Supporting information for

Dimensionality Control in Crystalline Zinc(II) and Silver(I) Complexes with Ditopic Benzothiadiazole-Dipyridine Ligands

Teodora Mocanu ^{1,2}, Nataliya Plyuta ³, Thomas Cauchy ³, Marius Andruh ^{1,*} and Narcis Avarvari ^{3,*}

¹ Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, 020464, Bucharest, Romania; teo_mocanu_sl@yahoo.com

² Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania

³ MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier, 49045 Angers Cedex, France ; plyutanataliya@gmail.com (N.P.); thomas.cauchy@univ-angers.fr (T.C.)

* Correspondence: marius.andruh@dnt.ro; narcis.avarvari@univ-angers.fr

IR spectra

Figure S1. IR spectrum of compound 1.

Figure S2. IR spectrum of compound 2.

Figure S3. IR spectrum of compound 3.

Figure S4. IR spectrum of compound 4.

Figure S5. IR Spectrum of compound 6.

Figure S6. IR spectrum of compound 7.

Figure S7. IR spectrum of compound 8.

Figure S8. IR spectrum of compound 9.

Single crystal X-ray structures

Table S1. Crystallographic data, details of data collection and structure refinement parameters for compounds1–5.

	1	2	3	4	5
Formula sum	C ₂₆ H ₁₂ ZnF ₁₂ N ₄ O ₄ S	C ₃₆ H ₁₄ Zn ₂ F ₂₄ N ₄ O ₈ S	$C_{17}H_{10}AgF_3N_4O_3S_2$	$C_{16}H_{10}AgF_6SN_4Sb$	C ₁₈ H ₁₃ Ag ₂ N ₇ O ₆ S
Formula weight	Formula weight 769.83 1249.32		547.28	633.96	671.15
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P21/c	C2/c	P21/c	P21/c	P21/c
a/Å	8.7180(3)	21.6672(9)	8.2428(2)	8.0127(3)	13.1769(7)
b/Å	18.8045(6)	11.8405(5)	17.0241(3)	17.8981(5)	8.1432(4)
c/Å	18.7479(7)	17.6833(7)	13.5645(3)	13.1292(4)	20.1443(13)
α/°	90	90	90	90	90
β/°	97.318(3)	104.248(4)	99.838(2)	100.024(3)	109.027(7)
γ/°	90	90	90	90	90
V/ų	3048.46(19)	4397.1(3)	1875.46(7)	1854.14(10)	2043.4(2)
Z	4	8	4	4	4
D _c /g cm ⁻³	1.677	1.887	1.938	2.271	2.182
т/к	293(2)	299.30(10)	150.01(10)	150.01(10)	150.00(10)
µ/mm⁻¹	0.987	3.263	11.255	21.745	16.841
Reflections collected	23001	8511	7468	8044	5232
Independent reflection	7670[<i>R</i> _{int} = 0.0471]	4242[<i>R</i> _{int} = 0.0321]	3602[<i>R</i> _{int} = 0.0318]	3542[<i>R</i> _{int} = 0.0355]	3025[<i>R</i> _{int} = 0.0338]
final R_1^a , wR_2^b [$l > 2\sigma(l)$]	0.0493/ 0.1218	0.0563/ 0.1619	0.0294/0.0764	0.0368/0.0880	0.0413/0.1096
R_1^a , wR_2^b (all data)	0.0946/ 0.1372	0.0611/0.1761	0.0336/0.0802	0.0430/0.0951	0.0448/ 0.1188
goodness-of-fit on F ²	1.017	1.080	1.029	1.045	1.072
$\Delta ho_{ ext{min}}/\Delta ho_{ ext{max}}$ (e Å $^{ ext{-3}}$)	-0.33/0.47	-0.70/1.04	-0.52/0.75	-1,16/1,42	-1.61/0.93
Completeness (%)	100	99.7	99.9	99.3	78.4

 $\frac{|}{R_1 = \sum ||F_0| - |F_c| / \sum |F_0|} w R_2 = \left[\sum w (F_0^2 - F_c^2)^2 / \sum w (F_0^2)^2 \right]^{1/2}; w = 1 / \left[\sigma^2 (F_0^2) + (aP)^2 + bP \right] where P = \left[max(F_0^2, 0) + 2F_c^2 \right] / 2.$

Table S2. Crystallographic data, details of data collection and structure refinement parameters for compounds6-9.

