
Article

Kinetic Stability of Si2C5H2 Isomer with a Planar
Tetracoordinate Carbon Atom

Krishnan Thirumoorthy 1, Vijayanand Chandrasekaran 1 , Andrew L. Cooksy 2 and
Venkatesan S. Thimmakondu 2,*

����������
�������

Citation: Thirumoorthy, K.;

Chandrasekaran, V.; Cooksy, A.L.;

Thimmakondu, V.S. Kinetic Stability

of Si2C5H2 Isomer with a Planar

Tetracoordinate Carbon Atom.

Chemistry 2021, 3, 13–27.

https://dx.doi.org/

10.3390/chemistry3010002

Received: 16 December 2020

Accepted: 28 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India;
thirumoorthy.krishnan@vit.ac.in (K.T.); vijayanand.c@vit.ac.in (V.C.)

2 Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA;
acooksy@sdsu.edu

* Correspondence: vthimmakondusamy@sdsu.edu

Abstract: Dissociation pathways of the global minimum geometry of Si2C5H2 with a planar tetraco-
ordinate carbon (ptC) atom, 2,7-disilatricyclo[4.1.0.01,3]hept-2,4,6-trien-2,7-diyl (1), have been theoret-
ically investigated using density functional theory and coupled-cluster (CC) methods. Dissociation
of Si-C bond connected to the ptC atom leads to the formation of 4,7-disilabicyclo[4.1.0]hept-1(6),4(5)-
dien-2-yn-7-ylidene (4) through a single transition state. Dissociation of C-C bond connected to
the ptC atom leads to an intermediate with two identical transition states and leads back to 1 itself.
Simultaneous breaking of both Si-C and C-C bonds leads to an acyclic transition state, which forms
an acyclic product, cis-1,7-disilahept-1,2,3,5,6-pentaen-1,7-diylidene (19). Overall, two different prod-
ucts, four transition states, and an intermediate have been identified at the B3LYP/6-311++G(2d,2p)
level of theory. Intrinsic reaction coordinate calculations have also been done at the latter level to
confirm the isomerization pathways. CC calculations have been done at the CCSD(T)/cc-pVTZ
level of theory for all minima. Importantly, all reaction profiles for 1 are found be endothermic
in Si2C5H2. These results are in stark contrast compared to the structurally similar and isovalent
lowest-energy isomer of C7H2 with a ptC atom as the overall reaction profiles there have been found
to be exothermic. The activation energies for Si-C, C-C, and Si-C/C-C breaking are found to be
30.51, 64.05, and 61.85 kcal mol−1, respectively. Thus, it is emphasized here that 1 is a kinetically
stable molecule. However, it remains elusive in the laboratory to date. Therefore, energetic and
spectroscopic parameters have been documented here, which may be of relevance to molecular
spectroscopists in identifying this key anti-van’t-Hoff-Le Bel molecule.

Keywords: Si2C5H2; planar tetracoordinate carbon; kinetic stability; dissociation pathways; ab
initio calculations

