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Abstract: Ring-current maps give a direct pictorial representation of molecular aromaticity. They can
be computed at levels ranging from empirical to full ab initio and DFT. For benzenoid hydrocarbons,
Hückel–London (HL) theory gives a remarkably good qualitative picture of overall current patterns,
and a useful basis for their interpretation. This paper describes an implemention of Aihara’s algorithm
for computing HL currents for a benzenoid (for example) by partitioning total current into its
constituent cycle currents. The Aihara approach can be used as an alternative way of calculating
Hückel–London current maps, but more significantly as a tool for analysing other empirical models of
induced current based on conjugated circuits. We outline an application where examination of cycle
contributions to HL total current led to a simple graph-theoretical approach for cycle currents, which
gives a better approximation to the HL currents for Kekulean benzenoids than any of the existing
conjugated-circuit models, and unlike these models it also gives predictions of the HL currents in
non-Kekulean benzenoids that are of similar quality.
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1. Introduction

Benzene was first isolated almost 200 years ago [1] and the term ‘aromatic’ came into
use as a description for this and similar compounds soon afterwards [2]. Since Kekulé’s
famous identification of the special structure of benzene [3], the importance, meaning and
even existence of ‘aromaticity’ have been hotly debated, and these discussions show no
sign of reaching a universally accepted conclusion [4–12]. However, one widely accepted
working criterion for aromaticity is the manifestation in a cyclic system of global currents
(ring currents) induced by application of an external magnetic field [13–20]. This definition
of aromaticity appeals to the community of theoretical chemists who calculate molecular
electric and magnetic response properties, and it has featured extensively in the scientific
career of Riccardo Zanasi, from their early work with Paolo Lazzeretti in Modena, to their
work over several decades with colleagues in Salerno. As a definition, it also has the
desirable feature that the criterion is, at least in principle, clearcut: either there is a global
current or not, and if there is one, it has a sense of circulation with respect to the axis
of the external field, which leads to a natural division of (monocyclic) ring systems into
disjoint aromatic, non-aromatic and anti-aromatic classes. This criterion is ideally suited to
probing by theoretical methods that calculate induced current either directly, or via other
response magnetic properties as proxies. The ring-current picture has a close connection to
experiment, through ring-current effects on 1H NMR chemical shifts [16,17] and ‘exaltation
of diamagnetism’ [13–15,21].

Over the last quarter of a century, the field has gained impetus from new possibilities
for plotting physically realistic ab initio maps of the current density induced by an external
magnetic field [22–25], and for interpreting these maps in terms of chemical concepts such
as orbital energy, symmetry and nodal character [20,25]. Riccardo Zanasi has participated
in all of these developments [26]. One paper from the Salerno group of particular relevance

Chemistry 2021, 3, 1138–1156. https://doi.org/10.3390/chemistry3040083 https://www.mdpi.com/journal/chemistry

https://www.mdpi.com/journal/chemistry
https://www.mdpi.com
https://orcid.org/0000-0002-0401-013X
https://orcid.org/0000-0003-2106-1104
https://doi.org/10.3390/chemistry3040083
https://doi.org/10.3390/chemistry3040083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/chemistry3040083
https://www.mdpi.com/journal/chemistry
https://www.mdpi.com/article/10.3390/chemistry3040083?type=check_update&version=1


Chemistry 2021, 3 1139

to the present topic is [27], where quantities from the Aihara model, to be discussed below,
are used to aid interpretation of ab initio current maps.

In this paper, we concentrate on the oldest model for mapping induced currents in
benzenoids and similar systems: Hückel–London (HL) theory [14,28], which can be formu-
lated in several equivalent ways: as a finite-field method [29], a perturbation method based
on bond-bond polarisabilities [30–33], or a treatment of current as the formal superposition
of cycle contributions [34,35]. The purpose of the present paper is to draw attention to
this third version of HL theory, which is associated with the name of the late Professor
Jun-Ichi Aihara. His innovative reformulation of the HL problem has not always received
the attention from other chemists that it deserves. Although the concepts that it generated,
such as Topological Resonance Energy, Bond Resonance Energy and Magnetic Resonance
Energy (TRE, BRE and MRE), are influential, it is rare to find examples of direct use by other
chemists of the specifics of the method itself. This may be because the Aihara formalism
employs a number of concepts from graph theory that are unfamiliar to most chemists, or
because the defining equations are scattered over a long series of interlocking papers, so
that their conversion to a workable algorithm has not always appeared straightforward.

Our aim here is to remedy this situation, by giving an explicit implementation. Our
main motivation was not to calculate HL current maps (for which several easily imple-
mented algorithms already exist), but to exploit the defining feature of Aihara’s approach:
the emphasis on cycle contributions to current, where every cycle within the molecular
graph, be it a chemical ring or larger, is taken into account. This feature has assumed
new relevance over the last decade with the revival of interest in conjugated-circuit (CC)
models [36–41]. A cycle C in a graph G is a conjugated circuit if both G and G–C (the
graph where all vertices of C and their associated edges have been deleted) have a perfect
matching. In a CC model, each conjugated circuit contributes currents along its edges, with
weights specific to the model [42].

Conjugated-circuit models have an attractive simplicity, but have crucial drawbacks
for non-Kekulean systems, where they predict zero current, and for Kekulean systems
with fixed bonds, where they predict ‘dead zones’ of vanishing current [43–45]. The
current maps from conjugated-circuit models can be seen as approximate versions of
HL current maps in which only certain ‘important’ cycles have been selected and given
model-dependent weightings. The Aihara approach can be used as a toolkit to test these
approximations, and to design better models.

Comparison of HL and CC currents in benzenoids by cycle size has allowed us to
evaluate these selection and weighting schemes, and to propose a new model, also based
on matchings, that gives an approximation to HL currents for both Kekulean and non-
Kekulean benzenoids that is better than any of the published CC models [43]. The dual
nature of HL theory as a graph theoretical method based on molecular-orbital theory,
makes it interesting to compare HL results with conjugated-circuit models on the one hand,
and with more sophisticated wavefunction and density functional approaches to electronic
structure on the other. The relevance of the present graph-theoretical investigation to ab
initio calculation is that HL currents already typically mimic pseudo-π currents [43], which
in turn are usually excellent mimics for current maps derived from full ab initio and density
functional calculations. Some systematic exceptions to this statement are discussed in [43].

