 25; (b) Pd(PPh3)2Cl2
(0.05 eq.), NEt3, DMF, 120 ◦C, 16 h; traces for 27, 51% for 28; (c) LiBH4, THF; (d) TIPSOTf, 2,6-lutidine,
CH2Cl2; (e) n-BuLi, THF, −100 ◦C, 25 min.

Our initial plan using 26 for a bromine–lithium exchange followed by spontaneous
cyclization failed since we were unable to protect the ketone of 26 as a cyclic ketal
(Appendix A3). In order to circumvent this issue, reduction to the corresponding alcohol
and subsequent TIPS-protection was performed. The resulting diastereomeric mixture
29 was treated with n-BuLi at −100 ◦C yielding acyclic debrominated compound 30 as a
diastereomeric mixture and cyclohexanone 31 as a single diastereomer. The outcome of
this test reaction proved that careful control of the equivalents of n-BuLi employed led to a
selective bromine–lithium exchange without nucleophilic attack of n-BuLi to the ester. The
formation of debrominated compound 30 emphasized the requirement for either longer
reaction times or higher temperatures for the cyclization, and the occurrence of 31 as a
single diastereomer demonstrated a kinetic preference for the cyclization of one diastere-
omer. Optimization of the reaction conditions led to the alternative cyclization strategy in
the total synthesis of (−)-avicennone C (2), in which the tert-butyl ester was replaced by a
nitrile (Scheme 8) [8]. However, the positions of the ketone and protected alcohol function
of 31, respectively, are inverted compared to the envisaged intermediate 5 of the synthesis
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of (+)-floyocidin B (4) (Scheme 4). Thus, we adapted these findings to our retrosynthetic
analysis, in which position 5 of the 2-chloropyridine should be functionalized first and the
ring closure should occur on position 4. These considerations culminated in strategy 3,
which required the hitherto undisclosed trihalogenated 2-chloro-4,5-dibromopyridine (10)
as a starting material.

In order to explore the regioselectivity of halogen–metal exchange reactions of trihalo-
genated pyridine 10, the metalation of 3,4-dibromopyridine (32) by bromine–magnesium
exchange followed by quenching with an electrophile served as a model reaction for our
approach. The reported regioselectivity with benzaldehyde [19,20] favoring regioisomer
34 was reproducible in our hands (Scheme 5, condition a). Encouraged by this result, we
wanted to apply these conditions to the hitherto unknown 2-chloro analog 10 (Scheme 5), for
which a synthetic access had to be developed. Halogenation of 2-chloro-5-bromopyridine
(9) was not an option since trapping of the lithiated species with a bromination reagent
such as NBS would result in an oxidative dimerization [21–24]. Finally, the Sandmeyer
reaction of commercially available aminopyridine 35 yielded 10 in excellent yields using
water-free reaction conditions (Scheme 5, condition b) [25], while under classical Sandmeyer
conditions in aqueous medium, only moderate yields were observed due to low solubility
of the starting material 35 and side-product formation (see Supplementary Materials).
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Scheme 5. Model studies on the regioselectivity of halogen-magnesium exchange on different
pyridines [6,20]. Conditions: (a) i-PrMgCl, THF, rt, 1 h; PhCHO, rt, overnight, 72% (sum of isomers),
lit. [20]: 97%; (b) t-BuONO, CuBr2, MeCN, 0 ◦C to rt, 97%; (c) i-PrMgCl, THF, rt, 1 h; PhCHO, rt,
overnight; 56% (sum of isomers); (d) i-PrMgCl, THF, 0 ◦C, 15 min; PhCHO, 0 ◦C to rt, overnight;
(e) i-PrMgCl, THF, 0 ◦C, 50 min; PhCHO, 0 ◦C to rt, overnight; (f) i-PrMgCl, THF, −78 ◦C, 30 min;
PhCHO, rt, overnight; (g) i-PrMgCl · LiCl, THF, −78 ◦C, 30 min; PhCHO, rt, overnight; (h) LDA, THF,
−78 ◦C, 1 h 10 min; PhCHO, −78 ◦C, 1 h, 49%; (i) i-PrMgCl, THF, −78 ◦C, 20 min; PhCHO, −78 ◦C,
1 h.