1. Introduction

Apart from chemical curiosity, interest in molecules with a planar tetracoordinate [1–8]
or hypercoordinate carbon [9–16] atom (ptC or phC) stems from the fact that they could be
used as potential new materials [17–21]. Though the experimental evidence on molecules
with a ptC atom is limited as of today [22–26], more molecules have been continuously pro-
posed from quantum chemical studies [27–39]. Importantly, two key questions are repeat-
edly being asked in the synthetic viability of these “anti-van’t Hoff-Le Bel molecules”: [40,41]
(i) what is the energetic (thermodynamic) stability of the proposed molecule from a given
elemental composition on the molecular potential energy surface (PES)? and (ii) what is
its kinetic stability? A firm answer obtained from these two questions either directly or
indirectly informs the experimentalists whether the theoretically proposed molecule could
possibly be identified in the laboratory or not.
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Experimentally, it was outlined in the past that molecules with a ptC atom can be
enormously stabilized by the cooperative influence of metal pairs (Zr/Al or Zr/Zr+) of
atoms [22]. Experimental confirmation of pentaatomic ptC species (CAl−4 , CAl3Si−/0,
CAl3Ge−/0, CAl2−4 , etc.) [23–25] in the gas phase has given the much-needed momentum
in the further search of these molecules. Stabilization of ptC by hydrogenation in the case
of CAl4H−/0 has been observed recently by Bowen and co-workers [26]. The effect of
planar tetracoordinate silicon (ptSi) atom [18,33,42–48] in the stability of calix[4]pyrrole
hydridosilicate [49] serves as the first experimental proof for ptSi, which motivated further
study of these molecules. Very recently, room-temperature stable molecules containing a
ptSi atom have been experimentally characterized including single-crystal x-ray diffraction
measurements by Filippou and co-workers [50]. In 2017, isomers of X2C5H2 (X = Si, Ge, Sn,
and Pb) with a ptC atom have been theoretically proposed as global minimum geometries
but to date they are yet to be identified in the laboratory [51]. This indirectly indicates that
mere thermodynamic stability is not the only governing factor in the successful identifi-
cation of molecules in the laboratory [52–57]. Thus, the objective here is to examine the
kinetic stability of the global minimum geometry of Si2C5H2 through dissociation studies.
The knowledge of activation energies, reaction energies, and the reactive intermediates
involved could give sufficient insights to experimentalists in devising successful synthetic
routes–including what precursor molecules to choose.

Here, the kinetic stability of 2,7-disilatricyclo[4.1.0.01,3]hept-2,4,6-trien-2,7-diyl (1)—
which is the global minimum geometry of Si2C5H2 [51,58]—has been investigated in
detail using density functional theory (DFT) and high-level coupled-cluster (CC) methods.
Four low-lying isomers of Si2C5H2 including 1 lying within 30 kcal mol−1 have been
reported at the CCSD(T)/def2-TZVP//PBE0/def2-TZVP level of theory elsewhere [51].
These results were obtained using search algorithms [59–63]. We recently explored the
Si2C5H2 PES in an exhaustive manner through a chemical intuition approach [58] instead
of using search algorithms. Our study predicted more possible isomers in the low-lying
region (see Figure 1). Upon further search, the AUTOMATON program [64], which is based
on a genetic algorithm, had also suggested new isomers for Si2C5H2 [58] in the low-lying
region. Although the thermodynamic stabilities of various isomers have been examined at
length, to the best of our knowledge, the kinetic stability of 1, which contains a ptC atom,
is yet to be studied. Moreover, though it was reported as a global minimum nearly three
years ago, the experimental evidence is completely absent not only on 1 but also on all
other low-lying Si2C5H2 isomers. Therefore, the kinetic stability of 1 has been examined
here, which may possibly aid the detection of this peculiar molecule using infrared or
rotational spectroscopy in the laboratory.
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15;	Cs;	32.91			
μ	=		0.66	
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μ	=		1.45	

18;	Cs;	39.81			
μ	=		1.67	

16;	Cs;	33.21			
μ	=	2.01			

C	 H	Si	

Figure 1. Eighteen low-lying isomers of Si2C5H2 currently considered on the singlet PES. Relative energies including ZPVE
correction (in kcal mol−1) and dipole moments (in Debye) are calculated at the fc-CCSD(T)/cc-pVTZ level of theory. Isomers
identified by search algorithms are marked with an asterisk symbol. All the isomers depicted here are minima and all of
them remain elusive in the laboratory to date.

2. Computational Details

The geometries of all Si2C5H2 isomers reported here have been optimized using DFT
with the B3LYP hybrid-functional [65–68] and the 6-311++G(2d,2p) basis set [69,70]. All the
transition states corresponding to the dissociation of C-C/Si-C bonds connected to the
ptC atom, the intrinsic reaction coordinate (IRC) calculations [71,72], and the nucleus inde-
pendent chemical shift (NICS) values [73–75] have been calculated at the latter level. It is
also noted here that wavefunction stability analysis has been done for all minima (1–22)
obtained at the B3LYP/6-311++G(2d,2p) level and no instabilities have been found [76].
All these DFT calculations have been carried out with the Gaussian suite of programs [77].
All the low-lying isomers (minima) obtained from the DFT calculations, which lie within
40 kcal mol−1, have been reoptimized with CC methods. All these CC calculations with
single and double excitations (CCSD) [78] including a quasiperturbative triple excitations
(CCSD(T)) [79,80] have been done with correlation-consistent polarized valence triple zeta
(cc-pVTZ) basis set of Dunning’s [81]. The latter basis set consists of 246 basis functions
for Si2C5H2. The frozen-core (fc) approximation is used for isomers 1–18 initially in the
fc-CCSD(T)/cc-pVTZ calculations. For the global minimum geometry alone (1), all-electron
(ae) calculations at the ae-CCSD(T)/cc-pwCVTZ [82] level of theory have also been done.
This basis set consists of 361 basis functions for Si2C5H2 and therefore these calculations
have not been done for other isomers considering their expensive nature. All these calcula-
tions have been done with the CFOUR (2.00 beta version) program package [83]. We note
that for all the stationary points obtained, harmonic vibrational frequencies have been
calculated by analytic calculation of second derivatives [84].
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3. Results and Discussion