The symmetries and energies of HL molecular orbitals provide a useful basis for
rationalising the frontier-orbital analysis of current maps obtained from ipsocentric cal-
culations at these higher levels [20,25], even though HL and ipsocentric definitions of
molecular-orbital contributions are markedly different. In delocalised π systems, current
maps calculated within the ipsocentric approach are dominated by the frontier orbitals. In
contrast, as usually formulated, HL currents in these systems have significant contributions
from lower-lying molecular orbitals
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Graph Theoretical Background

An undirected graph G consists of a set V of vertices and a set E of edges where each
edge corresponds to an unordered pair of vertices from V. We use n to denote the number
of vertices of a graph and m to denote the number of edges. A graph is planar if it can be
drawn in the plane with no crossing edges. When traversing the faces of a graph, each
edge (u, v) is treated as the two arcs (u, v) and (v, u). A traversal of each face of the graph
uses each arc exactly once.

The graphs considered in this paper are benzenoids. Benzenoids may be defined as
simply connected subgraphs of the hexagonal lattice composed of edge-fused hexagons.
Hence, they correspond to connected planar graphs having all internal faces of size 6.
The vertices on the interior have degree 3. The vertices on the perimeter (external face)
either have degree 2 or degree 3. As is well known, the π systems of benzenoids support
circulations of electrons induced by an external magnetic field with consequences for
magnetic susceptibilities and 1H NMR chemical shifts [13–17,21]. The calculation of this
magnetic response in HL theory requires an embedding of the molecular graph, with
explicit coordinates for the atomic positions. The embedding used here for benzenoids
idealises each carbon framework as planar and composed of regular hexagons of side 1.4 Å,
embedded without overlap in the hexagonal tessellation of the plane.

When representing current, the graph is converted to a directed graph. If there is a
current of magnitude k on arc (u, v) and a current of magnitude r on arc (v, u) then the net
current on arc (u, v) is equal to k− r. A current of magnitude k on arc (u, v) is equivalent
to a current of magnitude −k on arc (v, u). In our depictions of currents, the current
contributions and arc directions are shown so that all magnitudes are greater than or equal
to zero. In our maps, diatropic currents, representing aromatic currents, are those in a
counter-clockwise direction, and conversely paratropic currents, representing anti-aromatic
currents, are those in a clockwise direction.

By convention, the ‘absolute’ currents obtained from HL theory are often reported on
a scale where unit current is equal to the HL current along an edge of an isolated, neutral
benzene ring with side length 1.4 Å [46]. When comparing different models, it is more
useful to consider scaled current, as empirical methods for approximating currents give
relative and not absolute results. A scaled current is obtained from the current picture by
dividing the current value of each edge by the maximum current value. Scaled currents
have a current of one on each arc that bears maximum current.

2. The Hückel–London Model as a Superposition of Cycle Contributions

The Aihara formulation of Hückel–London theory was refined over a series of papers,
and here we give the working equations needed for its implementation. As a practical
check, our implementation was run on all the small benzenoids (both Kekulean and non-
Kekulean) having up to ten hexagons and the computed results matched against HL
currents from the standard finite-perturbation approach, giving computational verification
that our interpretation of the equations is correct. Aihara’s basic formalism was presented
in two papers from 1979 [34,35] in which the relationship to London’s approximations [14]
was established. In London theory, the effect of an external magnetic field is to perturb
the original Hückel secular matrix of the molecule, effectively converting the +1 entries in
the adjacency matrix into exponentials that reduce to +1 in the limit of vanishing applied
magnetic field. This gives an easily implemented finite-field version of HL theory, e.g., [29].
In contrast, the Aihara formalism is an analytic perturbation theory and hence the calculated
current densities are simple functions of field-free characteristic polynomials [47].

The first step is to find the eigenvalues λ1, λ2, . . . , λn of the adjacency matrix A(G)
of the graph G. The number of times that a value λk appears as an eigenvalue is the
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multiplicity of λk, denoted by mk. The multiplicity of the zero eigenvalue is the nullity of the
graph, η. The characteristic polynomial, PG(x), for a graph G is equal to

PG(x) = |x1−A(G)| =
n

∏
k=1

(x− λk), (1)

where 1 is the n × n identity matrix. If a graph has no vertices, then the characteristic
polynomial is 1.

In the Hückel model, eigenvectors of the adjacency matrix correspond to molecular
orbitals, and eigenvalues correspond to orbital energies. It is usual to choose α for the origin
of the energy scale and |β| for the energy unit, where α and β are the (negative) Coulomb
and Resonance integrals from Hückel theory. The energy of an electron occupying one
of the shell of mk degenerate orbitals that have eigenvalue λk in the field-free π-system is
then α + λkβ, giving the correspondence between values λk > 0, λk = 0, and λk < 0 and
the bonding, non-bonding or antibonding character of the shell, respectively. Electrons are
assigned to orbitals using the Aufbau and Pauli Principles and Hund’s Rule of Maximum
Multiplicity. In brief: orbitals are filled sequentially in non-increasing order of eigenvalues
(Aufbau), each orbital has a maximum occupancy of two electrons (Pauli), and where
mk > 1, no orbital receives a second electron until each of the orbitals in the given shell
contains at least one (Hund).

In practice, for calculations of HL currents the fractional occupation approximation
is used, where the average number of electrons per orbital over a given shell is taken as
the occupation number for every orbital in that shell. For the shell with eigenvalue λk, this
occupation number is denoted by nk. In cases where all nk are equal to 2 or 0, we have a
closed shell; otherwise there is partial occupation of some orbital or orbitals and we have an
open shell.

As benzenoids have bipartite molecular graphs, their Hückel eigenvalues and eigen-
vectors are subject to the Coulson-Rushbrooke Pairing Theorem [48]. If a bipartite graph
has an eigenvalue satisfying |λk| > 0, then the spectrum of the graph includes shells
with eigenvalues λk and −λk, with the same multiplicity. Moreover, to each of the mk
orthonormal eigenvectors for the λk shell there is an eigenvector in the−λk shell derived by
swapping the signs of all entries for vertices belonging to one partite set. Hence, a bipartite
molecular graph has equal numbers of bonding and anti-bonding molecular orbitals, and
the number of non-bonding orbitals (η) has the same parity as n, the number of conjugated
carbon centres. Application of Aufbau, Pauli and Hund rules for the neutral molecule
leads to an electron configuration with all bonding orbitals full (nk = 2), all anti-bonding
orbitals empty (nk = 0), and any non-bonding orbitals half full (nk = 1).

