
Citation: Talaat, M.; Xi, J.; Tan, K.; Si,

X.A.; Xi, J. Convolutional Neural

Network Classification of Exhaled

Aerosol Images for Diagnosis of

Obstructive Respiratory Diseases. J.

Nanotheranostics 2023, 4, 228–247.

https://doi.org/10.3390/jnt4030011

Academic Editor: Seyed Moein

Moghimi

Received: 17 April 2023

Revised: 21 June 2023

Accepted: 23 June 2023

Published: 26 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Nanotheranostics

Article

Convolutional Neural Network Classification of Exhaled
Aerosol Images for Diagnosis of Obstructive
Respiratory Diseases
Mohamed Talaat 1, Jensen Xi 2, Kaiyuan Tan 3, Xiuhua April Si 4 and Jinxiang Xi 1,*

1 Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA;
mohamed_talaat@student.uml.edu

2 Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA 95064, USA;
jsxi@ucsc.edu

3 Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign,
Urbana, IL 61801, USA; kt19@illinois.edu

4 Department of Mechanical Engineering, California Baptist University, Riverside, CA 92504, USA;
asi@calbaptist.edu

* Correspondence: jinxiang_xi@uml.edu; Tel.: +1-978-934-3259

Abstract: Aerosols exhaled from the lungs have distinctive patterns that can be linked to the ab-
normalities of the lungs. Yet, due to their intricate nature, it is highly challenging to analyze and
distinguish these aerosol patterns. Small airway diseases pose an even greater challenge, as the
disturbance signals tend to be weak. The objective of this study was to evaluate the performance of
four convolutional neural network (CNN) models (AlexNet, ResNet-50, MobileNet, and Efficient-
Net) in detecting and staging airway abnormalities in small airways using exhaled aerosol images.
Specifically, the model’s capacity to classify images inside and outside the original design space was
assessed. In doing so, multi-level testing on images with decreasing similarities was conducted for
each model. A total of 2745 images were generated using physiology-based simulations from normal
and obstructed lungs of varying stages. Multiple-round training on datasets with increasing images
(and new features) was also conducted to evaluate the benefits of continuous learning. Results show
reasonably high classification accuracy on inbox images for models but significantly lower accuracy
on outbox images (i.e., outside design space). ResNet-50 was the most robust among the four models
for both diagnostic (2-class: normal vs. disease) and staging (3-class) purposes, as well as on both
inbox and outbox test datasets. Variation in flow rate was observed to play a more important role in
classification decisions than particle size and throat variation. Continuous learning/training with
appropriate images could substantially enhance classification accuracy, even with a small number
(~100) of new images. This study shows that CNN transfer-learning models could detect small airway
remodeling (<1 mm) amidst a variety of variants and that ResNet-50 can be a promising model for
the future development of obstructive lung diagnostic systems.

Keywords: convolutional neural network; transfer learning; design space; obstructive lung diseases;
diagnostic system; disease staging; physiology-based modeling; fluid-particle simulations

1. Introduction

Despite their chaotic appearances, exhaled aerosols and their patterns contain infor-
mation that is inherent to the underlying respiratory physiology and anatomy [1–5]. For
a given person, a different exhaled aerosol pattern may be associated with a change in
the respiratory airway geometry or function [6–8]. Following this hypothesis, exhaled
aerosols can be explored for their potential to detect the disease’s presence, estimate the
disease severity level, and localize the disease site [9–12]. However, characterizing and
distinguishing subtle differences in aerosol patterns can be highly challenging. For small
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airway diseases, where disturbance signals are weak, the challenge is even greater. These
signals can be further weakened by exhaled air from the disease site to the mouth opening.
Hence, it is essential to determine if these weak signals can be detected at the mouth and
utilized to detect airway diseases at early stages [13–17].

Machine learning algorithms have been tested to develop intelligent diagnostic sys-
tems for obstructive lung diseases using exhaled aerosols [18]. The major challenge when
using a machine learning algorithm such as SVM or random forest is that predefined
features are needed for training [19]. Moreover, the prediction sensitivity and specificity
are mostly dependent on the quality of the extracted features from the source dataset.
The exhaled aerosol images are particles deposited on a filter in the mouthpiece. The
particle distributions often exhibit a highly complex pattern and are difficult to characterize.
Moreover, the differences in the exhaled aerosol patterns between health and disease can
be subtle and cannot be readily distinguished with human eyes. Predefined features, such
as fractal dimension and dynamic mode decomposition (DMD), only captured partial
information about the images [20,21]. The question of whether these predefined features
are most relevant to airway remodeling (structural variation) is unclear. Moreover, the
inherent differences may be multifaceted, which makes it a more appropriate problem to
use deep convolutional neural networks, where convolutional layers of different layers
may capture or retain different disease-associated features at different scales.

Convolutional neural networks (CNNs) have gained popularity in recent years due
to their superior performance in image classification compared to traditional machine
learning algorithms. One attractive aspect of CNNs is their ability to perform feature
extraction and classification simultaneously. They can learn rich features at multiple levels,
resulting in successful applications in medical image analysis. However, applying CNN
models to medical images presents unique challenges. Effective model training typically
requires large datasets, but high-quality medical images are often scarce. In one study [19],
we tested a database of 405 images and found it sufficient for SVM and random forest
classifications but inadequate for meaningful deep learning tests. As more medical image
data becomes available, it is important to evaluate the performance of CNN models in
analyzing exhaled aerosol images.