Eighteen low-lying isomers of Si2C5H2 obtained at the fc-CCSD(T)/cc-pVTZ level
of theory are shown in Figure 1. Zero-point vibrational energy (ZPVE) corrected relative
energies calculated with respect to 1, point group symmetry, and the absolute dipole
moment value calculated for the corresponding geometry are given underneath each
isomer. Optimal geometry parameters obtained at five different levels for isomer 1 are
given in Table 1. Harmonic vibrational frequencies, infrared (IR) intensities, and various
isotopic shifts (28Si–29Si, 12C–mono-substituted-13C, Si13

2 C5H2, 1H–mono-substituted-2D,
and Si2C5D2) in harmonic vibrational frequencies for isomer 1 are collected in Table 2.
The activation energies (∆E‡), reaction energies (∆Er), and relative energies (∆E0) calculated
at different levels for the various dissociation pathways of 1 are given in Table 3. The atom
numbering scheme, natural atomic charges, possible valence structures, and relevant
occupied molecular orbitals contributing to the bonding of the ptC atom of isomer 1 are
shown in Figure 2. Schematic reaction profile diagram connecting the reactant 1 and their
dissociative products through appropriate transition states calculated at the B3LYP/6-
311++G(2d,2p) level of theory is shown in Figure 3. Likewise, reaction profile diagram
involving the isomerization of 1 to 2 is shown in Figure 4. For brevity, total electronic
energies, ZPVEs, and final Cartesian coordinates of the optimized geometries of all isomers
are given in the supporting information.
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Figure 2. Atom numbering scheme, valence structures, and key occupied molecular orbitals of isomer 1. Natural atomic
charges (in a.u) calculated at the B3LYP/6-311++G(2d,2p) level of theory are also shown.
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Figure 3. Schematic outline of the dissociation pathways of Si2C5H2 global minimum isomer (1) with a ptC atom. ZPVE-
corrected relative energies are calculated at the B3LYP/6-311++G(2d,2p) level of theory. Gibbs free energy corrected values
(at 298.15 K) are given in red color.
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Figure 4. Schematic outline of the isomerization pathway of isomer 1 to 2 of Si2C5H2. ZPVE-corrected relative energies
are calculated at the B3LYP/6-311++G(2d,2p) level of theory. Gibbs free energy corrected values (at 298.15 K) are given in
red color. Negative barrier between 21 and TS-7 is due to ZPVE-corrections. Activation energy (∆E∗) for the latter route
without ZPVE-corrections is 66.96 kcal mol−1 (see Section 3.3 for further discussion).
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Table 1. Optimal geometry parameters (Å and degrees) of isomer 1 of Si2C5H2 calculated at different levels.

Parameter
B3LYP CCSD CCSD(T) CCSD CCSD(T) CCSD(T)

6-311++G(2d,2p) cc-pVDZ cc-pVTZ cc-pwCVTZ

R(C1Si4;C1Si5) 1.9290 1.9549 1.9612 1.9177 1.9238 1.9081
R(C1C2;C1C3) 1.4679 1.4777 1.4875 1.4677 1.4781 1.4727
R(C2Si4;C3Si5) 1.7506 1.7679 1.7803 1.7488 1.7612 1.7475
R(C2C6;C3C7) 1.4179 1.4379 1.4393 1.4228 1.4244 1.4197

