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Abstract: An antiplasmodial activity-guided isolation was carried out on the dichloromethane extract
of Tithonia diversifolia dried leaves. A total of five germacranolide type sesquiterpene lactones and
a new flavonol, 3,6-dihydroxy-2-(4′-hydroxyphenyl)-7-methoxy-4H-chromen-4-one, were isolated.
The flavonol reported an IC50 above 6.00 µM against the chloroquine sensitive strain, NF54. The
antimalarial activity of the Tithonia diversifolia dichloromethane leaf extract was attributed to orizabin
and tagitinin C.
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1. Introduction

An ethnobotanical survey indicated that Tithonia diversifolia is used as one of the
traditional antimalarial remedies in Zimbabwe [1]. Tithonia is one of the genera of the
Asteraceae, comprising about 11 species [2] and 13 taxa [3], and it originated from Mexico,
Central America and Cuba [2]. In many African countries, such as the Democratic Republic
of Congo [4], Kenya [5,6], Nigeria and Uganda [7], the use of the rotundifolia species in
traditional medicines, livestock fodder, poultry feed, green manure, and field and storage
pest management are widely acknowledged.

Extracts of this plant, particularly the leaf extracts, are reported to exhibit many biolog-
ical activities, such as antimalarial, anticancer, antidiabetic, analgesic [8], anti-inflammatory,
antidiarrheal, antihyperglycemic, cancer chemopreventive activities [9] and anthelmintic
activity in goats in Rwanda [8]. Consequently, more than 150 compounds have been
isolated from T. diversifolia [10]. Phytochemical studies revealed that T. diversifolia con-
tains large amounts of sesquiterpene lactones, which constitute up to 3% dry weight
of some Asteraceae species, e.g., Helenium amarum [11], flavonoids, diterpenoids [12,13],
chromene, and flavones [14], among other minority compounds. These phytochemicals
are most significantly concentrated in the leaves, followed by the roots and lowest in the
stems [15,16].

Flavonoids consist of a large group of polyphenolic compounds having a benzo-γ-
pyrone structure, most commonly known as the C6-C3-C6 skeleton. They are synthesized
by the phenyl propanoid pathway [17]. Based on their core structure, flavonoids can
be grouped into different flavonoid classes, such as flavonols, flavones, flavanones, fla-
vanonols, anthocyanidins, isoflavones and chalcones. Flavonoids are often hydroxylated
on positions 3, 5, 7, 3′, 4′, and/or 5′, and some of the hydroxyl groups are methylated,
acetylated, and even with sulphate conjugation [18]. Flavonoids are usually attached to
sugar moieties through the O- or C-atom in plants [18].

Plants synthesize flavonoids as a response to microbial infection [17] or to environmen-
tal changes [19]. In plants systems, flavonoids help in combating oxidative stress and act
as growth regulators [17]. Hydroxyl groups in flavonoids mediate their antioxidant effects
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by scavenging free radicals and/or by chelating metal ions [17]. Fruits and vegetables are
the main dietary sources of flavonoids for humans, along with tea and wine.

Many flavonoids are reported to have antioxidative activity, free radical scaveng-
ing capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory,
and anticancer activities, while some of them exhibit potential antiviral activities [17].
Kavitha et al. [20] report that flavonoids play an important role in maintaining the home-
ostasis of the central nervous system by modulating neuronal oxidative metabolism because
they are strong inhibitors of enzymes that cause neuron degeneration. There is growing
evidence that long-term ingestion of diets rich in plant polyphenols offer protection against
the development of cancers, cardiovascular diseases, diabetes, osteoporosis and neurode-
generative diseases [21]. It is suggested that phenolic groups can act as electron sinks
in living systems, forming relatively stable phenoxyl radicals, thereby disrupting chain
oxidation reactions in cellular components [21]. However, their bioavailability, metabolism,
and biological activity depend upon the configuration, total number of hydroxyl groups,
and substitution of functional groups about their nuclear structure.

2. Results and Discussions
2.1. Isolated Compounds from the DCM Crude Extract of T. diversifolia Leaves

A total of six compounds (Figure 1) were isolated from the antiplasmodial active
fraction of the DCM crude leaf extract of T. diversifolia, comprising five germacranolide
type sesquiterpene lactones and 18 mg of a new flavonol (Figure 2). The significant an-
tiplasmodial activities of the DCM crude extract were attributed to orizabin and tagitinin
C, which reported IC50 values of 2.28 µM (0.83 µg/mL) and 1.55 µM (0.54 µg/mL), respec-
tively [1], while the flavonol reported an IC50 value above 6.00 µM against the chloroquine
sensitive strain, NF54. The cytotoxicity assessment of the flavonol was not done because it
was not considered very active.
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Figure 1. Compounds extracted from the antimalarial active TD DCM leaf fraction. Figure 1. Compounds extracted from the antimalarial active TD DCM leaf fraction.
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Figure 2. Structure of the flavonol.

