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Abstract: It is well known that singlet state aromaticity is quite insensitive to substituent effects, in
the case of monosubstitution. In this work, we use density functional theory (DFT) calculations to
examine the sensitivity of triplet state aromaticity to substituent effects. For this purpose, we chose
the singlet state antiaromatic cyclopentadienyl cation, antiaromaticity of which reverses to triplet
state aromaticity, conforming to Baird’s rule. The extent of (anti)aromaticity was evaluated by using
structural (HOMA), magnetic (NICS), energetic (ISE), and electronic (EDDBp) criteria. We find that
the extent of triplet state aromaticity of monosubstituted cyclopentadienyl cations is weaker than
the singlet state aromaticity of benzene and is, thus, slightly more sensitive to substituent effects.
As an addition to the existing literature data, we also discuss substituent effects on singlet state
antiaromaticity of cyclopentadienyl cation.

Keywords: antiaromaticity; aromaticity; singlet state; triplet state; cyclopentadienyl cation; substituent
effect

1. Introduction

Aromaticity and antiaromaticity are important concepts in science since they explain
the special physical and chemical properties of cyclically delocalized systems. Com-
pounds showing aromaticity delocalize (4n + 2), usually π–electrons, as stated by Hückel’s
rule [1–3]. They show enhanced thermodynamic stability, develop diamagnetic ring cur-
rents when exposed to an external magnetic field, and tend to equalize bond lengths and
retain their cyclic delocalization during a chemical reaction [4]. In contrast, compounds
that delocalize 4n π–electrons have been named antiaromatic by Breslow et al. since they
are unstable and very reactive [5,6]. In addition, they develop paramagnetic ring currents
when placed in a magnetic field and are characterized by alternating single and double
bonds [4]. Thus, the extent and type of electron delocalization [7], molecular geometry [8],
energy [9,10], and magnetic properties [11] are often taken into account when defining a
system as aromatic or antiaromatic.

In the first excited triplet state, the electron count is reversed: (4n + 2) π–electron
systems are antiaromatic, and 4n π–electron ones are aromatic. This was first pointed
out by Baird on the basis of molecular orbital considerations [12] and was extended to
the first singlet excited state by Karadakov on the basis of calculated magnetic properties
of benzene and cyclobutadiene [13]. Theoretical investigations of electron delocaliza-
tion [14–16], molecular structure [17,18], stabilization energies [17,19–21] and magnetic
properties [13,17,21–25] supported Baird’s rule, for which experimental lines of evidence
also exist [26–28]. A few review articles summarize these lines of evidence for the rule
and explain earlier reports on various photochemical reactions on the basis of concepts
related to excited-state aromaticity and antiaromaticity [29,30]. It is important to mention
a recently developed concept of adaptive aromaticity by Zhu et al., referring to the small
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number of cyclically delocalized compounds, which show aromaticity in both singlet and
triplet states [31–33].

Since most compounds are derivatives of their basic skeleton, understanding of
substituent effects on molecular properties has attracted great attention from scientists.
In unsaturated molecules, substituents mostly interact with the π–electronic system, in-
creasing delocalization in conjugated butadiene moiety but decreasing it in an aromatic
system [34]. In a competition between aromaticity and substituent effect, the former wins in
the case of monosubstitution [35,36]. However, the extent of aromaticity can be decreased
upon polysubstitution [37]. On the other hand, antiaromaticity, as a destabilizing effect,
is often attenuated by substituent [38,39], particularly in electron-deficient and cationic
systems, such as borole [40] and cyclopentadienyl cation [41,42], respectively, where it is
significantly reduced by electron-donating groups. Additionally, the recent computational
work proved that aromatic benzene is almost insensitive to substituent effect, whereas
electron delocalization in its nonaromatic dication is greatly affected by substituent [43].

How similar are singlet- and triplet-state aromaticity and antiaromaticity? Does the
former resist the substituent effect, and is the latter influenced by it to the same extent
as the singlet-state properties? A few works were aimed to answer these questions. Two
substituents, F and CN, were considered when examining the aromaticity of cyclooctate-
traene in its triplet state. The authors found a decrease in aromaticity upon increasing the
number of substituents [39]. The triplet-state dicationic benzene, formally 4n π–electronic
system, was found to be more delocalized than its singlet state and showed less sensitivity
to substituent effect [43]. Recently, it was shown computationally that a single substituent
can have a large impact on the triplet-state (anti)aromaticity of benzene. Depending on the
substituent’s electronic properties, the triplet state of benzene can be tuned between highly
antiaromatic and strongly aromatic [44].