R(C6C7) 1.3813 1.3914 1.3993 1.3792 1.3876 1.3832
R(C6H8;C7H9) 1.0800 1.0946 1.0968 1.0796 1.0820 1.0806

θ(C2C1C3) 104.00 104.49 104.21 104.44 104.11 104.10
θ(C2C1Si4;C3C1Si5) 60.24 60.10 60.32 60.49 60.69 60.64
θ(C1C2C6;C1C3C7) 108.81 108.57 108.66 108.48 108.60 108.63
θ(C2C6H8;C3C7H9) 124.87 124.82 124.78 124.71 124.67 124.69

Table 2. Harmonic vibrational frequencies, IR Intensities, and isotopic shifts of isomer 1 calculated at the ae-CCSD(T)/cc-
pwCVTZ level of theory.

Mode
Isomer 1 Isotopic Shifts (cm−1)

Symmetry Frequency Intensity 28Si–29Si 12C–13C 1H–2D

cm−1 km mol−1 Si(4) a 29Si2C5H2 C(1) C(2) C(6) Si13
2 C5H2 H(8) Si2C5D2

1 a2 195.2 0.0 0.4 0.7 0.0 1.9 1.0 5.4 4.3 7.7
2 b1 219.4 14.7 0.3 0.6 3.9 1.0 0.3 6.6 3.5 8.0
3 a1 232.8 2.0 1.8 3.6 0.6 0.1 0.1 1.1 0.1 0.3
4 b2 427.7 106.7 0.7 1.4 3.3 4.0 1.0 12.7 7.9 14.9
5 b2 513.2 17.8 2.9 5.7 0.6 0.3 2.7 6.6 5.8 9.8
6 a2 576.7 0.0 0.0 0.0 0.0 5.3 5.0 19.0 37.6 56.1
7 b1 606.8 0.0 0.0 0.0 10.6 4.7 0.3 22.9 4.4 26.7
8 a1 616.0 43.6 2.6 5.4 5.3 2.0 1.4 11.5 4.8 11.0
9 a1 787.9 0.9 0.6 1.1 5.9 5.2 6.9 27.4 85.0 118.1
10 b1 829.8 20.6 0.0 0.0 0.0 0.5 3.2 7.3 50.6 76.7
11 b2 887.0 0.1 0.1 0.1 2.9 7.1 8.4 33.0 43.5 125.1
12 a2 915.7 0.0 0.0 0.0 0.0 0.0 4.6 9.4 33.7 96.6
13 a1 991.3 30.4 0.0 0.1 16.5 9.2 0.1 36.6 104.1 142.1
14 b2 1004.5 17.3 0.3 0.7 21.1 0.8 3.5 32.4 9.4 90.5
15 a1 1103.8 2.3 0.0 0.0 0.1 1.7 3.8 11.2 80.2 99.1
16 b2 1272.8 13.3 0.4 0.7 2.2 9.3 1.6 19.3 54.5 171.6
17 a1 1340.0 48.5 0.6 1.2 0.0 17.9 5.6 48.6 9.9 24.1
18 a1 1461.5 4.2 0.0 0.0 0.0 1.6 24.5 47.2 23.2 45.3
19 b2 1484.7 8.6 0.3 0.6 0.8 11.1 8.1 49.1 13.5 28.7
20 b2 3208.9 2.0 0.0 0.0 0.0 0.0 6.4 9.9 825.3 841.2
21 a1 3227.9 21.1 0.0 0.0 0.0 0.0 4.3 11.4 9.4 828.5

a Due to symmetry, Si(4) and Si(5); C(2) and C(3); C(6) and C(7); H(8) and H(9) are equivalent.
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Table 3. Dissociation pathways of Si2C5H2 isomers (1 and 2) and their corresponding activation energies (∆E‡) and reaction
energies (∆Er) computed at the B3LYP/6-311++G(2d,2p) level of theory.