The five sesquiterpene lactones in Figure 1 above have been reported on; therefore,
no further studies on their physical properties were conducted. However, a search on the
SciFinder database retrieved no match for the flavonol in Figure 2.

2.2. The Flavonol

The HRMS spectrum of the flavonol shows a molecular ion peak at m/z 301.0713
[M + H]+ (calculated, 301.0712 [M + H]+), corresponding to a molecular formula of C16H12O6.
The observed major fragment at m/z 247.0670, suggests a loss of 54 Da, and Figure 3 shows
the proposed fragmentation pattern. The loss of CH4 and CO [22] was not observed in the
HR-ESIMS, despite the presence of peaks at m/z 284.0 and 256.2 in LRMS negative mode.
The flavonol decomposes before melting.
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Figure 3. Fragmentation pattern for the flavonol.

The FTIR spectrum of the flavonol showed characteristic absorbencies of the carbonyl
group at 1755 cm−1 [18], double bond stretching from 1552 to 1650 cm−1, various C–O
stretches from 1000 to 1295 cm−1, hydroxyl groups at 3347 cm−1 and methyl stretches at
2922 cm−1.

The 1H NMR spectrum (Figure 4) shows an AA′BB′ aromatic system with H-2′/H-6′ at
δH 7.92 (1H, d, J = 8.8 Hz), and H-3′/H-5′ at δH 6.92 (1H, d, J = 8.8 Hz) (Table 1), respectively,
while protons 5 and 8 resonate as two singlets at δH 6.77 and δH 6.59, respectively. The
methoxy resonance is observed at δH 3.75 (3H, s) [18], and the OH proton is assigned at
δH 13.07 (1H, s). The COSY spectrum shows a correlation between the H-2′/6′ (δH 7.92)
with H-3′/5′ (δH 6.92).

The 13C NMR spectrum shows a system with 14 carbons, while the APT experiment
indicates 9 carbons in positive mode (8 quaternary carbons and one C=O) and 5 carbons in
negative mode (1 methoxy group and 4 methine groups (CH)).

The 2D HSQC spectrum indicates that H-8 (δH 6.59) correlates with the carbon atom
at δC 102.8, H-5 (δH 6.77) with the carbon atom at δC 94.7, H-3′/H-5′ with the carbon at
δC 116.4 and H-2′/H-6′ with the carbon at δC 128.9.
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Table 1. 1H and 13C NMR data for the flavonol.

Position
1H NMR/ δ (ppm)

(600 MHz, DMSO-d6)

13C NMR/ δ (ppm)
(150 MHz, DMSO-d6)

1 - - -
2 - - 164.2
3 - - 153.2
4 - - 182.5

4a - - 157.8
5 H-5 6.77 (1H, s) 94.7
6 - - 104.5
7 - - 131.8
8 H-8 6.59 (1H, s) 102.8

8a - - 152.8
1′ - - 161.6
2′ H-2′ 7.92 (1H, d, J = 8.8 Hz) 128.9
3′ H-3′ 6.92 (1H, d, J = 8.8 Hz) 116.4
4′ - - 121.6
5′ H-5′ 6.92 (1H, d, J = 8.8 Hz) 116.4
6′ H-6′ 7.92 (1H, d, J = 8.8 Hz) 128.9

-OMe 3.75 (3H, s) 60.4
-OH 13.07 (1H, s) -

Figure 5 shows information deduced from the 2D HMBC spectrum, indicating that
H-5 (δH 6.77) strongly correlates with the carbonyl carbon assigned as C-4, at δC 182.5,
while H-8 (δH 6.59) slightly correlates with the same carbonyl carbon atom. The methoxy
protons and H-8 correlate with the carbon at δC 131.8, assigned as C-7. Protons 3′/5′

(δH 6.92) strongly correlate with C-4′ at δC 121.6 and weakly correlate with C-1′ at δC 161.6,
while H-2′/H-6′ (δH 7.92) strongly correlate with C-1′ at δC 161.6 and C-2 at δC 164.2, and
weakly correlate with the carbons of H-3′/H-5′ at δC 116.4. The carbon at δC 153.2 does
not correlate with any proton, indicating that it is C-3. The arrows indicate correlating
atoms according to the HMBC spectrum. More Supplementary Material that was used to
characterize the compound is available on MDPI website
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A web-based search retrieved no matching responses for the flavonol. Its scien-
tific name could be deduced as 7-methoxy-3,4′,6-trihydroxyflavone or 3,6-dihydroxy-2-(4-
hydroxyphenyl)-7-methoxy-4H-chromen-4-one.