It is the aim of this work to provide more information about the sensitivity of triplet-
state aromaticity on substituent effect, which we find important because of the tight
relation between aromaticity and molecular properties. The results may be useful for future
studies on the possible tuning of triplet state aromaticity and, thus, physical and chemical
properties of organic compounds. We chose the antiaromatic cyclopentadienyl cation
as a model system and introduced a substituent at its most cationic C-5 atom (Figure 1).
The substituents were chosen to cover the most important electronic effects, such as the
π–electron-donating effect (NH2, OH, and F), σ–electron-donating effect (CH3), σ–electron-
withdrawing effect (CF3) and π–electron-withdrawing effect (NO2, NO, CN, CHO, COCH3,
COOCH3, and CONH2). The π–electron-donating/-withdrawing abilities vary between
the studied groups.
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Figure 1. Molecules examined in this work.

The cyclopentadienyl cation, itself, is an unstable, antiaromatic compound [45], which
has a triplet ground state detected by EPR studies [46]. The triplet ground state was also
observed for its several derivatives [47–49]. Recently, the unstable, antiaromatic singlet
tetrachlorocyclopentadienyl cation connected to the negatively charged BF3 was isolated
in a low-temperature matrix [50].
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2. Computational Details and Methods

All calculations were performed at the DFT level of theory by using B3LYP functional
and 6-311 + G(d,p) basis set, for closed-shell species, and its unrestricted version UB3LYP,
for open-shell species [51–53]. Geometries were fully optimized by using the Gaussian
09 package [54], followed by frequency calculations in order to verify that all obtained
structures correspond to energy minima, Nimag = 0. The stability of wave functions was
checked by using the “stable” keyword. Instability appeared for R = H, F, CH3, CF3, NO2,
CN, CHO, and COOCH3, and these compounds were also analyzed as open-shell singlet
states by using the UB3LYP and “guess = mix” keyword. To reduce spin contamination of
this type of calculation, all open-shell singlet state energies were corrected by employing
the approximate spin projection technique [55,56], according to Equations (1) and (2), where
EOS and ET are calculated energies of open-shell singlet and triplet states, respectively, and
S2 is the spin-squared expectation value.

J =
EOS − ET

(S2)T −
(

S2
)

OS

(1)

EOS−corr = EOS + J·
(

S2
)

OS
(2)

The degree of (anti)aromaticity of the studied compounds was evaluated by using
geometric, energetic, magnetic, and electronic criteria. For the first, the harmonic oscilla-
tor model of aromaticity (HOMA) index [8,57,58] was calculated by using the Multiwfn
program [59], according to Equation (3). In the equation, Ropt refers to the optimal bond
length taken as 1.388 Å for the CC bond. Ri is an individual bond length, n is the number of
bonds taken up in the summation and α is an empirical constant taken to give HOMA = 1
for an aromatic system, and HOMA = 0 for nonaromatic one. Antiaromatic molecules
usually show negative HOMA values. For the CC bond, α = 257.7 was used. The idea
behind the HOMA index is that an aromatic system tends to equalize its bond lengths,
whereas nonaromatic and antiaromatic molecules, as more localized, have alternating
single and double bonds. We note that HOMA was parametrized to assess the aromaticity
of molecules in their closed-shell state and should be considered by taking other electronic
states into account.

HOMA = 1 − α

n

n

∑
i

(
Ropt − Ri

)2 (3)

To estimate aromaticity from an energetic point of view, the isomerization stabilization
energy (ISE) method was applied for singlet and triplet states by using the chemical
Equation (4) [19,25,60]. The structure on the left side of the equation has disrupted cyclic
conjugation and that on the right side is cyclically conjugated. Thus, aromatic compounds
have negative ISE values, antiaromatic ones have positive, and nonaromatic molecules
have ISE values close to zero. The ISE was not calculated for open-shell singlets, because
most of the calculations converged into the closed-shell states.
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component of it, since ring currents are induced when a ring is perpendicularly oriented
with respect to the magnetic field direction [65–68]. Thus, the π–electron contribution
to the out-of-plane component of magnetic shielding tensor was used in this work, and
NICS values were calculated along a line traversing perpendicularly from the ring plane
center up to 4 Å, with the step width of 0.1 Å. This procedure [69,70] is more reliable than
the calculation of a single NICS value [71]. Negative NICS values indicate diatropic ring
currents and aromaticity, positive ones indicate paratropic ring currents and antiaromatic-
ity, and values close to zero indicate a nonaromatic molecule. Magnetic shieldings were
calculated by employing the GIAO method [72,73] and Aroma 1.0 program package [74].
In the package, we used the σ-only method to extract the π–electron contribution to the
shielding values [75].