Isomer Dissociation ∆E‡, a
∆Er

b
∆E0

c

Pathway kcal mol−1 kcal mol−1 kcal mol−1

1 A 64.05 (TS-1;TS-2) 54.64 (20) 0.00
B 30.51 (TS-3) 18.80 (4) 22.76
C 61.85 (TS-4) 43.03 (19) – d

D 71.45 (TS-5) 64.36 (22) – d

68.94 (TS-6) 63.35 (21) – d

62.71 (TS-7) 17.53 (2) 21.39
a The dissociation pathway leading to the corresponding transition state(s) is (are) given in parenthesis. b The dissociation pathway
leading to the corresponding product is given in parenthesis. The reaction path is confirmed by IRC calculations. c ZPVE-corrected
relative energies of the final product calculated at the fc-CCSD(T)/cc-pVTZ level of theory. In pathway A, the final product is 1 and
not isomer 20. d Not calculated at this level of theory.

3.1. 2,7-Disilatricyclo[4.1.0.01,3]hept-2,4,6-trien-2,7-diyl (1)

All bond lengths of isomer 1 are systematically overestimated at the CCSD/cc-pVDZ
and CCSD(T)/cc-pVDZ levels (see Table 1). One could notice a contraction in bond
lengths with respect to the same methods using the cc-pVTZ basis set. They are slightly
contracted further if we observe the change in bond lengths from CCSD(T)/cc-pVTZ
to CCSD(T)/cc-pwCVTZ levels. These results (longer bond lengths with respect to cc-
pVDZ basis set) are largely due to the lack of higher angular momentum polarization
functions [85–90] and consistent with our earlier observations [91–96]. Considering the
double bond characteristics of C6C7, C2Si4 (C3Si5; equal due to C2v symmetry) and single
bond characteristics of C1C2 (C1C3) and C2C6 (C3C7), we have come to the conclusion
that valence structure 1a shown in Figure 2 is dominant. However, based on the natural
atomic charges, one could also assume an equally dominant resonance contributor where
the molecule behaves like a zwitterion (Si and H atoms having a partial positive charge
whereas all carbon atoms having a partial negative charge). The second most stable isomer,
2-ethynylmethylene-1,4-disilabicyclo[1.1.0]but-1(3)-en-4-ylidene (2), is 21.39 kcal mol−1

above 1 at the fc-CCSD(T)/cc-pVTZ level of theory (see Figure 1). Therefore, isomer
1 is thermodynamically well-separated from others. It is worth noting here that the
singlet-triplet energy gap (∆EST) calculated for isomer 1 is 72.26 kcal mol−1 (positive value
indicates singlet being more stable) at the (U)B3LYP/6-311++G(2d,2p) level of theory [58].

Harmonic vibrational frequencies calculated for 1 reveal that three vibrational modes
(modes 4, 8, and 17) are dominant (see Table 2). One is the Si-C-Si rocking (b2) calculated at
427.7 cm−1, another is the Si-C-Si breathing motion (a1) calculated at 616.0 cm−1, and yet
another is the C-C stretching motion (a1) calculated at 1340.0 cm−1 at the ae-CCSD(T)/cc-
pwCVTZ level of theory. Various isotopic shift values calculated by us can help in resolving
potential ambiguities in assigning vibrational modes. It is also possible to identify isomer 1
and all other low-lying isomers (2–18) using Fourier transform microwave spectroscopy
as the net dipole moment is non-zero (µ 6= 0) in all cases. The net dipole moment value
calculated for isomer 1 is 0.39 Debye at the fc-CCSD(T)/cc-pVTZ level of theory. Rotational
and centrifugal distortion constants of all 18 isomers are given in our previous article [58]
and detailed discussion related to rotational constants are not repeated here for brevity. It is
also noted here that for the low-lying C7H2 isomer with a ptC atom, tricyclo[4.1.0.01,3]hept-
2,4,6-trien-2,7-diyl [92], the net dipole moment value calculated at the same level of theory
is 5.84 Debye. Such a large deviation is not surprising considering the fact that silicon is
more electropositive than carbon and the overall charge (see Figure 2) is more balanced
and thus the net dipole moment has a smaller value for isomer 1. Also, compared with the
iso-valent C7H2 isomer with a ptC atom, isomer 1 exhibits higher aromatic characteristic.
The NICS (1 Å) value obtained for 1 is −20.28 ppm at the B3LYP/6-311++G(2d,2p) level.
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At the latter level, the NICS (1 Å) value obtained for C7H2 isomer with a ptC atom is
−12.21 ppm. Nevertheless, both the molecules remain elusive to date. To analyze the
aromatic characteristics further, we have carried out NICS calculations in 3D grid points
(see supporting information). The out-of-plane NICS values are negative for all the three
rings. On the other hand, the in-plane NICS value (NICS (0 Å)) is positive for the C5 ring
and negative for the SiC2 rings. Thus, the entire molecule is π-aromatic (see the MOs in
Figure 2; HOMO, HOMO-2, HOMO-6) but σ-aromaticity is not completely there in the C5
ring (HOMO-1, HOMO-3, HOMO-4, HOMO-5). Therefore, isomer 1 of Si2C5H2 can be
characterized as a molecule, which exhibits pseudo-double aromaticity [97–99]. To assess
the multi-reference characteristic of isomer 1, we have calculated the T1 diagnostic value
suggested elsewhere [100] and found that it is below 0.02. The value obtained for isomer
1 at the fc-CCSD/cc-pVTZ level of theory is 0.015. Thus, we have not carried out multi-
reference CC calculations for this molecule.