We can simplify the calculation of HL current for a benzenoid by noting that an
electron in a non-bonding orbital of a bipartite system makes no contribution to the total
current (see Section 3), so we may deal with the equivalent closed-shell system where
any non-bonding occupancies have been set to zero. This closed shell corresponds to
the neutral molecule for a Kekulean benzenoid, and otherwise to the cation of charge
+η. This simplification is specific to bipartite systems treated within the HL model. In
ipsocentric ab initio approaches [20,25,49], non-bonding orbitals may contribute current,
whether or not the molecular graph is bipartite. Consideration of the nearest closed-shell
for a non-Kekulean benzenoid has a direct chemical application in the study of benzenoid
cations; a modified CC approach has been used to give an account of the current maps for
these species [50].

Characteristic polynomials are manipulated in order to calculate a resonance energy
for each cycle C. The fundamental quantities in the Aihara analysis are Circuit Resonance
Energies (CRE), denoted by the symbol AC (originally RE(C) [51]) where C is any cycle in
G, conjugated or not. The CRE represents a partition of the Topological Resonance Energy
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into cycle contributions, interpretable as a gain or loss in energy arising from conjugation
along a cycle C [52,53]. It is defined in dimensionless form as [54]:

AC = 2∑
k

nk fk(λk), (2)

where nk is the (shell average) number of electrons in the orbital with eigenvalue λk, fk
is the function described below, and the sum in (2) runs over distinct values λk (each
eigenvalue counted once, irrespective of multiplicity). The value AC can be compared to
the standard case of neutral benzene, for which AC = 2/9 (see Section 5.1).

The function fk(λk) is defined in terms of the characteristic polynomials of graphs
G and G–C, and is described in different ways for cases with mk = 1 and mk 6= 1. In the
simple case where mk = 1, the function fk is

fk(x) =
PG–C(x)
Uk(x)

, (3)

where the polynomial Uk(x) is defined as

Uk(x) =
PG(x)

(x− λk)mk
. (4)

For mk = 1, Uk(λk) is equal to the first derivative of PG(x) evaluated at λk, i.e.,

Uk(λk) = PG
′(λk). (5)

In systems with degenerate orbitals, the contribution from these orbitals to the CRE must
account for the splitting induced by the external magnetic field [55]. To do so, the function
fk is defined as

fk(x) =
1

(mk − 1)!

{
dmk−1

dxmk−1
PG–C(x)
Uk(x)

}
x=λk

, (6)

If d0/dx0 is taken to be the identity, (3) is the formal limit of (6) for mk = 1.
The AC value for a given cycle can be converted into a Hückel–London cycle current,

JC, by accounting for the area of the cycle [56]. The cycle contribution to the total current-
density map is defined, again in dimensionless form, as

JC =

(
9
2

)
AC SC, (7)

Written in this way, the equation gives the cycle contribution as a multiple of the unit HL
current for neutral benzene [47]. The quantity SC is the area of cycle C in terms of benzene
rings. In benzenoids, SC is therefore simply the number of hexagons enclosed by the cycle.
In non-benzenoids, SC is the area of the cycle normalised to that of a hexagon, i.e., the faces
inside the cycle are considered to be regular polygons and their areas are summed and
divided by the area of a regular hexagon with the same side length. Hence, each polygonal
ring of size p that is enclosed by cycle C contributes p

√
3 cot(π/p)/18 to SC.

The HL current-density map for a benzenoid is obtained edge by edge by summing
contributions from all cycles that pass through the given edge to assign the bond current.
A more compact representation uses ring currents assigned to the faces; current on a perimeter
edge equates to the ring current for the face containing it; current on an interior edge is the
vector sum of the ring currents flowing in the two faces that meet along that edge.

We denote the ring current of a face F by ĴF. Note that the ring current on a face
in a polycyclic system is not in general equal to the current contribution for that same
cycle as given by the Aihara formula (7). The two are of course equal for benzene, and
unscaled ring currents in dimensionless form are therefore also specified as ratios to the
benzene value.
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The sum of AC values over all cycles is used to define as a proposed aromaticity index,
the magnetic resonance energy (MRE) of G [57]:

MRE = ∑
C

AC. (8)

Aihara has argued that this index has a physical advantage over raw ring current as it
is independent of cycle area, whereas ring currents are not. One of their most recent
papers [58] is an encyclopaedic survey of the magnetic criteria of aromaticity, in which he
concludes that MRE is for many purposes an ideal aromaticity index. This paper also gives
a good working summary of all the basic equations of the Aihara approach.

A third cycle property related to aromaticity on the magnetic definition is the magnetic
susceptibility of a cycle C, χC, which has an even stronger dependence on cycle area and is
defined, again in dimensionless form referred to the susceptibility of benzene (which is
diamagnetic and therefore negative) as [35]:

χC = −
(

9
2

)
AC (SC)

2. (9)

The π-electron contribution to the molecular magnetic susceptibility, χ, is obtained by
summing χC over all cycles.

Thus, the three quantities of circuit resonance energy (AC), cycle current, (JC), and
cycle magnetic susceptibility (χC) all contain the same information, weighted differently.
Aihara’s objection to the use of ring currents as a measure of aromaticity also applies to
the magnetic susceptibility. A related point was made by Estrada [59], who argued that
correlations between magnetic and energetic criteria of aromaticity for some molecules
could simply be a result of underlying separate correlations of susceptibility and resonance
energy with molecular weight.

3. A Pairing Theorem for HL Currents

As noted above, bipartite graphs obey the Pairing Theorem [48]. The theorem implies
that when the eigenvalues of a bipartite graph are arranged in non-increasing order from
λ1 to λn, positive and negative eigenvalues are paired, with

λk = −λk, (10)

where k is shorthand for n− k + 1. If η is the number of zero eigenvalues of the graph,
n − η is even. Zero eigenvalues occur at positions ranging from k = (n − η)/2 + 1 to
k = (n + η)/2. HL currents for benzenoids and other bipartite molecular graphs also obey
a pairing theorem, as is easily proved using the Aihara Formulas (2)–(7),

We consider arbitrary elctron counts and occupations of the shells. Each electron in an
occupied orbital with eigenvalue λk makes a contribution 2 fk(λk) to the Circuit Resonance
Energy AC of cycle C (Equation (2)). The function fk(λk) depends on the multiplicity mk: it
is given by Equation (3) for non-degenerate λk and Equation (6) for degenerate λk.