The anisotropy of the induced current density (ACID) method calculates delocalization
pathways in molecules, aromaticity, and antiaromaticity [76,77], which can be pictorially
represented. In this kind of calculation, the CSGT method was used to obtain chemical
shielding values [78], and ACID plots were created by using the POV-Ray, v. 3.7 [79].

The electron density of the delocalized bonds (EDDB) index quantifies the number
of delocalized electrons in a molecule [80–83]. For the purpose of this work, only delocal-
ization along the specific path, the five-membered ring, was considered and is labeled as
EDDBp. Calculations were performed by using the NBO 3.1 version [84], implemented in
Gaussian 09, and RunEDDB software [85].

Charge and spin distribution in the studied compounds were obtained by the Hirsh-
feld population analysis [86].

3. Results

Table 1 lists the main characteristics of optimized geometries of the studied molecules
and calculated aromaticity indices (the maximum NICS values were observed at 0.5 Å above
the ring planes and they are given in the table). Substituent orientation with respect to the
plane of the ring is also shown in Figure 2, along with the charge and spin distributions.
The full NICS scans are presented in Figure 3, and the ACID plots are shown in the
Supplementary Materials Figures S1–S13. Molecular orbitals (MO) involved in electronic
state transitions are shown in Figures S14 and S15 in the Supplementary Materials. All
transitions are related to π-type orbitals and, thus, should conform to Baird’s rule, except
when R = NO. In this case, the transition occurs between the π-type and substituent orbitals
(Figure S14), and this compound is predicted to behave differently, as will be discussed.
In the text below, we also analyze and discuss the substituent effect on singlet states and
compare our results with the literature data. To the best of our knowledge, no such data
exist for the triplet state of cyclopentadienyl cation.
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Table 1. Symmetry point groups, substituent (R) orientation with respect to the ring plane, relative energies of singlet (S), triplet (T), and open-shell singlet states (OS), HOMA, NICS, ISE,
and EDDBp data for the studied compounds.

R Symmetry Point Group
R–Ring

Dihedral
Angle (◦)

Relative
Energy

(kcal/mol)
HOMA NICS(0.5)πzz

(ppm)
ISE

(kcal/mol)
EDDBp

(e)

S T OS S T OS S T OS S T OS S T OS S T S T OS

H C2v D5h C2v / / / 0.0 −10.5 −1.4 −1.346 0.668 0.630 239.2 −17.2 107.2 25.2 −22.5 0.639 2.955 0.472
NO C2v Cs / 0 0 / 0.0 −5.8 / −0.882 0.593 / 11.4 20.0 / 7.3 7.7 0.523 1.102 /
NH2 C2v C2v / 0 0 / 0.0 16.7 / −0.828 0.560 / 37.5 −19.4 / 12.5 −18.7 0.318 2.183 /
OH Cs Cs / 0 0 / 0.0 9.7 / −0.978 0.627 / 60.3 −16.9 / 18.0 −20.2 0.361 2.485 /

F C2v C2v C2v 0 0 0 0.0 1.7 0.0 −1.119 0.687 −1.029 96.6 −17.2 95.2 22.0 −20.6 0.478 2.715 0.440
CH3 Cs Cs Cs 89 1 89 1 89 1 0.0 −1.5 −0.1 −1.146 0.620 −0.229 116.3 −17.0 96.9 21.5 −21.7 0.445 2.777 0.768
CF3 Cs Cs Cs 0 2 89 2 0 2 0.0 −8.6 −0.6 −1.340 0.666 0.596 181.1 −17.2 90.0 23.8 −20.9 0.551 2.807 0.518
NO2 C2v C2 C2 90 45 75 0.0 −5.9 1.0 −0.991 0.707 0.398 150.7 −16.2 94.7 23.5 −9.6 0.653 2.750 0.462
CN C2v C2v C2v 0 0 0 0.0 −8.7 0.5 −1.135 0.622 0.466 245.3 −17.1 94.8 23.5 −17.0 0.570 2.599 0.521