3.2. Activation and Reaction Energies

To calculate the activation and reaction energies, different bonds connected to the ptC
atom of 1 were broken. Four different transition states (TS-1 to TS-4), one intermediate (20),
and three different products, 1, 4,7-disilabicyclo[4.1.0]hept-1(6),4(5)-dien-2-yn-7-ylidene (4),
and cis-1,7-disilahept-1,2,3,5,6-pentaen-1,7-diylidene (19), respectively, have been identified
(see Figure 3) along three different dissociation pathways A, B, and C connected to the ptC
atom of isomer 1. It is noted here that for pathway A, both the reactant and the product
are one and the same. Breaking of C-ptC bond requires an ∆E‡ of 64.05 kcal mol−1 at the
B3LYP/6-311++G(2d,2p) level. IRC calculations through this transition state (TS-1) leads
to an intermediate (20), which lies at 54.64 kcal mol−1 above 1. Another identical transition
state, TS-2, which is a half-chair equivalent conformer of TS-1, has been identified along
pathway A. IRC calculations along these two transition states (TS-1 and TS-2) either leads
to the same non-planar intermediate (20—in one direction) or to the global minimum isomer
itself (1—in the other direction). The lowest activation energy required was estimated to be
30.51 kcal mol−1 at the same level of theory, which occurs through Si-ptC bond breaking
(pathway B). Along pathway C, where simultaneous breaking of both C-ptC and Si-ptC
bonds has been taken into consideration, an acyclic transition state has been identified
(TS-4), which requires an activation energy of 61.85 kcal mol−1 and leads to an acyclic
product, 19. Overall, the reaction profiles along these three different dissociation pathways
are found to be endothermic with a reaction energy of 54.64, 18.80, and 43.03 kcal mol−1,
respectively, for dissociation pathways A, B, and C. For the lowest activation energy path
(B), we have also estimated rate constant values using Rice–Ramsperger–Kassel–Marcus
(RRKM) theory [101]. It was estimated that the rate of the reverse reaction (4 to 1) is
three orders of magnitude faster than the forward reaction. This clearly implies that 1 is
kinetically stable.

3.3. Isomerization of 1 to 2

Isomerization of 1 to 2 has also been considered though 2 lies 21.39 kcal mol−1 above 1
(see Figure 4). Considering the structural similarity between 1 and 2, the Si-C double bond
and the ptC-C bonds on one side are initially broken. This requires an activation energy of
71.45 kcal mol−1 at the B3LYP/6-311++G(2d,2p) level. IRC calculations from this transition
state (TS-5) lead us to a new intermediate (22). Upon rotating the C-C bond, we found
a new transition state (TS-6). IRC calculations from TS-6 lead to new intermediate (21),
where the hydrogen atoms are in the trans position. A 1,2-H shift must happen to reach
the geometry of 2. Therefore, using this new intermediate 22 and slightly elongating the
C-C-C angle, we found a new transition state geometry TS-7, which requires an activation
energy of 62.71 kcal mol−1. It is noted here that the energy barrier between 21 and TS-7
is negative after ZPVE-correction at the B3LYP/6-311++G(2d,2p) level. Without ZPVE-
corrections, the activation energy (∆E∗; see Figure 4) is 66.96 kcal mol−1. It is well-known
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in the literature that various DFT functionals including the popular B3LYP underestimate
the barrier-heights [102,103]. Doubly hybrid density functionals such as B2PLYP [104,105]
and XYG3 [102] offer promising alternatives for accurate description of barrier-heights.
We leave this discussion with a caveat that currently we have not tried these alternatives
and in a future work we would be exploring these avenues. IRC calculations in one
direction from TS-7 lead us to isomer 2, whose reaction energy is 17.53 kcal mol−1. It is also
noted here that the Gibbs free energy change is minimal for almost all stationary points.