Prior to our regioselectivity optimization studies for the synthesis of the desired isomer
37 from 10, the undesired pure regioisomer 36 was prepared independently as an analytical
reference compound starting from 9 [15] (Scheme 5, condition h) (Appendix A4). Our
first attempt using 10 and i-PrMgCl at room temperature gave a selectivity of approxi-
mately 2:1 in favor of the undesired regioisomer 36 (Scheme 5, condition c) (Appendix A5).
The observation that product ratios determined by LC-MS and calculated from isolated
yields are compatible enabled us to evaluate the regioselectivities of the model reactions
without isolation of the diastereomers. Lower reaction temperatures, different reaction
times (Scheme 5, condition d–f), and the use of Knochel’s turbo Grignard reagent [26,27]
(Scheme 5, condition g) did not improve the ratio toward the desired diastereomer 37.
Analogously to the 2-chloroisonicotinic acids (Scheme 2), the 2-chloro substituent of pyri-
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dine 10 had a strong impact on the observed regioselectivities, which were inverted with
respect to the 2-unsubstituted pyridine 32. Therefore, the desired selectivity of the halogen–
magnesium exchange had to be achieved by a starting material with increased reactivity
at the 5-position. Hence, we replaced 10 by the 5-iodopyridine 39 (Scheme 5, condition i),
which was synthesized analogously to the bromo-analog 10 by Sandmeyer reaction [6].

With trihalogenated pyridine 39 in hand, we started our first generation synthesis of
(+)-floyocidin B (Scheme 6). Indeed, halogen–magnesium exchange of 39 with i-PrMgCl
occurred selectively at the iodinated 5-position and trapping of the magnesium organyl
with aldehyde 40 led to regioselective formation of the two diastereomeric alcohols 41 and
42 in good yields, which were separated by flash chromatography [6]. TIPS-protection
of the alcohol function and selective deprotection yielded primary alcohols 44 and 50 in
only moderate yields due to considerable double-deprotection. In contrast, in the total
synthesis of (−)-avicennone C (2), the deprotection of very similar compounds resulted
in significantly higher selectivities (Scheme 8) [8]. Oxidation of primary alcohols 44 and
50 to aldehydes 46 and 52 with Dess–Martin periodinane (DMP) occurred smoothly. The
intramolecular cyclization was performed under the palladium-catalyzed conditions de-
scribed by Muratake et al. [28,29], which were applied for the first generation synthesis
of (−)-avicennone C (2), too. In these reactions, side products were formed even under
carefully monitored conditions for both diastereomers. The desired products 5 and 53 were
isolated in low yields accompanied by secondary alcohols 47 and 54, which could easily
be reoxidized with DMP (not shown). In the cyclization reaction of 46, the tetracyclic side
product 48 was isolated from the reaction mixture, and its structure was elucidated by
NMR analyses (Scheme 6).
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Scheme 6. Synthesis of aldehydes 46 and 52 and palladium-catalyzed cyclization. Conditions:
(a) i-PrMgCl, THF, −40 ◦C, 45 min; 40, −40 ◦C, 1.5 h; 49% for 41, 42% for 42 [6]; (b) TIPSOTf, 2,6-
lutidine, CH2Cl2; 69% for 43, 90% for 49; (c) NH4F, MeOH/THF 12:1; 28% for 44, 53% for 45, 17% for
50, 61% for 51; (d) DMP, CH2Cl2; 92% for 46, 95% for 52; (e) PdCl2(PPh3)2 (0.1 eq.), Cs2CO3, toluene,
reflux; 16% for 5, 15% for 47, 10% for 48, 42% for 53, 15% for 54.
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The introduction of the pentenyl side chain was performed under Suzuki cross-
coupling conditions, which had yielded model compound 14 in good yields (Scheme 2).
However, only traces of the target molecule 55 were obtained (Scheme 7). Isolation and
structure elucidation of the side products 56 and 57 identified the prenyl group and its
reactivity in palladium-catalyzed reactions as the main cause for the low yield of 55. A
similar tricyclic side product 58 was observed during the palladium-catalyzed reaction in
the total synthesis of (−)-avicennone C (2) [8]. Careful monitoring led to an improved yield
of 51% for 55 and less side-product formation. The total synthesis of (+)-floyocidin B (4)
was completed after TIPS-deprotection (Scheme 7) [6].
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Scheme 7. Suzuki reaction and investigation on cyclic side products [8]. Conditions: (a) APhos Pd
G3 (0.1 eq.), Cs2CO3, trans-1-penten-1-ylboronic acid pinacol ester, 1,4-dioxane/H2O 8:1, 100 ◦C; 4%
for 55, 27% for 56, 12% for 57; under carefully monitored conditions: 51% for 55; (b) TBAF, HOAc,
THF; 60% [6].

The low-yielding reactions forced us to modify the strategy for the total synthesis of
the other stereoisomers and the resynthesis of (+)-floyocidin B (4) to provide the required
amounts for biological and physicochemical profiling. Significantly improved yields were
achieved by a modified protection-deprotection strategy for the primary alcohols 44 and 50
utilizing acetate protection and selective acetyl migration (Scheme 8) [6]. A head-to-head
comparison of the total syntheses of the avicennone C and the floyocidin B stereoisomers
uncovered significant differences in the reactivity of these scaffolds, which only differ in
the presence of the 2-chloropyridine in place of a phenyl moiety. While, in general, all
reactions could be mutually adapted from one scaffold to the other, yields and side-product
formation occurred differently. The discrepancy in yields of the two routes toward the
primary alcohols 44/50 and 63/64 may be explained by the weak basicity of the pyridine,
which favors yield-reducing double-deprotection in the shorter route and promotes acetyl
migration in the four-step sequence.