CHO C1 Cs C1 15 3 0 12 3 0.0 −7.2 −1.2 −0.981 0.632 0.555 120.8 −20.4 58.5 22.5 −9.2 0.723 2.576 0.566
COCH3 Cs C1 / 86 31 3 / 0.0 −3.0 / −0.750 0.656 / 66.2 −9.0 / 21.4 −9.0 0.476 2.675 /
COOCH3 Cs Cs C1 86 0 19 3 0.0 −6.0 2.0 −0.888 0.656 0.628 102.6 −17.0 85.7 23.2 −18.6 0.519 2.687 0.503
CONH2 Cs C1 / 88 55 3 / 0.0 −0.7 / −0.721 0.664 / 49.2 −15.8 / 20.3 −17.4 0.423 2.752 /

1 One of C–H bonds. 2 One of C−F bonds. 3 CC−CO angle.
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3.1. Cyclopentadienyl Cation

Our result on relative adiabatic energies of singlet and triplet states of cyclopentadi-
enyl cation, 10.5 kcal/mol in favor of triplet, agrees with the experimental finding that
triplet is its ground state and the value is in close agreement with the previous calcula-
tions: 11.3 kcal/mol, B3LYP/6-31G(d)//B3LYP/6-31G(d) [41], 42.4 kJ/mol (10.1 kcal/mol),
B3LYP/def2-TZVP//M06-2X/def2-TZVP [87], and 3.4–11.6 kcal/mol, using various ab
initio methods [88]. The triplet state is of D5h symmetry with equal bond lengths, which is
a characteristic of aromatic molecules. This triplet-state aromaticity, according to HOMA,
NICS, ISE (Table 1, R = H), and NICS scan (Figure 3), is smaller than the ground-state aro-
maticity of benzene, HOMA = 0.990, NICS(0.5)πzz = −38.5 ppm, and ISE = −33.9 kcal/mol.
Singlet state of cyclopentadienyl cation with C2v symmetry is clearly antiaromatic, hav-
ing negative HOMA and positive ISE values (Table 1), large positive NICS (Table 1 and
Figure 3), and strong paramagnetic ring currents (the ACID plot in Figure S1). The
EDDBp = 0.639 e also indicates little electron delocalization. The broken symmetry calcula-
tions [89], applied to produce open-shell singlet, resulted in a more bond-equalized system
(HOMA in Table 1) with slightly lower energy (OS in Table 1) and weaker antiaromaticity
(NICS in Table 1 and Figure 3). The weakly delocalized charge density in the closed-shell
state becomes (almost) equally delocalized on each carbon atom in open-shell states, and
spin density is unsymmetrically distributed in two allyl-like substructures (Figure 2). The
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EDDBp = 0.472 e (0.236 for alpha electrons and 0.236 for beta electrons) calculated for
open-shell singlet cyclopentadienyl cation points to the conclusion that the drop in antiaro-
maticity, inferred from HOMA and NICS, comes from the smaller portion of delocalized
electron density. In the triplet state, the spin density is fully delocalized (Figure 2).
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ble 1 and Figure 3), and strong paramagnetic ring currents (the ACID plot in Figure S1). 

Figure 3. NICS scans of the studied compounds. Red-colored curves refer to singlet states, green-colored curves refer to
open-shell singlets, and black curves refer to triplet states. Horizontal axis: distance in Å, vertical axis: NICS values in ppm.

