SUPPLEMENTARY MATERIALS

New Syntheses, Analytic Spin Hamiltonians, Structural and Computational Characterization for a Series of tri-, hexa- and hepta-nuclear Copper (II) Complexes with Prototypic Patterns.

Ana Maria Toader¹, Cristina Maria Buta¹, Fanica Cimpoesu^{1,*}, Andrei-Iulian Toma², Christina Marie Zalaru³, Ludmila Otilia Cinteza⁴ and Marilena Ferbinteanu^{2,*}

¹ Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest 060021, Romania

² University of Bucharest, Faculty of Chemistry, Department of Inorganic Chemistry, Dumbrava Rosie 23, Bucharest 020462, Romania

3 University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Panduri 90-92, Bucharest 050663, Romania

4 University of Bucharest, Physical Chemistry Department, Bucharest 030118, Romania *Corresponding authors:

cfanica@yahoo.com (F.C.) and marilena.cimpoesu@g.unibuc.ro (M.F.)

Contents

Table S1: Crystal data for complexes 1-3

Figure S1: X-ray molecular structure of compound 1 with atoms coloring scheme

Figures S2-S4: Packing along *a*, *b* and *c* axes for compound 1

 Table S2: Selected bond lengths [Å] and angles [°] for 1

Figure S5: X-ray molecular structure of compound 2 with atoms coloring scheme

Figures S6-S8: Packing along *a*, *b* and *c* axes for com-pound 2

 Table S3: Selected bond lengths [Å] and angles [°] for 2

Figure S9: X-ray molecular structure of compound 3 with atoms coloring scheme,

Figures S10-S11: Packing along *a*, *b* and *c* axes for compound 3

 Table S4: Selected bond lengths [Å] and angles [°] for 3,

Table S5: The count and energies of spin states (including total and intermediate spin quantum numbers) in a copper hexanuclear system, constituted as dimer of trimers, with the topology discussed in the main text,

Table S6: Numeric energies in a hexanuclear system with local 1/2 spin centres and hexagonal topology (having unique exchange coupling parameter J along the edges),

Table S7: The count and energies of spin states in a copper heptanuclear system, constituted as a central atom interacting equivalently with two trimers,

Tables S8-S10: The high spin (HS) and broken symmetry (BS) energies calculated for compounds 1-3.

X-ray diffraction for compounds 1-3

Compound	1	2	3
Formula	C ₁₉ H ₂₄ Cu ₃ N ₉ O ₁₆	$C_{94}H_{114}Cu_6N_{30}O_{20}$	$C_{48}H_{74}Cu_7N_{18}O_{32}$
Formula weight	825.09	2365.38	1860.04
Temperature, K	293	293	293
Crystal system	orthorhombic	trigonal	trigonal
Space group	Pbca	R-3	R-3c
<i>a</i> , Å	28.2869(19)	20.826(3)	18.893(1)
b, Å	26.1979(14)	20.826(3)	18.893(1)
<i>c</i> , Å	18.7913(10)	22.2759(16)	35.431(3)
α , °	90	90	90
β , °	90	90	90
γ, °	90	120	120
$V, Å^3$	13925.4(14)	8367.2(18)	10952(2)
Ζ	16	3	6
Dcalc, Mg/m ³	1.574	1.414	1.692
F(000)	6656.00	3703.9	5682.0
μ (Mo K α), mm -1	1.892	1.200	2.096
Range(2θ), deg	6.06 to 54.98	6.26 to 54.96	6.6 to 54.9
Independent reflections	12870	4258	2801
Data/restraints/parameters	12870/0/848	4258/0/246	2801/0/161
Final R indices $[I > 2\sigma(I)]$	0.1255	0.0774	0.0553
R indices (all data)	0.2718	0.1229	0.0914
Goodness-of-fit on F^2	1.028	1.124	1.056

Table S1. Crystal data for complexes 1-3.

Figure S1. X-ray molecular structure of compound **1** with atoms coloring scheme. The solvent molecules were omitted for clarity.

Figure S2. Packing along *a* axis for compound **1**, (representation with Mercury and POV-Ray).

Figure S3. Packing along *b* axis for compound **1**, (representation with Mercury and POV-Ray).

Figure S4. Packing along *c* axis for compound **1**, (representation with Mercury and POV-Ray).