3.4. Rate Co-Efficient for the Isomerization Reaction

The activation energies and reaction energies estimated among the low-lying isomers
of Si2C5H2 reveal that pathway B is the most feasible based on energetics. Therefore,
for this isomerization process alone, we have calculated the rate coefficients for the forward
(k1) and reverse (k−1) reactions using RRKM theory [101] given by the expression

k = N(E− ETS)c/ρ (1)

where ETS is the energy of the transition state from the ground state of the isomers under
consideration, E is the total energy of the isomer, N(E-ETS) is the sum of states of the
transition state that would be available for the given energy E of the isomer, c is the velocity
of light, and ρ is the density of the vibrational states. The densities of the vibrational states
are calculated by Beyer and Swinehart direct count algorithm [106].

The rate of forward and reverse reactions are given in Figure 5 as a function of energy.
The reverse reaction is found to be around three orders of magnitude faster than the
forward reaction. The equilibrium constant for the isomerization reaction is calculated
using the expression K = k1/k−1 and it is given in Figure 6. The equilibrium constant is
much below 1. This is due to the high density of vibrational states for isomer 1 (global
minimum structure) compared to isomer 4 at energies above the isomerization barrier.
This favors the reverse reaction than the forward reaction. Figure 6 clearly indicates that
over a wide range of energies, isomer 1 is kinetically as well as energetically more stable.
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Figure 5. Rate co-efficient for the forward (k1; 1 to 4) and reverse (k−1; 4 to 1) isomerization reaction.
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Figure 6. Calculated equilibrium constant for the isomerization reaction of isomers 1 and 4.

4. Conclusions

The most stable isomer (global minimum) of Si2C5H2 containing a ptC atom and its
dissociation pathways have been theoretically characterized using DFT and CC methods.
The lowest activation energy barrier for 1 has been calculated as 30.51 kcal mol−1 at the
B3LYP/6-311++G(2d,2p) level of theory. Possible interconversion of 1 to 2 is highly unlikely
as the initial activation energy required for this process is 71.45 kcal mol−1 at the same
level. Hence, it is concluded that 1 is a kinetically stable molecule. Also, the rate co-efficient
for the reverse reaction (4 to 1; exothermic) is ∼3 orders of magnitude faster than the
forward reaction (1 to 4; endothermic). This clearly indicates further that isomer 1 is
kinetically stable. In fact, our extensive search for various structural isomers of Si2C5H2
indicates that there are no other isomers lying close to 1 within 20 kcal mol−1 [58] at the
fc-CCSD(T)/cc-pVTZ level of theory (see Figure 1). Thus, 1 is not only the energetically
most stable molecule but also thermodynamically well-separated from other isomers.
Perhaps, synthetic challenges may remain as one of the potential issues in the laboratory
identification of this molecule considering the pyrophoric nature of some of the precursor
molecules such as SiH4 in the preparation of this isomer or silicon-doped hydrocarbons,
in general. Nevertheless, it is believed that the current theoretical efforts may motivate and
assist the experimentalists in devising successful synthetic strategies and in characterizing
this potential “anti-van’t Hoff-Le Bel” molecule in the laboratory. The kinetic stability of
1,7-disilatricyclo[4.1.0.01,3]hept-2,4,6-trien-2,7-diyl (6), which contains a ptSi atom will be
examined in a future work.
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ae all-electron
fc frozen-core
DFT Density functional theory
CCSD Coupled-cluster singles, doubles
CCSD(T) Coupled-cluster singles, doubles including perturbative triples
ptC planar tetracoordinate carbon
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