3. Materials and Methods
3.1. Characterisation of Isolates

A 600 MHz Bruker Avance spectrometer (Fallanden, Switzerland) was used to record
the 1H NMR, COSY, HMBC, HMQC (600 MHz) and 13C, APT (150 MHz) experiments
in DMSO-6d (δH = 2.50; δC = 39.51) with TMS as the internal standard. Chemical shifts
were expressed as parts per million (ppm) on the delta (δ) scale, and coupling constants (J)
are accurate to 0.01 Hz. High-resolution mass spectral data (HRMS) were collected using
a Waters Micromass LCT Premier TOF-MS (Milford, USA), while low-resolution mass
spectra (LRMS) were recorded on a Sciex 4000QTRAP hybrid triple quadrupole ion trap
mass spectrometer (Foster City, CA, USA), and the infra-red (FTIR) spectra were recorded
on a Perkin Elmer Spectrum One FT-IR (Shelton, CT, USA).

3.2. Crude Extracts

Fleshy leaves of Tithonia diversifolia were air-dried in the shade, and then finely
grounded. A sample of the powdered leaves was sequentially soaked in hexane, DCM
and then in a mixture of DCM and ethyl acetate (9:1 v/v) on a shaker. The sample was
repeatedly soaked in each solvent over several nights until there was a significant loss
of color and the major eluents were diminishing on the TLC. The three fractions were
concentrated on a Rotavapor at 40 ◦C and then transferred into separate, labeled vials,
which were left to dry in a fume hood.

3.3. Antiplasmodial Activity Assessment

The chloroquine-sensitive NF54 strain of the malaria parasite Plasmodium falciparum
was cultured in vitro [23]. The antiplasmodial activity of the various extracts was deter-
mined using the tritiated hypoxanthine incorporation assay [24]), where chloroquine and
quinine were used as the reference antiplasmodial agents. At least three independent exper-
iments were performed, from which the mean and standard deviation were determined.

3.4. Isolation of Antiplasmodial Active Fractions

The DCM fraction was further fractionated on a silica gel column with hexane-ethyl
acetate (H-EA) solutions (15:1; 10:1; 5:1; 3:2 and 2:3 (v/v)). The column was followed by
TLC. Sub-fractions 9 (0.59 g) and 10 (1.67 g) of the DCM from eluents H-EA 5:1 and 3:2 had
very similar TLC profiles, and reported the highest antimalarial activities as reflected by
IC50 values of 0.31 ± 0.07 and 0.62 ± 0.04 µg/mL, respectively, and an average inhibition
of 53.7 %, which were sustained even at a low concentration of 0.5 µg/mL [1]. The two
sub-fractions were combined (1.60 g) and then further subjected to silica gel column
chromatography with DCM-EA eluents (20:1; 12:1; 7:1; 5:2: 3:2, and 2:3 (v/v)). All the
isolates, except the flavonol, were cleaned by re-crystallization in ethyl acetate and hexane
mixtures [1]
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The major sub-fraction from eluent DCM-EA 7:1 was re-dissolved in ethyl acetate
after rotary evaporation, and on standing, light yellowish-green amorphous particles
separated, which were filtered off. On further standing, two more crops were harvested.
The precipitate did not dissolve in ethyl acetate, chloroform, methanol or ethanol, but
dissolved in DMSO. The isolate was dissolved in DMSO-d6, and an 1H NMR was run,
which indicated that it was a pure compound [1].

4. Conclusions

A combination of gravity chromatography and re-crystallization afforded five germa-
cranolide type of sesquiterpene lactones and a new flavonol from the DCM fraction of the
T. diversifolia leaf extract. Antiplasmodial activity of DCM crude extract of T. diversifolia
leaves is mainly due to orizabin and tagitinin C.

The six isolated compounds may further be assessed for GABAA and Acetylcholinesterase
inhibition effects. Additionally, the flavonol could be tested for anticancer and antidiabetic
activities because flavonoids exhibit antioxidant and anticancer activities. Furthermore,
flavonol could be severally functionalized and the products assessed on various diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemistry3030062/s1, S1: NMR spectra; S2: FTIR spectrum of powder; S3: Mass spectra.
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