Atoms	Bond lengths, Å	Atoms	Bond angles, ^o
Cu1-O1	1.974(9)	O1-Cu1-O10	169.6(4)
Cu1-O10	1.942(10)	O1-Cu1-N1	88.6(4)
Cu1-N1	1.948(11)	O1-Cu1-N8	88.8(4)
Cu1-N8	1.984(12)	O10-Cu1-N1	92.1(4)
Cu2-O1	2.039(8)	O10-Cu1-N8	94.8(5)
Cu2-O8	2.037(10)	N1-Cu1-N8	155.9(5)
Cu2-O9	2.267(11)	O1-Cu2-O8	142.8(4)
Cu2-N2	1.959(12)	O1-Cu2-O9	100.2(4)
Cu2-N4	1.939(13)	O1-Cu2-N2	90.9(4)
Cu3-O1	1.985(8)	O1-Cu2-N4	90.2(5)
Cu3-O12	1.936(12)	O8-Cu2-O9	117.0(4)
Cu3-N5	1.948(13)	N2-Cu2-N4	175.9(5)
Cu3-N7	1.970(12)	O1-Cu3-O12	163.5(4)
		O1-Cu3-N5	89.8(5)
		O1-Cu3-N7	88.4(4)
		O12-Cu3-N5	93.3(5)
		O12-Cu3-N7	91.3(5)
		N5-Cu3-N7	169.4(5)

 Table S2. Selected bond lengths [Å] and angles [°] for 1.

Figure S5. X-ray molecular structure of compound **2** with atoms coloring scheme. The solvent molecules were omitted for clarity.

Figure S6. Packing along *a* axis for compound **2**, (representation with Mercury and POV-Ray).

Figure S7. Packing along *b* axis for compound **2**, (representation with Mercury and POV-Ray).

Figure S8. Packing along *c* axis for compound **2**, (representation with Mercury and POV-Ray).

Atoms	Bond lengths, Å	Atoms	Bond angles, ^o
Cu1-N1	2.018(4)	N2-Cu1-N1	178.67(17)
Cu1-N2	2.003(4)	O1-Cu1-N1	93.99(16)
Cu1-O1	1.947(4)	O1-Cu1-N2	85.91(16)
Cu1- N4	2.359(5)	N4-Cu1-N1	92.06(16)
Cu1-O1 ¹	1.943(4)	N4-Cu1-N2	89.26(17)
N1-N2 ¹	1.397(6)	N4-Cu1-O1	100.45(18)
		N4-Cu1-O1 ¹	107.31(18)
		N2 ¹ -N1-Cu1	118.0(3)
		N1 ² -N2-Cu1	119.3(3)

Table S3. Selected bond lengths [Å] and angles $[\circ]$ for 2.

¹-1/3+Y,1/3-X+Y,4/3-Z; ²2/3-Y+X,1/3+X,4/3-Z; ³1-Y,+X-Y,+Z; ⁴1+Y-X,1-X,+Z

Figure S9. X-ray molecular structure of compound 3 with atoms coloring scheme.

Figure S10. Packing along *a* axis for compound **3**, (representation with Mercury and POV-Ray).

Figure S11. Packing along *b* axis for compound **3**, (representation with Mercury and POV-Ray).

Figure S12. Packing along *c* axis for compound **3**, (representation with Mercury and POV-Ray).

Atoms	Bond lengths, Å	Atoms	Bond angles, ^o
Cu1-O1	2.056(4)	01-Cu1-O1 ¹	85.06(15)
Cu1-O1 ¹	2.054(4)	O1-Cu1-O1 ³	179.95(13)
Cu1-O1 ²	2.055(4)	O1-Cu1-O1 ⁴	94.86(15)
Cu1-O1 ³	2.053(4)	O1 ¹ -Cu1-O1 ⁵	94.94(15)
Cu1-O1 ⁴	2.054(4)	O2-Cu2-O3	158.05(18)
Cu1-O1 ⁵	2.053(4)	O2-Cu2-N1	92.52(17)
Cu2-O2	2.014(4)	O3-Cu2-N1	90.31(12)
Cu2-O3	2.0055(18)	N1-Cu2-N2 ¹	169.82(16)
Cu2-N1	1.991(5)	Cu1-O1-C1	143.1(4)
Cu2-N21	1.971(6)	Cu2-O2-C1	101.6(4)
		Cu2-O3-Cu2 ¹	110.99(14)
		$Cu2-O3-Cu2^2$	110.93(14)
		$Cu2^1$ -O3- $Cu2^2$	111.00(14)
		Cu2-N1-N2	117.1(4)
		Cu2-N1-C4	133.5(3)
		N2-N1-C4	108.6(4)
		Cu2 ² -N2-N1	120.0(4)
		Cu2 ² -N2-C6	131.3(3)

Table S4. Selected bond lengths [Å] and angles [°] for 3.