	6	7	8	9
Formula sum	C ₂₆ H ₁₂ ZnF ₁₂ N ₄ O ₄ S	$C_{26}H_{12}ZnF_{12}N_4O_4S$	$C_{32}H_{20}ZnCl_2N_8S_2$	$C_{16}H_{10}ZnCI_2N_4S$
Formula weight	769.83	769.83	716.95	426.61
Crystal system	monoclinic	triclinic	monoclinic	orthorhombic
Space group	<i>P</i> 2 ₁ /n	P-1	P21/c	P212121
a/Å	11.0639(4)	7.8997(2)	15.8461(5)	5.3930(3)
b/Å	11.9939(6)	10.5946(3)	13.2351(3)	13.7128(6)
c/Å	22.0792(9)	18.5587(5)	14.7753(4)	23.0313(10)
α/°	90	102.626(2)	90	90
βl°	97.577(4)	91.823(2)	103.854(3)	90
γ/°	90	97.573(2)	90	90
V/ų	2904.3(2)	1499.52(7)	3008.60(15)	1703.24(14)
Z	4	2	4	4
D _c /g cm ⁻³	1.761	1.705	1.583	1.664
Т/К	299.00(10)	293(2)	293(2)	284(20)
μ/mm ⁻¹	2.96	1.004	1.172	6.077
Reflections collected	9145	19338	23855	4388
Independent reflection	9145[<i>R</i> _{int} = 0.0439]	7482[<i>R</i> _{int} = 0.0345]	7607[<i>R</i> _{int} = 0.0281]	2953[<i>R</i> _{int} = 0.0453]
final $R_1^a / w R_2^b [l > 2\sigma(l)]$	0.0451/0.1002	0.0487/0.1388	0.0335/ 0.0831	0.0578/0.1472
R_1^a/wR_2^b (all data)	0.0911/0.1163	0.0742/0.1557	0.0497/ 0.0887	0.0646/ 0.1630
goodness-of-fit on F ²	0.840	0.971	1.050	1.064
$\Delta ho_{ ext{min}}/\Delta ho_{ ext{max}}$ (e Å ⁻³)	-0.46/0.94	-0.44/0.86	-0.32/0.45	-0.85/1.06
Completeness (%)	98.3	100	100	99.1
Flack parameter				-0,02(4)

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \ ^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}; \ w = 1 / [\sigma^{2}(F_{0}^{2}) + (aP)^{2} + bP] \ where \ P = [max(F_{0}^{2}, 0) + 2F_{c}^{2}] / 3.$

Compounds [Zn(hfac)₂(2-PyBTD)] $\mathbf{1}$ and [Zn₂(hfac)₄(2-PyBTD)] $\mathbf{2}$

1		2	
N1 Zn1 N2	88.0(3)	N1 Zn1 N2	86.8(1)
N1 Zn1 O1	169.6(3)	N1 Zn1 O1	165.6(1)
N1 Zn1 O2	86.9(2)	N1 Zn1 O2	89.9(1)
N1 Zn1 O3	103.9(2)	N1 Zn1 O3	104.4(2)
N1 Zn1 O4	95.7(3)	N1 Zn1 O4	97.8(1)
N2 Zn1 O1	88.5(2)	N2 Zn1 O1	83.0(1)
N2 Zn1 O2	103.5(3)	N2 Zn1 O2	104.6(1)
N2 Zn1 O3	84.1(2)	N2 Zn1 O3	82.7(1)
N2 Zn1 O4	167.3(3)	N2 Zn1 O4	168.1(2)
O1 Zn1 O2	84.5(2)	O1 Zn1 O2	82.7(1)
O1 Zn1 O3	85.4(2)	O1 Zn1 O3	84.4(1)
O1 Zn1 O4	89.9(2)	O1 Zn1 O4	94.0(1)
O2 Zn1 O3	167.1(2)	O2 Zn1 O3	164.2(2)
O2 Zn1 O4	88.9(3)	O2 Zn1 O4	86.3(1)
O3 Zn1 O4	83.2(3)	O3 Zn1 O4	85.5(2)

 Table S3. Selected bond angles (°) for compounds 1 and 2.

