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Abstract: Radioactive I2 (iodine) produced as a by-product of nuclear fission poses a risk to public
health if released into the environment, and it is thus vital to develop materials that can capture I2

vapour. Materials designed for the capture and storage of I2 must have a high uptake capacity and
be stable for long-term storage due the long half-life of 129I. UiO-66 is a highly stable and readily
tuneable metal-organic framework (MOF) into which defect sites can be introduced. Here, a defective
form of UiO-66 (UiO-66-FA) was synthesised and the presence of missing cluster moieties confirmed
using confocal fluorescence microscopy and gas sorption measurements. The uptake of I2 vapour in
UiO-66-FA was measured using thermal gravimetric analysis coupled mass spectrometry (TGA-MS)
to be 2.25 g g−1, almost twice that (1.17 g g−1) of the pristine UiO-66. This study will inspire the
design of new efficient I2 stores based upon MOFs incorporating structural defects.
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1. Introduction

Nuclear power is responsible for approximately 21% of the UK’s energy production
as of 2020 [1]. The products produced as a result of the fission of uranium pose a danger to
the environment and public health, and so materials that can capture and store such fission
products are of significant interest. 131I and 129I are volatile fission products with half-lives
of 8 days and 1.57 × 107 years, respectively [2]. 131I poses a serious risk to human health
as it has been linked to the occurrence of thyroid cancer [3]. 129I is less hazardous due to
its low energy beta and gamma emissions, but poses a long-term environmental risk due
to bioaccumulation [4]. It is vital also to prevent I2 escaping into the environment as it
can spread over a wide area due to its high solubility in water [5]. The capture of I2 has
been investigated using a wide variety of porous materials such as aerogels [6], zeolites [7],
porous organic polymers [8] and covalent–organic framework [9] materials. The main
drawbacks to using these materials are that they can be non-specific for I2, have low
uptakes, or have amorphous structures that prevent determination of preferred binding
sites, thus restricting an understanding of the mechanism of action of the material.

Metal–organic framework (MOF) materials are often highly porous and crystalline
and are well-known for their tuneable structures, potential high chemical stability and high
surface areas [10]. The tunability of MOFs has allowed them to be used in a wide range of
applications including catalysis [11], molecular separations [12] and the capture of gases
such as CO2 [13] and SO2 [14]. The storage of I2 by MOFs has been reported previously
with uptakes reaching as high as 7.35 g g−1 in the case of the ionic liquid-doped material
PCN-333 [15]. Proof-of-concept studies have also shown that MOFs can be used for the
long-term storage of I2 using glass sintering [16] and pressure-induced amorphization [17].
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Functionalisation of the MOF structure is a common route to increasing I2 adsorption
and relies on the introduction of electron donating [18,19] or reactive groups [20] onto the
ligands. Doping MOFs with Ag [21] and Cu [22] ions can also improve the I2 uptake of
the host MOF. Detailed studies into the adsorption mechanism of I2 have also been carried
out and highlight the importance of the structure of the MOF [23,24] and of metal cluster
nodes for the efficient capture of I2 [25]. The introduction of structural defects has been
shown to increase the catalytic activity of MOFs [26,27] and increase the uptake of CO2 by
UiO-66 [28]. However, the impact of such defects on the adsorption of I2 has not been inves-
tigated previously and we were interested to determine whether this was an appropriate
methodology for improved I2 adsorption (Figure S1, Supplementary Materials).

UiO-66 was chosen in this work due its high stability and the established synthesis and
routes to the preparation of defective derivatives. Coordination modulation by undertaking
the synthesis of UiO-66 in the presence of formic acid can introduce defects into UiO-66.
The competitor ligand formate binds to metal clusters in place of the bridging terephthalate
linker to produce missing linker defects. If there is sufficient missing linker, defects will
occur within the overall stable geometry with certain metal clusters absent (Figure S2) [29].
We have analysed the presence of missing cluster defects within a sample of defect UiO-
66, designated UiO-66-FA, using Brunauer–Emmett–Teller (BET) surface area analysis,
thermal gravimetric analysis and confocal fluorescence microscopy. The uptake of I2
has been measured and confirmed using Raman spectroscopy and thermal gravimetric
analysis coupled with mass spectrometry. The presence of structural defects results in a
nearly 100% enhancement in the adsorption capacity of I2 within UiO-66-FA compared to
pristine UiO-66.