Theorem 1. For a benzenoid graph, the contributions per electron of paired occupied shells to the
Circuit Resonance Energy of cycle C, AC, are equal and opposite, i.e.,

fk(λk) = − fk(λk). (11)

Proof. The result follows from parity of the polynomials used to construct fk(λk). The
characteristic polynomial for a bipartite graph has well defined parity, as

PG(x) = (−1)nPG(−x). (12)
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On differentiation the parity reverses:

PG
′(x) = (−1)n−1PG

′(−x). (13)

A benzenoid graph is bipartite, so all cycles C are of even size and PG–C(x) has the same
parity as PG(x):

PG–C(x) = (−1)nPG–C(−x). (14)

Therefore, for mk = 1,

fk(λk) = fk(x)

∣∣∣∣∣
x=λk

=
PG–C(x)
PG
′(x)

∣∣∣∣∣
x=λk

= −PG–C(−x)
PG
′(−x)

∣∣∣∣∣
−x=λk

= − fk(λk). (15)

The argument for the case for mk > 1 is similar. For a bipartite graph, the parity of PG(x)
can equally be stated in terms of order or nullity:

PG(x) = xη ∏
λ′k>0

(x2 − λ′k
2
) = (−1)η PG(−x). (16)

Functions Uk(x) and Uk(−x) are therefore related by

Uk(x) = (−1)mk+ηUk(−x), (17)

as PG(x) = (−1)η PG(−x) and Uk(x) and Uk(−x) are formed by cancelling mk factors
(x − λk) and (−x − λk) = (−1)(x + λk), respectively, from PG(x). Hence, the quotient
function P(x)/Uk(x) behaves as

PG–C(x)
Uk(x)

= (−1)n−mk−η PG–C(−x)
Uk(−x)

. (18)

Each differentiation flips the parity, and the pairing result for mk > 1 is therefore

fk(λk) = (−1)n−mk−η+mk−1 fk(λk) = − fk(λk). (19)

Some straightforward corollaries are:

Corollary 1. In the fractional occupation model, where all orbitals of a shell are assigned equal
occupation, paired shells of a bipartite graph that contain the same number of electrons make
cancelling contributions of current for every cycle C, and hence no net contribution to the HL
current map.

Corollary 2. In the fractional occupation model, all electrons in a non-bonding shell of a bipartite
graph (λk = λk = 0) make no contribution to any cycle current JC and hence make no net
contribution to the HL current map.

It should be noted that if a graph is non-bipartite, the non-bonding shell may con-
tribute a significant current in the HL model. Furthermore, if G is bipartite but subject to
first-order Jahn-Teller distortion, current may arise from the occupied part of an originally
non-bonding shell; this can be treated by using the form of the Aihara model appropri-
ate to edge-weighted graphs [58]. Corollary (2) also highlights a significant difference
between HL and ipsocentric ab initio methods. In the latter, an occupied non-bonding
molecular orbital of an alternant hydrocarbon can make a significant contribution to total
current through low-energy virtual excitations to nearby π∗ shells, and can be a source of
differential α and β currents.
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Corollary 3. In the fractional occupation model, the HL current maps for the q+ cation and q−
anion of a π system that has a bipartite molecular graph are identical.

We can also note that in the extreme case of the cation/anion pair where the neutral
system has gained or lost a total of nπ electrons, the HL current map has zero current
everywhere. For bipartite graphs, this follows from Corollary (3), but it is true for all
graphs, as a consequence of the perturbational nature of the HL model, where currents
arise from field-induced mixing of unoccupied into occupied orbitals: when either set is
empty, there is no mixing.

4. Implementation of the Aihara Method
4.1. Generating All Cycles of a Planar Graph

By definition, conjugated-circuit models consider only the conjugated circuits of the
graph. In contrast, the Aihara formalism considers all cycles of the graph. A catafused
benzenoid (or catafusene) has no vertex belonging to more than two hexagons. Catafusenes
are Kekulean. For catafusenes, all cycles are conjugated circuits. All other benzenoids have
at least one vertex in three hexagons, and have some cycles that are not conjugated circuits.

The size of a cycle is the number of vertices in the cycle. The area of a cycle C of a
benzenoid is the number of hexagons enclosed by the cycle. One way to represent a cycle
of the graph is with a vector [e1, e2, . . . em] which has one entry for each edge of the graph
where ei is set to one if edge i is in the cycle, and is set to 0 otherwise. When we add these
vectors together, the addition is done modulo two. The addition of two cycles of the graph
can either result in another cycle, or a disconnected graph whose components are all cycles.

A cycle basis B of a graph G is a set of linearly independent cycles (none of the cycles
in B is equal to a linear combination of the other cycles in B) such that every cycle of the
graph G is a linear combination of the cycles in B. It is well known that the set of faces
of a planar graph G is a cycle basis for G [60]. The approach that we use for generating
all the cycles starts with this cycle basis and finds the remaining cycles by taking linear
combinations.

The cycles of a benzenoid that have unit area are the faces. The cycles that have area
r + 1 are generated from those of area r by considering the cycles that result from adding
each cycle of area one to each of the cycles of area r. If the result is connected and is a cycle
that is not yet on the list, then this new cycle is added to the list.

For the Aihara approach, a counterclockwise representation of each cycle of the graph
is computed. It is easy to compute these as the cycles are generated. A face traversal
algorithm [61] first provides the internal faces as traversed in counterclockwise order. If a
new cycle C3 is a linear combination of C1 and C2 then arcs that are in both C1 and C2
disappear and the remaining arcs should be oriented in the same way as they are in the
cycle from which they came.

4.2. Efficient Computation of Necessary Derivatives

The derivative of a function f with respect to x is denoted here as f ′(x). We first
recall some elementary properties of the derivative. For a polynomial p(x) of degree n
that is equal to ∑n

i=0 cixi, the derivative p′(x) is equal to ∑n
i=1 ciixi−1. The product rule for a

function f (x) = p(x)q(x) states that f ′(x) = p(x)q′(x) + p′(x)q(x). The quotient rule for a
function f (x) = p(x)/q(x) states that f ′(x) = [ q(x)p′(x)− p(x)q′(x)]/

(
q(x)2).