Figure S9. Perspective of the 1D supramolecular assembly in 4.

3		4	Ļ
N1 Ag1 N2	81.5(1)	N1 Ag1 N2	79.2(2)
N1 Ag1 N3 ^a	114.6(1)	N1 Ag1 N3 ^a	136.3(2)
N1 Ag1 N4 ^a	135.9(1)	N1 Ag1 N4 ^a	140.9(2)
N2 Ag1 N3 ^a	94.2(9)	N2 Ag1 N3 ^a	91.8(2)
N2 Ag1 N4 ^a	142.5(1)	N2 Ag1 N4 ^a	119.2(2)
N3ª Ag1 N4ª	72.6(1)	N3ª Ag1 N4ª	80.3(2)
O1 Ag1 N1	97.7(9)		
O1 Ag1 N2	93.5(9)		
O1 Ag1 N3 ^a	147.4(8)		
O1 Ag1 N4ª	82.1(1)		
^a =1- <i>x</i> , 1-	y, 1- z	^a =1- <i>x</i> , -	y, 1- z

Table S4. Selected bond angles (°) for compounds 3 and 4.

Compound [Ag₂(NO₃)₂(2-PyBTD)(CH₃CN)] 5

	hexagon (D _{6h})	pentagonal	octahedron trigonal prism		Pentagonal pyramid	
		pyramid (C5v)	(<i>O</i> _{<i>h</i>})	(D _{3h})	Johnson (C5v)	
5	25.457	8.704	25.129	12.497	13.012	

Table S5. Values of the SHAPE parameter for the Ag1 ion in compound **5** for hexacoordination.

 Table S6. Selected bond angles (°) for compound 5.

		5	
N1 Ag1 O1	103.0(2)	O4 Ag1 O6ª	75.6(2)
N1 Ag1 O3	92.4(3)	O5ª Ag1 O6ª	48.3(2)
N1 Ag1 O4	126.5(2)	N2 A21 N4 ^b	115.7(2)
N1 Ag1 O5ª	101.8(2)	N2 Ag2 N7	133.0(2)
N1 Ag1 O6ª	134.9(2)	N2 Ag2 O6	74.9(2)
O1 Ag1 O3	47.3(2)	N2 Ag2 O5 ^c	125.8(2)
O1 Ag1 O4	102.4(2)	N4 ^b Ag2 O6	155.2(2)
O1 Ag1 O5ª	91.6(2)	N4 ^b Ag2 N7	99.3(2)
O1 Ag1 O6ª	109.6(2)	N4 ^b Ag2 O5 ^c	72.7(2)
O3 Ag1 O4	72.4(2)	N7 Ag2 O6	86.1(2)
O3 Ag1 O5ª	138.8(2)	N7 Ag2 O5 ^c	92.8(2)
O3 Ag1 O6ª	132.4(2)	O6 Ag2 O5 ^c	82.9(2)
O4 Ag1 O5ª	123.4(2)		
^a = 1- <i>x</i> , 0.5+ <i>y</i> , 0.5- <i>z</i> ;	^b =1-x, 1- y	r, 1- z; ^c = 1-x, -0.5+y	∕, 0.5-z

Compound [Zn(hfac)₂(3-PyBTD)] (6).

Figure S10. Schematic representation of the supramolecular layer in crystal structure of 6.

		6			
01 Zn1 02	84.9(1)	O2 Zn1 N4 ^a	94.7(2)		
O1 Zn1 O3	93.3(2)	O3 Zn1 O4	84.7(2)		
O1 Zn1 O4	177.1(2)	O3 Zn1 N1	96.0(2)		
O1 Zn1 N1	89.3(2)	O3 Zn1 N4ª	173.8(2)		
O1 Zn1 N4ª	91.8(2)	O4 Zn1 N1	92.9(2)		
O2 Zn1 O3	82.4(1)	O4 Zn1 N4ª	89.9(2)		
O2 Zn1 O4	94.7(2)	N1 Zn1 N4 ^a	87.3(2)		
O2 Zn1 N1	173.9(2)				
^a = x, -1.5 - y, -0.5+ z					

 Table S7.
 Selected bond angles (°) for compound 6.