2. Results and Discussion

UiO-66 was synthesised by dissolving ZrCl4 and terephthalic acid in DMF and heating
the solution to 120 ◦C for 24 h. UiO-66-FA was synthesised using the same general
procedure but using a mixture of DMF and formic acid as solvent. Powder X-ray diffraction
(PXRD) analysis of as-synthesised UiO-66 and UiO-66-FA (Figure 1) confirmed the phase
purity of both samples [30,31]. The PXRD pattern of UiO-66-FA shows two additional
Bragg peaks between 5 and 7◦ attributed to the presence of reo regions within the fcu
structure caused by missing cluster defects [29,32]. These Bragg peaks are also broad,
highlighting the disorder of these defect sites throughout the parent structure of UiO-66.
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Figure 1. PXRD (powder X-ray diffraction) patterns for UiO-66 synthesised with (blue) and with-
out formic acid (red). Simulated PXRD for UiO-66 (black) [27]. 

Figure 1. PXRD (powder X-ray diffraction) patterns for UiO-66 synthesised with (blue) and without
formic acid (red). Simulated PXRD for UiO-66 (black) [27].

Confocal fluorescence microscopy (CFM) can be used to visualise mesoporous defects
within electro-synthesised MOFs [27]. In these systems, Lewis acid sites found in defect
sites and boundaries catalyse the formation of a fluorescent oligomer from furfuryl alcohol,
the monomer of which is not fluorescent (Figure S3). On exposure of UiO-66 and UiO-
66-FA to furfuryl alcohol it was noted that the UiO-66-FA sample had a darker colour
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than the sample exposed to UiO-66 (Figure S4). This suggested that a more fluorescent
oligomer was being produced by UiO-66-FA as the oligomer has a dark brown colour
compared to the colourless furfuryl alcohol. This conclusion was supported by CFM
which showed a uniform spread of high intensity fluorescence throughout the sample of
UiO-66-FA exposed to furfuryl alcohol. The sample of UiO-66 exposed to furfuryl alcohol
shows weaker fluorescence which is not evenly distributed across the sample (Figure 2).
The relatively small amount of fluorescence and its location for the UiO-66 sample can
be explained by the presence of Lewis acid sites at the edges of the crystals, with the
high intensity fluorescence across the sample of UiO-66-FA confirming the presence of an
increased number of defects within the structure of UiO-66-FA compared to UiO-66.
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Figure 2. CFM (confocal fluorescence microscopy) and micrograph images: (a) fluorescence micrograph of UiO-66;
(b) micrograph of UiO-66; (c) fluorescence micrograph of UiO-66-FA; (d) micrograph of UiO-66-FA. Scale bars are 10 µm,
10 µm, 5 µm and 5 µm, respectively.

UiO-66-FA shows a higher BET surface area than UiO-66, 1705 and 1170 m2 g−1,
respectively, as determined from the N2 adsorption isotherm, consistent with the removal
of linkers and clusters to form defect sites in UiO-66-FA. The pore size distribution data
(Figure S5) confirm that larger pores are present in UiO-66-FA with significant peaks above
8 Å radius attributed to the large pores created due to missing cluster moieties. In contrast,
UiO-66 only shows pores of less than 9 Å radius [30]. The calculated micropore volume
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also supports the formation of larger pores with 0.30 cm3 g−1 in UiO-66 and 0.73 cm3 g−1

in UiO-66-FA. PXRD, CFM and BET results confirm the presence of defects in UiO-66-FA.
I2 adsorption was carried out in a sealed flask by heating for 3 days the activated,