In the set of small benzenoids we used for initial testing (Kekuléan benzenoids with
at most seven hexagons) the maximum multiplicity of an eigenvalue is four (implying that
the differentiation in the formula for fk(x) (Equation (6)) has to be applied three times).
If the quotient rule is applied directly without additional simplification, then the degree of
the denominator polynomial doubles. For example, starting with a polynomial of degree
30, results of one of degree 60. Differentiating a second time gives degree 120, and the third
differentiation gives degree 240. Polynomials of such large degree resulted in numerical
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instability in the computations. In order to correct this problem, we changed the way that
the differentiation was implemented. The new approach is as follows.

In the formula for fk(x) the two polynomials can each be expressed in the form
∏d

i=1(x − λi). For the numerator, PG–C(x), the λi values are just the eigenvalues of
G–C. For the denominator, Uk(x), they correspond to the eigenvalues of G with each
of the mk occurrences of an eigenvalue equal to λk excluded. For a polynomial p(x) =
(x − α1)(x − α2) . . . (x − αdp) we use the notation p(x)[−i] to denote the polynomial
(x − α1)(x − α2) . . . (x − αdp)/(x − αi)

mi or in equivalent product form, p(x) with the
mi terms of the form (x− αi) crossed out. (Eigenvalues αi, βi are not to be confused with
the Hückel integrals α, β.)

Suppose that the function that we want to differentiate is g(x) = p(x)/q(x) for
polynomials p and q with degrees dp and dq, p(x) = (x − α1)(x − α2) . . . (x − αdp) and
q(x) = (x− β1)(x− β2) . . . (x− βdq). Applying quotient and product rules and cancelling
out common terms in numerator and denominator gives this formula for g′(x):

g′(x) =
p(x)
q(x)

[ dp

∑
i=1

1
(x− αi)

−
dq

∑
j=1

1
(x− β j)

]
. (20)

Note that, with this approach, the maximum degree increases by one each time instead of
doubling. This results in better numerical stability.

For computing fk(λk), it is not necessary to use a data structure that represents
polynomials. Instead, vectors can be used. The recursive algorithm given below evaluates
fk at x = λk. The vectors (indexed starting from 0) are p[i]= x− αi+1 and q[i]= x− βi+1.
These are used to compute derivatives instead of computing characteristic polynomials
explicitly.

The function eval_deriv differentiates p(x)/q(x) power times, where the argument x
at which to evaluate the derivative has already been chosen and the vectors have been pre-
computed. If power is 0 then the answer is the product of the values p[0] to p[dp-1] divided
by the product of the values q[0] to q[dq-1]. Otherwise the answer is computed from:

f ′(x) = ∑
dp
i=1{p(x)[−i]/q(x)} − ∑

dq
j=1{p(x)/[q(x)(x − iβ j)]}. MAX_DEG is the maximum

degree of any polynomial.

double eval_deriv(int power, int dp, double p[MAX_DEG], int dq, double q[MAX_DEG])
{
double r[MAX_DEG];
double ans, top, bottom;
int limit, pos, i, j;
// When power is 0, stop taking derivatives and evaluate.
if (power == 0)
{
if (dp < dq) limit = dq;
else limit = dp;
ans = 1;
// The answer is the product of the p values divided by the product of the q values.
for (i = 0; i < limit; i++)
{
if (i < dp) top = p[i];
else top = 1;
if (i < dq) bottom = q[i];
else bottom= 1;
ans* = (top/bottom);
}
return(ans);
}
ans = 0;
// Compute qp’ / q^2 = p’/q.
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// Ignore if dp=0 since a polynomial of degree 0 has a derivative of 0.
if (dp > 0)
{
// If dp=1 then the polynomial is x-a0 and the derivative of this is 1.
if (dp == 1)
{
r[0] = 1;
ans+= eval_deriv(power-1, dp-1, r, dq, q);
}
else // dp > 1.
{
for (i = 0; i < dp; i++)
{
// Compute p(x)[-i]:
pos = 0;
for (j = 0; j < dp; j++)
{
if (i != j)
{
r[pos] = p[j];
pos++;
}
}
ans+= eval_deriv(power-1, dp-1, r, dq, q);
}
}
}
// Now subtract off p q’ / q^2

for (i = 0; i < dq; i++)
r[i] = q[i];
for (i = 0; i < dq; i++)
{
r[dq] = q[i];
ans -= eval_deriv(power-1, dp, p, dq+1, r);
}
return(ans);
}

5. Some Examples of the Aihara Model
5.1. The Basic Case: Benzene

Benzene is the standard against which aromaticity of other molecules is judged, and
is invoked in the dimensionless formulation of the Aihara Equations (2)–(9). For benzene,
the characteristic polynomial and its derivative are

PG(x) = (x2 − 4)(x2 − 1)2, (21)

PG(x)′ = 6x(x2 − 3)(x2 − 1). (22)

As benzene is a monocycle, PG–C(x) = 1. The eigenvalues are {+2,+1,+1,−1,−1,−2},
with occupation numbers in the neutral 6π system of {2, 2, 2, 0, 0, 0}. Hence, the first shell
has λ1 = 2 and n1 = 2 and, by (3),

f1(2) =
{

1
P′G(x)

}
x=+2

=
1
36

(23)



Chemistry 2021, 3 1148

and the second shell λ2 = 1 and n2 = 2 and, by (6),

f2(1) =
{

d
dx

1
(x2 − 4)(x + 1)2

}
x=+1

=
1
36

. (24)

Therefore, by (2), AC = 2/9. As SC = 1, the cycle contribution to current, which in this
case is also the ring current, is 1 (by (7), and the (diamagnetic) susceptibility is −1. The
value of AC for benzene is the reason for the factors of 9/2 in the other Aihara equations.

Notice that in the HL model half of the ring current arises from the 2π LOMO and
half from the 4π HOMO, in contrast to the ipsocentric picture where essentially the whole
of the π current arises from the HOMO [20].