Compound [Zn(hfac)₂(4-PyBTD)] 7

7						
01 Zn1 02	89.0(1)	O3 Zn2 O4	89.4(1)			
O1 Zn1 O1ª	180	O3 Zn2 O3 ^b	180			
O1 Zn1 O2ª	91.0(1)	O3 Zn2 O4 ^b	89.1(2)			
O1 Zn1 N1	90.1(2)	O3 Zn2 N4	90.8(2)			
O1 Zn1 N1ª	89.8(2)	O3 Zn2 N4 ^b	89.1(2)			
O2 Zn1 O1ª	91.0(1)	O4 Zn2 O3 ^b	90.6(1)			
O2 Zn1 O2ª	180	O4 Zn2 O4 ^b	180			
O2 Zn1 N1	88.0(2)	O4 Zn2 N4	90.2(2)			
O2 Zn1 N1ª	91.9(1)	O4 Zn2 N4 ^b	89.7(1)			
O1ª Zn1 O2ª	89.0(1)	03 ^b Zn2 O4 ^b	89.3(2)			
O1ª Zn1 N1	89.8(1)	O3 ^b Zn2 N4	89.1(2)			
O1ª Zn1 N1ª	90.1(2)	O3 ^b Zn2 N4 ^b	90.8(1)			
O2ª Zn1 N1	91.9(1)	O4 ^b Zn2 N4	89.7(1)			
O2ª Zn1 N1ª	88.0(2)	O4 ^b Zn2 N4 ^b	90.2(2)			
N1 Zn1 N1ª	180	N4 Zn2 N4 ^b	180			
	^a = - <i>x</i> , 2- <i>y</i> , 2- <i>z</i>	z; ^b = 2- <i>x</i> , - <i>y</i> , 1- <i>z</i>				

 Table S8.
 Selected bond angles (°) for compound 7.

Compound [ZnCl₂(4-PyBTD)₂] 8

Figure S11. (a) Molecular structure of complex $[ZnCl_2(4-PyBTD)_2]$ **8**; (b) Perspective view of the 2D layers resulting from $\pi-\pi$ stacking between pyridine rings from adjacent mononuclear species.

8		9	
N1 Zn1 N5	104.3(1)	N1 ^a Zn1 N4	106.1(3)
N1 Zn1 Cl1	105.5(1)	N1 ^ª Zn1 Cl1	105.5(2)
N1 Zn1 Cl2	110.9(2)	N1 ^ª Zn1 Cl2	104.3(2)
N5 Zn1 Cl1	105.9(2)	N4 Zn1 Cl1	106.9(2)
N5 Zn1 Cl2	108.5(1)	N4 Zn1 Cl2	105.0(2)
Cl1 Zn1 Cl2	120.3(1)	Cl1 Zn1 Cl2	127.3(2)
		^a = 1.5- <i>x</i> , 1-	y, 0.5+ z

Table S9. Selected bond angles (°) for compounds 8 and 9.

X-Ray Powder Diffraction

Figure S12. Simulated (black) and experimental (red) powder X-ray diffractograms for compound **1**. The peak observed at 32° arises from the sample holder.

Figure S13. Simulated (black) and experimental (red) powder X-ray diffractograms for compound 2.

Figure S14. Simulated (black) and experimental (red) powder X-ray diffractograms for compound **4**. The peak observed at 32° arises from the sample holder.

Figure S15. Simulated (black) and experimental (red) powder X-ray diffractograms for compound 7.

Figure S16. Simulated (black) and experimental (red) powder X-ray diffractograms for compound **8**. The peak observed at 32° arises from the sample holder.

Photophysical properties

Figure S17. Solid state UV-Vis absorption spectrum (red curve), emission spectrum (blue curve, λ_{ex} = 400 nm) and excitation spectrum (green curve, λ_{em} = 525 nm) of ligand 2-PyBTD.

Figure S18. Absorption (red), emission (blue) and excitation (green) spectra of 2-PyBTD recorded in CH₂Cl₂. (Absorption: λ = 236, 290, 382 nm; Emission: λ_{ex} = 380 nm, λ_{max} = 466 nm; Excitation: λ_{em} = 465 nm, λ = 292, 385 nm).

Figure S19. Absorption (red), emission (blue) and excitation (green) spectra of compound **1** recorded in CH₂Cl₂. (Absorption: λ = 265, 314, 381 nm; Emission: λ_{ex} = 390 nm, λ_{max} = 467 nm; Excitation: λ_{em} = 465 nm, λ = 282, 305, 329, 398 nm).