3.2. Singlet State of Substituted Cyclopentadienyl Cations

As positively charged, the closed-shell cyclopentadienyl cation behaves as an electron-
withdrawing system and strongly interacts with groups that can donate a pair of electrons:
lone pair donors (NO, NH2, OH, and F) and σ-bond donor (CH3). Thus, in five-substituted
derivatives, the NO group adopts a linear structure, NH2 and OH are coplanar with the
ring, and one of the three C–H bonds of the methyl group is perpendicular to the ring plane,
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which allows the strongest hyperconjugative interaction (Figure 2, symmetry point groups
and R–ring dihedral angles in Table 1). Aromaticity indices in Table 1 show that electron
donation to the cyclopentadienyl system decreases its singlet-state antiaromaticity and,
thus, decreases (in absolute value) or reverses the singlet-triplet energy splitting, compared
with the unsubstituted ring. In the case of the NH2 group, the singlet is more stable than
the triplet by 16.7 kcal/mol, and this energy difference, in favor of the singlet, drops to
9.7 kcal/mol for OH substituent and to only 1.7 kcal/mol for the still less electron-donating
fluorine atom. In the case of the σ–electron-donating CH3 group, the triplet state is just
slightly more stable, by 1.5 kcal/mol, whereas in NO-substituted compound triplet is
favored by 5.8 kcal/mol. The amount of singlet–triplet energy splitting nicely correlates
with the π–electron substituent effect (Figure 4a), represented by the π–electron donor-
acceptor (pEDA) values, which show how easy a substituent donates its electrons to the
π–electronic system of the ring (developed for benzene): NH2 (0.145) > OH (0.121) > F
(0.078) > CH3 (0.014) > H (0.000) > NO (−0.129) [90]. Aromaticity indices, however, show,
with small discrepancies, that the most effective in reducing antiaromaticity of closed-
shell singlet state cyclopentadienyl cation is the NO group, and then the effect follows a
decrease in the electron-donating ability of substituent (Figure 4b–d). The same is clearly
visible from the NICS scans in Figure 3 and the ACID plots in Figures S2–S6. Only the
EDDBp places the NO group as the weakest donor among the studied electron-donating
substituents (Table 1 and Figure 4e). It also reveals that a decrease in electron delocalization
is the source of attenuated antiaromaticity. Figure 5 shows that the singlet–triplet energy
splitting is strongly dependent on the extent of antiaromaticity, and it increases with a
decrease in antiaromaticity. The peculiar behavior of the NO group, represented by the
blue dot in graphs, can be interpreted by its dual electronic effects: it is basically an electron-
withdrawing substituent with a negative pEDA value, but it can also donate the nitrogen
lone pair to stabilize a neighboring positive charge. In a highly localized cyclopentadienyl
cation, its donor ability prevails.

The finding that electron-donating groups reduce the antiaromaticity of cyclopentadi-
enyl cation agrees with previous results [41,42].

On the other hand, electron-withdrawing substituents tend to avoid electronic inter-
actions with the positively charged, closed-shell ring system. Thus, the CF3 group has
one of the C–F bonds coplanar with the ring, and the other two form dihedral angles of
about 60◦ with the ring plane. The planes of NO2, COCH3, COOCH3, and CONH2 adopt
perpendicular orientation relative to the ring plane, which disables any interaction between
the two π systems, that of the ring and the substituent, which become orthogonal. The
plane of the CHO group is by 15◦ tilted from the plane of the ring, whereas the linear CN
group cannot avoid interaction with the ring. Thus, the singlet–triplet energy splitting, in
favor of triplet, is the closest to the parent molecule in the case of CN and CF3 substituents
(8.7 kcal/mol and 8.6 kcal/mol, respectively), followed by the CHO group (7.2 kcal/mol).
In the latter two cases, optimizations ended in a two-substituted cyclopentadienyl cation
with partial substituent–ring interactions (Figure 2). The rest of the substituents reduce the
singlet–triplet energy gap relative to the parent molecule, and all favor triplet state. Due
to the absence or decrease in substituent–ring π–electronic interaction, there are almost
no correlations of singlet–triplet energy splitting and antiaromaticity with the π–electron-
withdrawing ability, represented by the negative pEDA values [90] (Figure 6). However,
even in this case, singlet–triplet energy gaps are dependent on antiaromaticity degree
(Figure 7), though less so than for electron donors. According to aromaticity measures
given in Table 1 and shown in Figure 3 and Figures S7–S10, the extent of antiaromaticity de-
creases with a decrease in substituent–ring π–electronic interactions, which are dependent
on substituent–ring orientation.
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Similarly, the singlet dication of benzene strongly interacts with electron-donating
substituents but not with electron-withdrawing ones [43].

Our calculations suggest that the formation of open-shell singlet species has little
effect on energy (Table 1), decreases bond length alternation (HOMA values), and de-
creases antiaromaticity (NICS data in Table 1 and Figure 3, and ACID plots shown in
the Supplementary Materials Section). Figures S14 and S15 show that the extension of
the singly occupied MOs does not change greatly, compared with that of the HOMOs,
though they can involve different atoms. The EDDBp data in Table 1 point, again, that
the drop in the extent of antiaromaticity should be related to the slight drop in electron
delocalization (with exception of CH3 substituent). As can be seen in Figure 2 (charge
density distribution) and from HOMA data, electron-withdrawing groups create more
bond-equalized systems than electron donors, but their antiaromaticity degree does not
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differ significantly (∆NICS(0.5)πzz = 38.4 ppm, compared with (∆NICS(0.5)πzz = 148.7 ppm
for singlet state, and similar EDDBp values), even though (partial) interaction of substituent
and ring π system is possible regarding molecular conformation.