5.2. An Analytical Example: The HL Current in Anthracene

Our approach is computational, but it is also interesting for interpretation purposes
to see how the various quantities in the Aihara cycle decomposition of HL current can
be worked out fully analytically in a simple case. The characteristic polynomial for an-
thracene is

PG(x) = x14 − 16x12 + 98x10 − 296x8 + 473x6 − 392x4 + 148x2 − 16

= (x− 2)(x + 2)
(

x2 + 2x− 1
)(

x2 − 2x− 1
)
(x− 1)2(x + 1)2

(
x2 − 2

)2
,

(25)

the roots of which are the eigenvalues of the adjacency matrix of the graph, split equally
between bonding and anti-bonding shells. As anthracene is a catafusene, the graph is
Kekulean and there are no non-bonding orbitals. The occupied orbitals of neutral an-
thracene correspond to eigenvalues

{
(1 +

√
2), 2,

√
2,
√

2, 1, 1, (−1 +
√

2)
}

. The unoccu-

pied orbitals correspond to eigenvalues
{
(1−

√
2),−1,−1,−

√
2,−
√

2,−(1 +
√

2)
}

. Thus,

anthracene has doubly degenerate pairs of orbitals at ±
√

2 and ±1. In the Aihara formal-
ism, every cycle within the graph is considered. For anthracene there are six possible cycles.
Three are the individual hexagonal faces, two result from the naphthalene-like fusion of
two hexagonal faces, and the final cycle is the result of the fusion of all three hexagonal
faces. The cycles and corresponding polynomials PG–C(x) are displayed in Table 1.

Table 1. Cycles and corresponding polynomials PG–C(x) in anthracene. Bold lines represent edges in
C; removal of bold and dashed lines yields the graph G–C.

Cycle Cycle Diagram PG–C(x)

C1 (
x4 − 2x3 − 2x2 + 3x + 1

)(
x4 + 2x3 − 2x2 − 3x + 1

)
C2 (

x4 − 2x3 − 2x2 + 3x + 1
)(

x4 + 2x3 − 2x2 − 3x + 1
)

C3 (
x2 + x− 1

)2(x2 − x− 1
)2

C4 (
x2 + x− 1

)(
x2 − x− 1

)
C5 (

x2 + x− 1
)(

x2 − x− 1
)

C6 1
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Individual circuit resonance energies, AC, can now be calculated using Equation (2).
For all occupied orbitals, nk = 2. Calculations can be reduced by accounting for symmetry-
equivalent cycles. For anthracene, six calculations of AC reduce to four as A1 = A2 and
A4 = A5.

First, the functions fk must be calculated for each cycle. For those eigenvalues with
mk = 1, fk is calculated using Equation (3), where the appropriate form of Uk(x) can be
deduced from the factorised characteristic polynomial in Equation (25). For those occupied
eigenvalues with mk = 2, fk is calculated using a single differentiation in Equation (6). This
procedure yields the AC values in Table 2.

Table 2. Circuit resonance energy (CRE) values, AC, calculated using Equation (2) for cycles of
anthracene. Cycles are labelled as shown in Table 1.

CRE Formula Value

A1 = A2
(

53+38
√

2
2128+1512

√
2
+ 19

252 + −83
√

2
392 + 13

36 + 53−38
√

2
1512
√

2−2128

)
=
(

55
126 −

12
√

2
49

)
≈0.0902

A3
(

153+108
√

2
2128+1512

√
2
+ −25

252 + −113
√

2
392 + 17

36 + 153−108
√

2
1512
√

2−2128

)
=
(

47
126 −

43
√

2
196

)
≈0.0628

A4 = A5
(

9+6
√

2
2128+1512

√
2
+ −5

252 + 85
√

2
392 + −11

36 + 9−6
√

2
1512
√

2−2128

)
=
(

25
√

2
98 −

41
126

)
≈0.0354

A6
(

1
2128+1512

√
2
+ −1

252 + −57
√

2
392 + 5

36 + 1
1512
√

2−2128

)
=
(

17
126 −

15
√

2
196

)
≈0.0267

Circuit resonance energies, AC, are converted to cycle current contributions, JC, by
Equation (7). These results are summarised in Table 3.

Table 3. Cycle currents, JC, in anthracene calculated using Equation (7) with areas SC, and values AC

from Table 2. Currents are given in units of the ring current in benzene. Cycles are labelled as shown
in Table 1.

Cycle Current Area, SC Formula Value

J1 = J2 1
(

55
28 −

54
√

2
49

)
≈0.4058

J3 1
(

47
28 −

387
√

2
392

)
≈0.2824

J4 = J5 2
(

225
√

2
98 − 41

14

)
≈0.3183

J6 3
(

51
28 −

405
√

2
392

)
≈0.3603

The significance of these quantities for interpretation is that they allow us to rank
the contributions to the total HL current, and see that even in this simple case there are
different factors in play. Notice that the contributions J1 and J3 are not equal. The two
cycles have the same area, and correspond to graphs G–C with the same number of perfect
matchings, so would contribute equally in a CC model. In the Aihara partition of the HL
current, the largest contribution from a cycle is from a face (J1 for the terminal hexagon),
but so is the smallest (J3 for the central hexagon). The contributions of the cycles that
enclose two and three faces are boosted by the area factors SC, in accord with Aihara’s ideas
on the difference in weighting between energetic and magnetic criteria of aromaticity [57].

Finally, the ring currents in the terminal and central hexagonal faces of anthracene
are calculated. They are listed in Table 4 and displayed in maps of ring and bond currents
in Figure 1. As they must, the currents correspond exactly to the results of the finite-field
numerical Hückel–London approach. Note that now the largest bond and ring currents
appear in the central hexagon, not in the terminal hexagons. Although the local cycle
contribution J1 is larger than J2, the ring current in the central hexagon has contributions
from more of the large cycles. The same effect is seen in CC models. The profile of
increasing ring current from the ends to the middle of a linear polyacene chain is also seen
in ab initio calculations. It has given rise to the so-called ‘anthracene problem’ [42,62],
which is seen as a difficulty for theories of local aromaticity, in itself a contentious concept.
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Table 4. Ring currents, ĴF, for the terminal and central rings of anthracene, calculated using the cycle
currents from Table 3. Currents are given in units of the ring current in benzene. Cycles are labelled
as shown in Table 1.

Face Contribution ĴF

Terminal hexagon J1 + J4 + J6 = J2 + J5 + J6
(

6
7 + 9

√
2

56

)
≈ 1.0844

Central hexagon J3 + J4 + J5 + J6
(

18
√

2
7 − 33

14

)
≈ 1.2794

(a) (b)

Figure 1. Hückel London ring-current maps for anthracene: (a) raw and (b) scaled currents.