Figure S20. Absorption (red), emission (blue) and excitation (green) spectra of compound **2** recorded in CH₂Cl₂. (Absorption: $\lambda = 272$, 321, 387 nm; Emission: $\lambda_{ex} = 390$ nm, $\lambda_{max} = 470$ nm; Excitation: $\lambda_{em} = 470$ nm, $\lambda = 273$, 330, 389 nm).

Figure S21. UV-Vis absorption spectrum (red curve), emission spectrum (blue curve, λ_{ex} = 370 nm) and excitation spectrum (green curve, λ_{em} = 470 nm) of ligand 4-PyBTD.

Figure S22. (a) UV-Vis absorption spectra of complex 8; (b) UV-Vis absorption spectra of complex 9.

DFT and TD-DFT calculations

Complex 1

Figure S23. Two views of the optimized geometry of 1 together with the atom numbering scheme.

Total molecular energy	-4891.47820 hartrees
HOMO number	191
LUMO+1 energies	-2.19 eV
LUMO energies	-3.48 eV
HOMO energies	-7.11 eV
HOMO-1 energies	-7.28 eV
CDFT indices: Electron Affinity	0.0030 hartrees
CDFT indices: Ionisation Potential	0.0111 hartrees
CDFT indices: Electronegativity	0.0071 hartrees
CDFT indices: Hardness	0.0080 hartrees
CDFT indices: Electrophilicity	0.0031
CDFT indices: Electron-flow	0.8777 e-
Geometry optimization specific results Converged nuclear repulsion energy	8017.57621 Hartrees
Frequency and Thermochemistry specific results Number of negative frequencies Sum of electronic and zero-point energy Sum of electronic and thermal energies at 298.15 K Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K	0 -4891.11226 Hartrees -4891.06905 Hartrees -4891.06811 Hartrees -4891.20030 Hartrees 0.00044 Hartrees

E.S.	Symmetry	nm	cm-1	f	R	Lambda	dCT	qCT	Excitation description in %
1	Singlet-A	413 24	205 0.307	7	19.245	0.72	234.22	0.52	191->192 (98)
2	Singlet-A	395 25	283 0.008	3	3.855	0.13	505.10	0.96	190->192 (98)
3	Singlet-A	387 25	812 0.002	2	3.093	0.14	499.06	0.96	189->192 (98)
4	Singlet-A	347 28	817 0.003	3	5.782	0.28	221.10	0.87	186->192 (9) 187->192 (86)
5	Singlet-A	342 29	165 0.002	2	1.083	0.13	457.59	0.96	188->192 (98)
6	Singlet-A	328 30	484 0.004	1	-12.260	0.22	262.48	0.88	186->192 (85) 187->192 (9)
7	Singlet-A	315	31733	0.000	0.743	0.45	95.47	0.65	186->193 (8) 186->194 (6) 187->193
									(2) 188->193 (41) 188->194 (30)
8	Singlet-A	311	32131	0.001	2.643	0.41	196.54	0.67	186->193 (19) 186->194 (19) 186->195
									(4) 187->193 (5) 187->194 (5) 188-
									>193 (15) 188->194 (17) 188->195 (4)
9	Singlet-A	300 33	225 0.010)	4.138	0.61	201.15	0.55	184->192 (24) 185->192 (71)
10	Singlet-A	293	34066	0.244	184.733	0.48	504.81	0.63	184->192 (3) 190->193 (2) 191->193
									(6) 191->194 (21) 191->195 (60)

Calculated mono-electronic excitations

Atomic charges population analysis. Selection of the most charged atoms based on Hirshfeld analysis

Atom and N°	Hirshfeld charge	CM5 charge	Mulliken charge
N 6	-0.379	-0.134	-0.027
N 26	-0.375	-0.178	+0.009
N 9	-0.344	-0.173	-0.057
O 3	-0.337	-0.259	-0.376
O 2	-0.335	-0.248	-0.366
07	-0.332	-0.253	-0.334
O 4	-0.332	-0.250	-0.337
N 5	-0.251	-0.167	-0.119
C 16	+0.216	+0.234	+0.367
C 20	+0.217	+0.234	+0.356
S 8	+0.342	+0.349	+0.408
Zn 1	+0.711	+0.393	+0.912

Figure S24. HOMO, LUMO, HOMO-1 and LUMO+1 (from top to bottom, two views each) of complex 1.