desolvated solid MOF sample with solid I2, each inside an open glass vessel. The MOF
sample was then removed from the vessel for further analysis. TGA analysis of the I2-
loaded samples showed a drop in mass between 100 and 200 ◦C attributed to loss of I2 as
monitored by mass spectrometry (Figure 3). The I2 uptake over three repeat cycles gave an
average uptake for UiO-66 and UiO-66-FA of 1.17 and 2.25 g g−1, respectively, consistent
with the increased porosity due to defects in the structure of UiO-66-FA. The weight drop
observed at around 500 ◦C is linked to decomposition of the ligand and the percentage
drop for UiO-66-FA is less than that of UiO-66, reflecting fewer ligands present in the
UiO-66-FA. The Raman spectrum of solid I2 shows a peak at 180 cm−1 assigned to the υI-I
stretching vibration. This peak is shifted in both I2-loaded UiO-66 samples (Figure 4), and
the presence of this single peak rules out the presence of triiodide that would produce a
peak between 110 and 140 cm−1 [33]. Other observable features in the complete Raman
spectra (Figure S6) include peaks at 1600 cm−1, 1150 cm−1 and 850 cm−1 assigned to the
C-C bonds in the aromatic ring of the ligand [34]. The overlapping peaks seen at 1400 cm−1

are due to the COO stretching vibration of the linker overlapping with another aromatic
ring Raman peak. There is no change to these peaks upon I2 adsorption in both UiO-66
and UiO-66-FA, confirming that the linker remains intact after I2 adsorption. I2 has strong
interaction with unsaturated zirconium clusters and increased access to the framework of
UiO-66-FA results in a high I2 uptake.
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Figure 3. (a) TGA for UiO-66 (black) and UiO-66-FA (red); dashed lines indicate I2-loaded samples. (b) TGA-MS results
(black line) for I2-loaded UiO-66 (solid line) and I2-loaded UiO-66-FA (dashed).

The cycling of I2 adsorption was carried out to show that even when clusters are
removed from UiO-66 the structure remains stable on the adsorption and desorption of
I2 (Figure 5). The decrease in I2 uptake observed after each cycle in derivatives of UiO-66
has been observed previously [25,35]. However, this drop in uptake appears to be less
for UiO-66-FA, which could be due to the openness of the structure reducing the impact
of I2 removal. Samples of MOF were monitored by PXRD on removal of I2 from loaded
material (Figures S7 and S8). The PXRD patterns show little change in the structure or
crystallinity throughout the cycling experiments, confirming that defects within UiO-66-FA
do not decrease its stability on I2 loading.
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Figure 5. I2 uptakes compared to the first cycle for (a) UiO-66 and (b) UiO-66-FA. First cycle (blue), second cycle (red) and
third cycle (green). PXRD of samples after I2 desorption are shown in Figures S7 and S8.

In summary, the impact of structural defects on I2 uptake capacity has been studied in
UiO-66 and UiO-66-FA. The presence of defects in UiO-66-FA was verified by BET surface
area, TGA and CFM analysis. Defects caused by missing clusters within the structure of
UiO-66 results in an increase I2 adsorption from 1.17 to 2.25 g g−1 for UiO-66 and UiO-66-
FA, respectively, and the overall increased porosity of the latter also contributes to higher
I2 uptake. Cycling of I2 loading in UiO-66-FA confirms that I2 uptake can be increased
without compromising the stability of the MOF, an approach that can be applied potentially
to other capture systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemistry3020037/s1, Figure S1: Colour change observed in UiO-66-FA with loading of I2.
Figure S2: Structure of UiO-66 and of UiO-66-FA. Figure S3: Reaction scheme for the synthesis of the
fluorescent oligomer from furfuryl alcohol. Figure S4: Sample of UiO-66 and UiO-66-FA in furfuryl
alcohol after oligomerization reaction. Figure S5: N2 adsorption isotherm and pore size distribution
of UiO-66 and UiO-66-FA. Figure S6: Raman spectra of I2, UiO-66, I2-loaded UiO-66, UiO-66-FA, and
I2-loaded UiO-66-FA. Figure S7: PXRD of UiO-66 after removal of captured I2. Figure S8: PXRD of
UiO-66-FA after removal of captured I2.
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