5.3. A Numerical Example: An Non-Kekulean Case

As an illustration of how the Aihara version of the HL model deals with non-Kekulean
benzenoids, we take the 5-ring dibenzo-derivative of phenalenyl that is shown as (I) in
Figure 2a.

(a) (b)

Figure 2. A non-Kekulean benzenoid, I. (a) Labelling of faces. (b) Distribution of coefficients in the
unique non-bonding Hückel molecular orbital. For the normalised orbital, multiply all entries by
1/
√

22.

The graph (though not necessarily the molecule) has C2v symmetry, and three symmetry-
distinct hexagons, F1, F2, and F3, where the last two are related by symmetry to their images
F′2 and F′3. The five hexagonal faces generate 19 cycles, which give 12 distinct cases, up to
isomorphism, as listed in Table 5 along with their respective contributions to current.

Collecting contributions, the ring currents in the unscaled map are ĴF1 = 0.3864,
ĴF2 = 0.5000 and ĴF3 = 0.5568. Scaled to the maximum bond current, the ring currents
are ĴF1 = 0.6939, ĴF2 = 0.8980 and ĴF3 = 1.0000. All are positive and hence diatropic,
but arise from different balances of three terms: (i) the local contribution from the face
itself (strongest for F3), (ii) the diatropic contribution from the other cycles of size 2 mod
4 (strongest for face F2) (iii) the summed paratropic contribution from the cycles of size 0
mod 4 (weakest for F3). As Figure 2b shows, the terminal faces F3 and F′3, which support
the largest ring current, have the smallest contributions to local spin density in the neutral
radical from the single electron in the non-bonding Hückel molecular orbital.
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Table 5. Cycle contributions to HL current in the non-Kekulean benzenoid I. D and P stand for
diatropic and paratropic contributions, respectively.

Cycle Size Sc Composition JC Tropicity

C1 6 1 F1 +0.0795 D
C2 6 1 F2 ∼= F′2 +0.0852 D
C3 6 1 F3 ∼= F′3 +0.2386 D
C4 10 2 F1 + F2 ∼= F1 + F′2 +0.0795 D
C5 10 2 F2 + F′2 +0.0227 D
C6 10 2 F2 + F3 ∼= F′2 + F′3 +0.1705 D
C7 12 3 F1 + F2 + F′2 −0.0170 P
C8 14 3 F1 + F2 + F3 ∼= F1 + F′2 + F′3 +0.1193 D
C9 14 3 F2 + F′2 + F3 ∼= F2 + F′2 + F′3 +0.0341 D
C10 16 4 F1 + F2 + F′2 + F3 ∼= F1 + F2 + F′2 + F′3 −0.0227 P
C11 18 4 F2 + F′2 + F3 + F′3 +0.0455 D
C12 20 5 F1 + F2 + F′2 + F3 + F′3 −0.0284 P

6. A New Cycle Current Model

The implementation of the Aihara version of the HL model described in Section 4 was
used in our investigation of the possibility of improving existing conjugated-circuit models
of induced current. This stage of the work has been described in detail in [43], and here we
give only a brief sketch of the strategy and and an even shorter summary of the results.

6.1. Conjugated-Circuit Models of Current

As noted earlier, the conjugated-circuit (CC) model of aromaticity is based on the
idea that the important cycles in a π-system are those cycles C for which both G and G–C
have perfect matchings. By analogy with aromatic benzene and anti-aromatic cyclooctate-
traene, cycles of size 2 mod 4 or 0 mod 4 are taken to have positive or negative effects
on aromaticity. Initially, this idea was used as a way of correlating π resonance energy
with counts of cyclic substructures [36,63,64]. The idea was extended to the magnetic
criterion of aromaticity by associating contributions from conjugated circuits with para-
tropicity (antiaromaticity)/diatropicity (aromaticity), according to the divisibility of the
cycle size [37,39–41]. This is in effect an importation of monocycle results from HL theory,
in that Kekulé structures in themselves do not have an obvious connection to the direction
of current induced in ring by a perpendicular external magnetic field.

In the chemical literature, a popular approach to calculation of energetics and currents
was to construct all conjugated circuits by making pairwise unions of Kekulé structures
(perfect matchings) of the molecular graph G [39]. The union consists of a set of disjoint K2
units where these edges are in both matchings, and a collection of even cycles where the
edges in each cycle come alternately from the first and second matching. Some chemical
models distinguish between cases where the union of two Kekulé structures contains only
one cycle and where it contains a set of two or more disjoint cycles; with opinion divided
over whether the latter case should be included in CC models of current.

A simpler way to look at the array of different CC models, which leads to a framework
for classifying the various models is given in [42]. All the published CC models of current
are covered by a formula for the contribution of a cycle C to bond currents. Each CC model
attributes a bond current of [43]

wC(a, b) = ∓2|SC|am(G–C)bFC (26)

to each edge of the cycle, where the ∓ sign allows for the diatropic/paratropic sense of
the current and the factor of 2 arises from the two perfect matchings of an even cycle. The
parameter a (equal to −1, 0, or 1) defines the weighting by cycle area SC in the particular
model. The parameter b (equal to 1 or 2) defines how the weights in the model depend
on m(G–C). The factor FC is usually unity but allows for the extra parameters that are
introduced in some CC models. This factor has also been used to normalise CC currents in
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various ways, though this is not relevant for our comparisons of scaled current maps. The
published CC models and their parameters (a, b) are [43]:

Model R, a = 0, b = 2 [39], Model CKCDA, a = 1, b = 2 [40], Model M, a = −1,
b = 1 [41], and Model GM, originally with a = 1, b = 1, later used with b = 2 [37]. The
models that include non-trivial parameters FC are M and GM, as noted in [43]:

From the viewpoint of HL theory and the possibility of partitioning currents into cycle
contributions, all CC models are approximations in which the true HL cycle current JC
from Equation (7) has been replaced either by wC(a, b) when C is conjugated, and zero
otherwise. In fact, despite the different physical rationales for the choices of a, b and FC, all
CC models give qualitatively similar accounts of the current maps of most benzenoids.

However, as noted in the Introduction, the CC model maps diverge widely from HL
maps for benzenoids in two cases. The first is for the benzenoids with fixed bonds. These
are either perylenoids (Kekulean with fixed single bonds) or zethrenoids (Kekulean with both
fixed single and fixed double bonds). All fixed bonds carry zero current in the CC current
maps, as a fixed bond cannot appear in a cycle in the union of two perfect matchings. In
HL maps, however, such edges may carry significant current.