Figure S25. Representation of the F+ function (two views) for complex **1**. The blue color indicates the most electrophilic regions.

Figure S26. Representation of the F- function (two views) for complex **1**. The blue color indicates the most nucleophilic regions.

Figure S27. Representation of the Electron Density Difference (S1-S0 left) and (S2-S0 right) for complex **1**. The excited electron and the hole regions are indicated by, respectively, blue and white surfaces.

Figure S28. Calculated UV-visible absorption spectrum of complex **1** with a gaussian broadening (FWHM = 3000 cm⁻¹).

Figure S29. Calculated UV-visible emission spectrum of complex **1** with a gaussian broadening (FWHM = 3000 cm⁻¹).

Complex 2

Figure S30. Two views of the optimized geometry of 2 together with the atom numbering scheme.

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies	-8550.88880 hartrees 307 -2.61 eV -4.00 eV -7.48 eV -7.49 eV
Geometry optimization specific results	
Converged nuclear repulsion energy	17624.10655 Hartrees
Frequency and Thermochemistry specific results	
Number of negative frequencies	0
Sum of electronic and zero-point energy	-8550.38636 Hartrees
Sum of electronic and thermal energies at 298.15 K	-8550.31530 Hartrees
Enthalpy at 298.15 K	-8550.31436 Hartrees
Gibbs free energy at 298.15 K	-8550.51627 Hartrees
Entropy at 298.15 K	0.00068 Hartrees

Calculated mono-electronic excitations

E.S.	Symmetry r	nm	cm-1	f	R	Lambda	dCT	qCT	Excitation description in %
	Singlet-A	443	22534	1					
1	0.001				-1.690	0.15	369.30	0.97	307->308 (99)
	Singlet-A	442	22610)					
2	0.006				-8.227	0.16	352.27	0.97	306->308 (99)
	Singlet-A	430	2323						
3	0.023				8.493	0.25	134.27	0.92	305->308 (99)
	Singlet-A	428	23319	9					
4	0.000				-1.429	0.11	160.90	0.98	304->308 (99)
	Singlet-A	397	25149	9					
5	0.265				-64.387	0.71	178.53	0.52	303->308 (98)
_	Singlet-A	377	2647						
6	0.005				-0.930	0.17	277.70	0.95	302->308 (98)
_	Singlet-A	377	26501						
7	0.001				-6.138	0.17	278.37	0.95	301->308 (98)
_	Singlet-A	_							
8	355	2	8168	0.003	8.127	0.19	183.65	0.92	300->308 (97)
_	Singlet-A	_							/
9	350	2	8537	0.006	16.209	0.20	175.38	0.93	299->308 (98)

Atom and N°	Hirshfeld charge	CM5 charge	Mulliken charge
N 56	-0.377	-0.132	-0.024
N 7	-0.377	-0.132	-0.024
O 55	-0.340	-0.258	-0.378
O 5	-0.339	-0.258	-0.378
O 54	-0.335	-0.255	-0.345
O 4	-0.335	-0.255	-0.345
O 53	-0.334	-0.248	-0.358
O 3	-0.334	-0.248	-0.358
O 52	-0.334	-0.249	-0.342
O 2	-0.334	-0.249	-0.342
N 9	-0.263	-0.152	-0.098
N 6	-0.226	-0.152	-0.098
C 16	+0.217	+0.235	+0.371
C 19	+0.218	+0.236	+0.357
S 8	+0.400	+0.406	+0.507
Zn 49	+0.598	+0.396	+0.912
Zn 1	+0.712	+0.396	+0.912

Atomic charges population analysis. Selection of the most charged atoms based on Hirshfeld analysis

Figure S31. HOMO, LUMO, HOMO-1 and LUMO+1 (from top to bottom, two views each) of complex 2.

Figure S32. Representation of the Electron Density Difference (S1-S0 left) and (S2-S0 right) for complex **2**. The excited electron and the hole regions are indicated by, respectively, blue and white surfaces.

Figure S33. Calculated UV-visible absorption spectrum of complex **2** with a gaussian broadening (FWHM = 3000 cm⁻¹).