3.3. Triplet State of Substituted Cyclopentadienyl Cations

In the optimized triplet state geometries, when possible, the substituent is coplanar
with the cyclopentadienyl ring. Exceptions are NO2, COCH3, and CONH2 groups, pre-
sumably due to steric reasons, whereas in CH3 and CF3 groups, one of the C–H and C–F
bonds is perpendicular to the ring plane (Figure 2, symmetry point groups and R–ring
dihedral angles in Table 1). Thus, all substituents are positioned so that they can (partially)
interact with the π system of the ring. In the triplet state, the NO group has an angular
geometry, which means that it behaves as an electron-withdrawing group rather than
electron-donating in the singlet state. The charge density distribution is shown in Figure 2,
in which positive HOMA values ranging from 0.560 to 0.707 and EDDBp data spanning the
range of 1.102 e to 2.955 e indicate a significant increase in electron delocalization relative
to singlet state (HOMA = −1.346–0.721, EDDBp = 0.318–0.723).

Figure 2 shows that the majority of spin density is located in the ring in all but one
compound (R = NO), where it is mainly positioned at the substituent, which is a conse-
quence of the involvement of substituent’s orbital in singlet/triplet electronic transition
(Figure S14). According to negative NICS and ISE values (Table 1 and Figure 3), all com-
pounds with the spin density in the ring are aromatic, though to a lesser extent than
benzene, NICS(0.5)πzz = −38.5 ppm and ISE = −33.9 kcal/mol. The ACID plots in Figures
S2–S13, showing diatropic ring currents for triplet states, agree with this conclusion, as
well as the large EDDBp values, which are all between 2.183 e and 2.955 e. The 5-nitroso
cyclopentadienyl cation has positive NICS and ISE values (Table 1 and Figure 3) and is,
thus, antiaromatic in both singlet and triplet state (slightly more in the triplet state). The
ACID plot in Figure S2 shows paratropic ring currents for this compound, thus supporting
the previous conclusion. The EDDBp = 1.102 e for this compound is clearly much less than
for all other triplet states, and an increase in the density of delocalized electrons relative to
the closed-shell state (Table 1) is in accordance with the slight increase in antiaromaticity.
Therefore, increased spin density in the ring in the triplet state of substituted 4π–electronic
cyclopentadienyl cation means aromaticity, whereas increased spin density at substituent
means antiaromaticity. Similarly, in substituted benzene, accumulation of spin density in
the ring creates triplet state antiaromaticity, whereas accumulation of spin density at sub-
stituent enables benzene to be (weakly) aromatic in both singlet and triplet state (R = CHO,
COCH3, NO2, and NO) [44].

Due to the increased π–electron delocalization in the triplet state, structural and
magnetic aromaticity descriptors do not correlate with the electron-withdrawing/-donating
ability of substituents (Figure 8a,b,e,f). However, moderate-to-good correlations exist
between pEDA values and energetic and electronic aromaticity measures (ISE and EDDBp,
respectively), showing that aromaticity degree decreases with increasing electron-donating
or electron-withdrawing power of substituent (Figure 8c,d,g,h).

3.4. Comparison of the Results with the CAM-B3LYP Calculations

It was reported recently that the local character of the exchange–correlation functional,
such as B3LYP, may lead to an inconsistent picture of aromaticity due to the overestimation
of electron delocalization [91]. To test the correctness of our results, we selected a small
set of compounds, which was also examined by using the long-range corrected exchange–
correlation functional, CAM-B3LYP [92]. The test set comprised cyclopentadienyl cations
substituted with an electron-donating group (NH2), electron-withdrawing group (CHO),
electron-withdrawing/-donating group (NO), and the parent cation.
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The only difference in optimized molecular geometry was observed for R = CHO,
which (1) in the closed-shell singlet-state substituent was found in the same plane as the
ring (tilted by 15◦ when using B3LYP), and (2) in the UCAM-B3LYP open-shell singlet
calculation converged to the same geometry as RCAM-B3LYP calculation, with S2 = 0 (the
UB3LYP calculation ended in the structure with slightly lower energy, Table 1).