In the second case, the CC maps diverge from their HL counterparts in a more dramatic
way. This is for the non-Kekulean benzenoids. All CC models necessarily predict zero current
on all bonds of a non-Kekulean benzenoid, whereas the HL model gives a non-zero current
map for all benzenoid species with π electron counts between 1 and 2n− 1.

6.2. A Cycle-Current Model for All Benzenoids

Figure 3 gives an example of how CC and HL current maps can show major qualitative
differences. The example is zethrene, the smallest of the zethrenoid family. In this case,
the scaled map is identical for all CC models. This graph has five fixed single bonds
and two fixed double bonds in the bridge region, and hence vanishing CC current in all
bonds outside the terminal naphthalenoid units. However, the HL map shows currents
on the bridge with 40% of the maximum strength, and zero current in only one bond,
where it is forced by symmetry. Our goal was to find a cycle current model that would be
simple, give good current approximations overall, and avoids this ‘dead-zone’ limitation
of conjugated-circuit models.

(a) (b)

Figure 3. Current maps of zethrene. (a) Scaled CC current; (b) scaled HL current.

We use the notation ci(G) for the coefficient of xi in the characteristic polynomial of G.
Note that for a benzenoid G, c0(G) is 0 for odd n, and otherwise (−1)n/2m(G)2. The value
of c0(G) is also equal to the determinant of the adjacency matrix of G.

The new model was inspired by the Aihara partition of current, and the best form
for the first term turned out to be identical with that of the CKCDA model, which itself
was designed to have the same dependence on area as the Aihara expression (7) for cycle
current. The CKCDA model [40] can be thought of as assigning a current of weight
2SCc0(G–C)/c0(G) to each conjugated cycle C, with clockwise/anticlockwise sense for
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cycles of length 4n or 4n + 2, respectively. We took this as the first term of the new
approximation formula.

In order to ensure that some current is predicted in the non-conjugated cycles, a
second term was included. Experimentation suggested adding a term proportional to
2SCc2(G–C)/c2(G). This term is analogous to the first term, but involves the next (x2)
coefficients in the characteristic polynomials for the bipartite graphs G and G–C.

For a nonsingular matrix A, the classical adjoint matrix for A, denoted Adj(A) is equal
to A−1/Det(A). Application of Jacobi’s theorem allows the value of c2(G) to be computed
in O(n2) time given the classical adjoint matrix.

The relative weight of first and second terms gives a disposable parameter in the new
model, and after further experimentation it was decided to settle for a weighting of 4. This
gives a formula for cycle contributions in Kekulean benzenoids that depends on the tail
coefficients (i.e., those of x0 and x2) in PG(x) and PG–C(x):

wC(W) = 2SC

{
c0(G–C)

c0(G)
+ 4

c2(G–C)
c2(G)

}
. (27)

As a last step, to ensure that some current is predicted for non-Kekulean benzenoids, we
rewrite this formula in a more general way, replacing c0 by cη and c2 by cη+2, where η is the
nullity of the benzenoid graph G, so that in this case too we are using the tail coefficients of
the characteristic polynomials. Thus, in final form the new model (Model W in [43]), has
cycle contributions to current given by

wC(W) = 2SC

{
cη(G–C)

cη(G)
+ 4

cη+2(G–C)
cη+2(G)

}
. (28)

Whatever the number of non-bonding orbitals in the benzenoid, the cycle contribution
is specified in terms of the lowest and next-to-lowest powers of x that occur in PG(x).
The result of this change is that the formula now gives currents for both Kekulean and
non-Kekulean benzenoids, offering a unified solution to the two problems of fixed bonds
and open shells that beset CC models.

6.3. Testing the Model

An evaluation of Model W is reported in [43], where its ability to track HL current
maps was compared to that of the four published CC models and four hypothetical
variants. For this comparison, the test set of benzenoids on up to 10 hexagonal rings was
used: it comprises 18,360 Kekulean benzenoids (of which 2388 are perylenoids and 2184
are zethrenoids) and 20,112 non-Kekulean benzenoids.

Two types of comparison were made. Overall statistical measures of model quality
were based on the bond-current error function for an edge uv of G, ∆uv. This function is
calculated for two sets of scaled currents, {jA

uv} from the model under test and {jB
uv} from

the HL reference, using the formula ∆uv = |jA
uv − jB

uv|, where each current is taken in the
sense of the arc from u to v. Qualititative incorrectness of some maps is detected by counting
misdirected graphs. A graph G is misdirected if at least one edge of G carries currents in
{jA

uv} and {jB
uv} that are both non-negligible (magnitude > 10−7), run in opposite directions

and give rise to ∆uv > 0.1. Error norms L1, L2 and L∞ are computed for the set of bond-
current errors {∆uv} for each model. (L1 is the mean absolute error, L2 is the root mean
square error, and L∞ is the maximum absolute error, all averaged over the molecules in the
given test set). For misdirected graphs, a simple count is made.

Extensive tabulations of the relative performances of eight CC models and Model W
for the test set and various subsets are given in [43]. The main conclusions are as follows.

First, Model W performs better than the best CC model for the set of Kekulean
benzenoids. The errors calculated with L1, L2 and L∞ norms are all reduced by factors
of two or more compared to the best CC model. Model W has L1 = 4%, L2 = 5% and
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L∞ = 9%, expressed as percentages of the maximum scaled current in each molecule.
This good performance is maintained when the test set is restricted to zethrenoids. Every
CC model gives at least 2247 misdirected Kekulean benzenoid graphs, including at least
952 zethrenoids, whereas the new model gives only 110 in total, all of which are zethrenoids.

Secondly, the new model performs even better for non-Kekulean benzenoids. For the
non-Kekulean benzenoids, Model W gives errors of L1 = 3%, L2 = 4% and L∞ = 7%, and
no misdirected graphs at all.

7. Conclusions

The design of this useful effective new model of current maps in benzenoids benefitted
considerably from the availability of an implementation of the Aihara cycle partition of HL
theory. Other applications are planned.
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36. Randić, M. Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 1970, 38, 68–70. [CrossRef]
37. Gomes, J.A.N.F.; Mallion, R.B. A Quasi-topological method for the calculation of relative ring current intensities in polycyclic,

conjugated hydrocarbons. Rev. Port. Quim. 1979, 21, 82–89.
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