¹ -Y+1,X-Y+1,Z; ²-X+Y,-X+1,Z; ³-X+2/3,-Y+1/3+1,-Z+1/3+1;⁴ Y+2/3-1,-X+Y+1/3,-Z+1/3+1; ⁵ X-Y+2/3,X+1/3,-Z+1/3+1

Table S5. The count and energies of spin states (including total and intermediate spin quantum numbers) in a copper hexanuclear system, constituted as dimer of trimers, with the topology discussed in the main text.

S	S123	S456	$E(S, S_{123}, S_{456})$
0	1/2	1/2	0
0	1/2	1/2	0
0	1/2	1/2	0
0	1/2	1/2	0
0	3/2	3/2	-6 <i>J</i> +6 <i>j</i>
1	1/2	1/2	-2 <i>j</i>
1	1/2	1/2	-2j
1	1/2	3/2	-3J+j
1	1/2	1/2	-2j
1	1/2	1/2	-2j
1	1/2	3/2	-3J+j
1	3/2	1/2	-3J+j
1	3/2	1/2	-3J+j
1	3/2	3/2	-6J+4j
2	1/2	3/2	-3J -3j
2	1/2	3/2	-3J -3j
2	3/2	1/2	-3J -3j
2	3/2	1/2	-3J -3j
2	3/2	3/2	-6J
3	3/2	3/2	-6 <i>J</i> -6j

Table S6. Numeric energies in a hexanuclear system with local 1/2 spin centres and hexagonal topology (having unique exchange coupling parameter *J* along the edges).

#	S	HDvV
1	0	0
2	0	-2.60555 J
3	0	-4.60555 J
4	0	-4.60555 J
5	0	-7.21110 J
6	1	-1.36948 J
7	1	-4.16710 J
8	1	-4.16710 J
9	1	-3.60555 J
10	1	-3.60555 J
11	1	-5.84162 J
12	1	-6.60555 J
13	1	-7.16710 J
14	1	-7.16710 J
15	2	-4.60555 J
16	2	-5.60555 J
17	2	-5.60555 J
18	2	-7.60555 J
19	2	-7.60555 J
20	3	-8.60555 J

S	S_{1-6}	S_{123}	S ₄₅₆	$E(S, S_{1-6}, S_{123}, S_{456})$
1/2	0	1/2	1/2	0
1/2	0	1/2	1/2	0
1/2	0	1/2	1/2	0
1/2	0	1/2	1/2	0
1/2	1	1/2	1/2	2 <i>J</i> -2j
1/2	1	1/2	1/2	2J-2j
1/2	1	1/2	3/2	-3 <i>J</i> +2 <i>J</i> '+ <i>j</i>
1/2	1	1/2	1/2	2 <i>J</i> '-2 <i>j</i>
1/2	1	1/2	1/2	2 <i>J</i> '-2 <i>j</i>
1/2	1	1/2	3/2	-3 <i>J</i> +2 <i>J</i> '+ <i>j</i>
1/2	1	3/2	1/2	-3 <i>J</i> +2 <i>J</i> '+ <i>j</i>
1/2	1	3/2	1/2	-3 <i>J</i> +2 <i>J</i> '+ <i>j</i>
1/2	0	3/2	3/2	-6 <i>J</i> +6 <i>j</i>
1/2	1	3/2	3/2	-6 <i>J</i> +2 <i>J</i> '+4 <i>j</i>
3/2	1	1/2	1/2	-J'-2j
3/2	1	1/2	1/2	-J'-2j
3/2	1	1/2	3/2	-3J-J'+j
3/2	2	1/2	3/2	-3J+3J'-3j
3/2	1	1/2	1/2	-J'-2j
3/2	1	1/2	1/2	-J'-2j
3/2	1	1/2	3/2	-3J-J'+j
3/2	2	1/2	3/2	-3J+3J'-3j
3/2	1	3/2	1/2	-3 <i>J</i> - <i>J</i> '+ j
3/2	2	3/2	1/2	-3J+3J'-3j
3/2	1	3/2	1/2	-3 <i>J</i> - <i>J</i> '+ j
3/2	2	3/2	1/2	-3J+3J'-3j
3/2	1	3/2	3/2	-6 <i>J-J</i> '+4 <i>j</i>
3/2	2	3/2	3/2	-6 <i>J</i> +3 <i>J</i> '
5/2	2	1/2	3/2	-3 <i>J</i> -2 <i>J</i> '-3 <i>j</i>
5/2	2	1/2	3/2	-3 <i>J</i> -2 <i>J</i> '-3 <i>j</i>
5/2	2	3/2	1/2	-3J-2J'-3j
5/2	2	3/2	1/2	-3J-2J'-3j
5/2	2	3/2	3/2	-6 <i>J</i> -2 <i>J</i> '
5/2	3	3/2	3/2	-6J+4J'-6j
7/2	3	3/2	3/2	-6J-3J'-6j