The palladium-catalyzed intramolecular cyclization of aldehydes 46, 52, 65, and 66
gave only low (16% for 5) to moderate (42–48% for 53, 67, and 68) yields due to side-product
formation and required an improvement (Scheme 8). A cyclization via bromine–lithium
exchange of nitrile intermediates 59, 60, ent-69, and 70 led to yields > 80% in three of
four cases. Surprisingly, the diastereomer 59 leading to the NP gave reproducibly low
yields of the advanced intermediate 5, while the cyclizations for the other nitriles occurred
smoothly. We can only hypothesize that either sterical or electronical properties of the
linear precursors 46 and 59 with the same relative stereochemistry slow down the desired
cyclization, which is responsible for the formation of different side products. For the
material supply, this major drawback was partially compensated by a recycling strategy
of the hydroxyl-epimer of (+)-floyocidin B (4) via Mitsunobu inversion and subsequent
saponification [6].
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Scheme 8. Head-to-head comparison of key steps of the total syntheses of (+)-floyocidin B (4) [6] and
(−)-avicennone C (2) [8] and their epimers.

4. Conclusions

In conclusion, robust, scalable, and flexible synthetic routes to all possible stereoiso-
mers of the epoxyquinone NPs (−)-avicennone C (2) and (+)-floyocidin B (4) have been
developed. These total syntheses allowed for unambiguous determination of the absolute
stereochemistry of the NPs to establish an access to a diverse variety of derivatives. Elu-
cidation of occurring side products led to a profound understanding of the reactivity of
the densely functionalized synthetic intermediates and enabled us to circumvent several
pitfalls in the synthetic pathways. Solely, the reproducible low yields in the synthesis of
advanced intermediate 5 via two different cyclization strategies remained a serious issue
for the material supply, which was partially compensated by a recycling strategy of the
hydroxy epimer of (+)-floyocidin B (4) via Mitsunobu inversion and subsequent saponifi-
cation [6]. It is one of these painful examples, which many synthetic chemists may have
experienced, in which diastereomers and even epimers can exhibit significantly different
chemical reactivities.
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Our observations on the regioselectivity of the functionalization of trihalogenated
pyridines established 2-chloro-4,5-dibromopyridine and 4-bromo-2-chloro-5-iodopyridine
as versatile starting materials for the preparation of orthogonally functionalized pyridine
derivatives. Due to the role of pyridines as privileged scaffolds in medicinal chemistry our
studies may be of general synthetic value beyond their importance for the SAR investiga-
tions on the (+)-floyocidin B scaffold.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemistry5010014/s1. The Supplementary Materials contain
detailed procedures for synthesis of compounds and analytical data including 1H- and 13C-NMR
spectra. They also include Scheme S1: Synthesis of the Weinreb amides 21, 22, and 23. Scheme S2:
Sandmeyer reaction in aqueous medium. Scheme S3: Hypothesized mechanism of the formation of
side product SI1 [30,31].
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Appendix A

1. Weinreb amides 21, 22, and 23 were prepared according to modified literature-
know procedures from diethyl malonate in 4 and 5 steps, respectively. For details see
Supplementary Materials (1.1.).

2. Ketone 24 could not be employed as a suitable precursor for further functionalization
by alkylation at the α-position, because reduction of the ketone to the alcohol by LDA
was identified as competing reaction. For details of synthesis of reduction product SI11
see Supplementary Materials (1.2.). Since the syntheses of 25 and 26 was possible using
Weinreb amides 22 and 23, no attempts were made to achieve alkylation of 24 using different
bases such as LiHMDS. Reduction of sterically hindered ketones using LDA is a known
phenomenon. [32–34]

3. Several attempts for protection were performed under literature known
conditions [35–37]. Forced reaction conditions only led to decomposition of ketone 26.

4. Comparison of the NOE correlations of 36 and 37 did not led to a fully convincing as-
signment of the regioisomers. Therefore 36 was synthesized by regioselective ortho-lithiation.

5. LC-MS analysis undercovered the formation of a side product SI1 during the
reaction at room temperature. Its structure elucidation and proposal for the mechanism of
its formation are provided in the Supplementary Materials.

https://www.mdpi.com/article/10.3390/chemistry5010014/s1
https://www.mdpi.com/article/10.3390/chemistry5010014/s1
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