Comparison of calculated aromaticity indices is presented in Table 2, and ACID plots
are included in Supplementary Materials (Figures S1–S3 and S10). Inspection of data shows
that the two functionals provide exactly the same trend and, thus, would lead to the same
conclusions. Only NICS(0.5) value for the closed-shell singlet, when R = CHO, points to
somewhat increased antiaromaticity, compared with the B3LYP, which can be ascribed to
the difference in molecular geometry, where substituent can interact with the π system of
the ring.

Table 2. Comparison of relative energies of singlet (S), triplet (T), and open-shell singlet-state (OS), HOMA, NICS, ISE,
and EDDBp data for test set examined with both (U)B3LYP and (U)CAM-B3LYP functionals (data for the latter are given
in italics).

R Relative Energy
(kcal/mol) HOMA NICS(0.5)πzz

(ppm)
ISE

(kcal/mol)
EDDBp

(e)

S T OS S T OS S T OS S T S T OS

H 0.0
0.0

−10.5
−10.6

−1.4
−4.1

−1.346
−1.168

0.668
0.777

0.630
0.732

239.2
244.5

−17.2
−17.4

107.2
98.3

25.2
23.8

−22.5
−22.6

0.639
0.616

2.955
2.953

0.472
0.464

NO 0.0
0.0

−5.8
−6.5

/
/

−0.882
−0.831

0.593
0.682

/
/

11.4
10.6

20.0
/ 1

/
/

7.3
7.0

7.7
8.1

0.523
0.443

1.102
0.959

/
/

NH2
0.0
0.0

16.7
17.4

/
/

−0.828
−0.792

0.560
0.640

/
/

37.5
35.2

−19.4
−16.9

/
/

12.5
11.5

−18.7
−19.0

0.318
0.291

2.183
2.074

/
/

CHO 0.0
0.0

−7.2
−8.2

/
/

−0.981
−1.067

0.632
0.750

/
/

120.8
176.0

−20.4
/ 1

/
/

22.5
21.4

−9.2
−10.4

0.723
0.654

2.576
2.610

/
/

1 Calculations did not end correctly.
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4. Discussion

In this section, we answer the question posed in the Introduction: How similar are
singlet and triplet state aromaticity with respect to their sensitivity to substituent effects?
The results presented in Section 3.3 show that the structural aromaticity index, HOMA,
span a rather narrow range of 0.147 for the triplet state of substituted cyclopentadienyl
cation, compared with 0.625 for the closed-shell singlet state. For monosubstituted benzene,
which is a prototypical aromatic compound, this range is still narrower, 0.030 [43] or
0.022 [44]. This means that different substituents have a small effect on the extent of bond
length equalization in the aromatic triplet state of cyclopentadienyl cation but larger than
in the ground state of benzene.

The NICS scans in Figure 3 for substituted triplet-state cyclopentadienyl cation are
somewhat similar on the NICS scale from 0 ppm to −25 ppm, with two exceptions: acetyl-
cyclopentadienyl cation, which is less magnetically aromatic, and nitrosocyclopentadienyl
cation, which becomes slightly more antiaromatic in the triplet state. In contrast, the NICS
scale for closed-shell singlet states ranges from 0–15 ppm, when R = NO, to 0–250 ppm
when R = H and CN. Similarly, the single NICS(0.5) values span a range of 233.9 ppm for
antiaromatic closed-shell singlet states but only 11.4 ppm for aromatic triplet states (or
only 4.6 ppm excluding the COCH3-substituted molecule with unusually low magnetic
aromaticity). As a comparison, the range of NICS(1)zz values for variously monosubsti-
tuted benzenes is 4.6 ppm [34] and of NICS(1)πzz is 4.7 ppm [44]. Thus, the triplet state
aromaticity appears quite insensitive to substituent effects on the basis of magnetic criterion.
The ACID plots also show little difference between the amount of diatropicity of triplet
states of studied compounds (Figures S1–S13).

The range of EDDBp values of 0.772 e for substituted aromatic triplet cyclopentadi-
enylcations is a bit larger than the range for the ground-state-substituted benzenes [82], and
with the same substituents as considered here, ∆EDDBp = 0.480 e. Therefore, according
to the density of delocalized electrons, the triplet state aromaticity appears slightly more
sensitive to substituent effect.