Table S7. The count and energies of spin states in a copper heptanuclear system, constituted as a central atom interacting equivalently with two trimers, having mutually the same parameterization as convened in the hexameric system from Table S5.

Name	$\Delta E(BSi)$	Absolute Energy	$\langle S^2 \rangle$	Relative Energy
	General Formulas	(a.u.)		Calc. & Fit (cm^{-1})
HS	0	-7130.80765	3.756	0
BS1	$J_{12}+J_{13}$	-7130.80896	1.729	-287.6
BS2	$J_{12}\!+\!J_{23}$	-7130.80883	1.727	-259.2
BS3	$J_{13} + J_{23}$	-7130.80882	1.728	-257.0

Table S8. The high spin (HS) and broken symmetry (BS) energies calculated for compond **1** gived as absolute and relative energies to those of highest spin. The solution, calculated vs. fit to model, is exact with J_{12} =-144.9 cm⁻¹, J_{13} =-142.7 cm⁻¹ and J_{23} =-114.3 cm⁻¹.

Table S9. The high spin (HS) and broken symmetry (BS) energies calculated for compond **2** gived as absolute and relative energies to those of highest spin. The fit value is J=-240.4 cm⁻¹.

Name	$\Delta E(BSi)$	Absolute Energy	$\langle S^2 \rangle$	Rel, Energy	Rel. Energy
	General Formulas	(a.u.)		$Calc.(cm^{-1})$	Fit (cm^{-1})
HS	0	-14833.30792	12.011	0	0
BS1	2J	-14833.31011	6.972	-480.6	-480.8
BS12	2J	-14833.31012	3.972	-482.0	-480.8
BS13	4J	-14833.31230	3.934	-960.2	-961.6
BS14	4J	-14833.31230	3.933	-961.0	-961.6
BS123	2J	-14833.31012	2.972	-481.9	-480.8
BS124	4J	-14833.31230	2.933	-961.5	-961.6
BS135	6J	-14833.31448	2.896	-1439.0	-1442.4

Table S10. The high spin (HS) and broken symmetry (BS) energies calculated for compond 3

gived as absolute and relative energies to those of highest spin. The fit corresponds to the following parameters: J=-162.3 cm⁻¹, J'=+4.9 cm⁻¹ and j= +0.75 cm⁻¹.

Name	$\Delta E(BSi)$ General Formulas	Absolute Energy (a.u.)	$\langle S^2 \rangle$	Rel. Energy Calc. (cm ⁻¹)	Rel. Energy Fit (cm ⁻¹)
HS	0	-16746.67162	15.799		
BS1	6J'	-16746.67317	9.761	27.7	24.0
BS2	2 <i>J</i> + <i>J</i> '+3 <i>j</i>	-16746.67308	9.734	-313.9	-318.4
BS12	2 <i>J</i> +5 <i>J'</i> +3 <i>j</i>	-16746.67316	5.735	-294.3	-302.4
BS23	2 <i>J</i> +2 <i>J</i> '+6 <i>j</i>	-16746.67462	5.736	-312.1	-312.1
BS25	4J + 2J' + 4j	-16746.67468	5.705	-631.8	-638.2
BS26	4 <i>J</i> +2 <i>J</i> '+4 <i>j</i>	-16746.67478	5.705	-643.8	-638.2