However, the range of ISEs, 13.5 kcal/mol, for aromatic triplet states is just slightly
lower than the range for antiaromatic closed-shell singlet states, 17.9 kcal/mol. For
substituted benzene, some energetic aromaticity measures span the following ranges:
4.5 kcal/mol for aromatic stabilization energies (ASE) [35] and 6.5 kcal/mol for Gibbs
energy of hydrogenation [44]. Thus, on the basis of the presented data, it can be con-
cluded that the energetic stabilization of a system due to aromaticity in triplet state is more
sensitive to substituent effects than singlet state aromaticity, also supported by the good
correlations shown in Figure 8c,g. However, this topic needs more future studies.

Here, we wish to point out that we used the pEDA values developed for the ground sin-
glet state of benzene [90] to examine correlations between substituent effect and aromaticity
as a triplet state property, which may not be transferable, as discussed for monosubstituted
benzene [93]. However, benzene changes its aromaticity to antiaromaticity upon singlet–
triplet excitation, which may be accompanied by significant geometrical changes. Thus,
in the case of triplet benzene, pEDA values do not depend only on substituent properties,
but also on ring geometry [93]. In this work, however, the pEDA values were used in the
analysis of triplet-state aromaticity, and no significant differences in ring geometry between
singlet and triplet states were observed, except changes in bond lengths which, certainly,
are a consequence of a change in π–electron delocalization.

We find that with an increase in electron delocalization upon going from closed-shell
to open-shell triplet state substituent effects weaken so that the triplet-state aromaticity of
the studied model system is little sensitive to substituent effect. A similar conclusion was
drawn for the triplet state of benzene dication [43].

5. Conclusions

In this work, we used quantum chemical calculations to analyze the sensitivity of
triplet state aromaticity to substituent effects by using cyclopentadienyl cation as a model
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compound. We also provided a discussion on substituent effects on its singlet state antiaro-
maticity for comparison purposes and as an addition to the existing literature data, and we
examined open-shell singlet states for molecules whose closed-shell states had unstable
wave function (R = H, F, CH3, CF3, NO2, CN, CHO, and COOCH3). The main conclusions
are summarized as follows:

1. In its closed-shell singlet state, the positively charged and antiaromatic cyclopentadi-
enyl cation strongly interacts with electron-donating substituents, such as NH2, OH, F,
CH3, and NO, but does not interact with electron-withdrawing groups, which orient
themselves in such a position to diminish or fully avoid interaction with the π system
of the ring. As a consequence, the extent of antiaromaticity nicely correlates with the
π–electron substituent effect, represented by the pEDA values, for electron-donors
but not for electron acceptors. Although the NO group is basically an electron-
withdrawing substituent, it strongly donates its lone pair to the cyclopentadienyl ring,
diminishing its antiaromaticity to the largest extent.

2. The singlet–triplet energy gaps, favoring triplet in the parent molecule, show a
good correlation with the extent of antiaromaticity. They increase with a decrease in
antiaromaticity and favor singlet state for strong donors, such as NH2 and OH.

3. The formation of an open-shell singlet state has little effect on energy. The slight
change in MO extensions and drop in EDDBp values indicates that the decrease in
the extent of antiaromaticity, as evidenced from the decrease in NICS values, should
have its source in the weaker density of delocalized electrons.

4. The triplet state is characterized as aromatic in all but one case (R = NO), which
conforms to Baird’s rule. Increased electron delocalization, that is, aromaticity, de-
creases substituent–ring electronic interactions. Thus, in the absence of steric effects,
all substituents adopt a conformation that allows their interaction with the π system
of the ring, but it is weak so that the triplet state aromaticity of this chosen model compound
is just weakly sensitive to substituent effects. This can be explained by the fact that this
triplet state aromaticity is not as large as that of singlet benzene, the aromaticity of
which almost resists substituent effects.

5. The spin density distribution determines whether the cyclopentadienyl ring is triplet
state aromatic or antiaromatic: if it is accumulated in the ring, the system is aromatic,
but if it is accumulated at the substituent, the system is antiaromatic. The latter was
found for the NO group only so that 5-nitrosocyclopentadienyl cation, according
to our calculations, is antiaromatic in both singlet and triplet states. Similarly, our
previous calculations indicated that nitrosobenzene would be aromatic in both singlet
and triplet states [44]. This is reminiscent of adaptive aromaticity [31–33], which here,
was enabled by the introduction of a substituent.
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