Transfer learning has become increasingly popular in medical image-based diagnostic
systems based on existing CNN models such as AlexNet, GoogleNet, ResNet, DenseNet,
MobileNet, etc. [22–24]. However, CNN-based transfer learning sometimes does not
perform as expected, giving unexpectedly lower prediction accuracy in the testing stage
despite a high accuracy rate in the training and validation stages [25]. For a given medical
image dataset, which usually has a limited number of images and small image differences,
overfitting is a common problem using the popular CNN models, which often have over
10 layers with 60+ million trained parameters and have been trained on a large dataset
(imageJ) containing 1000 categories. By contrast, the features of medical images are limited;
the differences between the images are subtle and are often not perceivable/discernible
to our human eyes. These lower testing properties may be associated with the fact that
the features/filters/convolutional layers trained on ImageJ may be distinct from those
of the medial images [26]. The transfer learning predictions, which adapted the initially
irrelevant filters to the new image dataset, could retain features that are not that relevant to
the images and contaminate the scoring process for classification.

The objective of this study was to evaluate the performance of different pre-trained
CNN models (i.e., AlexNet, ResNet-50, MobileNet, and EfficientNet) in detecting and
staging small airway abnormalities from exhaled aerosol images. Specific aims include:

(1) To assess model capacity in classifying images inside and outside the design space;
(2) To quantify the benefits of continuous learning on the model’s performance;
(3) To evaluate the relative importance of breath test variables on classification decisions;
(4) To select an appropriate CNN model for the future development of obstructive lung

diagnostic systems based on exhaled aerosol images.



J. Nanotheranostics 2023, 4 230

2. Methods
2.1. Normal and Diseased Airway Models

Physiology-based modeling and simulations were used to generate images of exhaled
aerosols from normal and diseased airways under varying breathing conditions. The
normal airway model was developed by Xi et al. [27,28], which extended from the mouth up
to the ninth generation (G9) lung bifurcations and retained 125 bronchial outlets (Figure 1a).
In this study, the airway obstruction occurred at G7-9 bronchioles, whose diameters were
less than 1 mm (i.e., small airways). Therefore, the obstruction was also smaller than
1 mm in size, which was below the smallest nodule size to be detected using X-rays or
CT scanning (3–4 mm) [29]. Note that the model-generated images could be less complex
than real-life images and might be less challenging to differentiate. Thus, we hypothesized
that by considering the airway lesions that were below the detection limit of current
radiological imaging technologies, it was anticipated that the proposed computer-aided
diagnostic system could achieve sufficiently high diagnostic accuracy when applied in
clinical settings.

J. Nanotheranostics 2023, 4, FOR PEER REVIEW 3 
 

 

2. Methods 
2.1. Normal and Diseased Airway Models 

Physiology-based modeling and simulations were used to generate images of ex-
haled aerosols from normal and diseased airways under varying breathing conditions. 
The normal airway model was developed by Xi et al. [27,28], which extended from the 
mouth up to the ninth generation (G9) lung bifurcations and retained 125 bronchial outlets 
(Figure 1a). In this study, the airway obstruction occurred at G7-9 bronchioles, whose di-
ameters were less than 1 mm (i.e., small airways). Therefore, the obstruction was also 
smaller than 1 mm in size, which was below the smallest nodule size to be detected using 
X-rays or CT scanning (3–4 mm) [29]. Note that the model-generated images could be less 
complex than real-life images and might be less challenging to differentiate. Thus, we hy-
pothesized that by considering the airway lesions that were below the detection limit of 
current radiological imaging technologies, it was anticipated that the proposed computer-
aided diagnostic system could achieve sufficiently high diagnostic accuracy when applied 
in clinical settings. 

 
Figure 1. Computational mouth-lung models: (a) normal and diseased airway geometries with vary-
ing levels of bronchiolar constrictions in the left lower lung (i.e., D0, D1, and D2), as well as varying 
throat openings (i.e., Th0, Th1, Th2, and Th3); (b) a computational mesh with a fine, body-fitted pris-
matic mesh. 

The morphology of the normal mouth-lung model (D0) was modified to generate 
two diseased models (D1, D2) in the left lower lobe (red dashed rectangle, Figure 1a). In 
doing so, Hypermorph (Troy, MI) was used to shrink the bronchioles at G7-9 twice (D1, 
D2, Figure 1a). Similarly, the normal throat opening, or glottal aperture, was progressively 
decreased by 1 mm, 2 mm, and 3 mm to generate three constricted throats (Th1, Th2, and 
Th3, Figure 1a). The normal and modified airway models were subsequently meshed us-
ing Ansys ICEMCFD for fluid-particle simulations (Figure 1b). 

2.2. Numerical Methods for Image Generation 
ANSYS ICEMCFD was applied to create the computational mesh in the mouth-lung 

airway geometries. To sufficiently resolve the drastic flow variation in the near wall re-
gion, body-fitted meshes were generated that contained a five-layer prism mesh. A grid-
independent study was conducted by varying mesh densities from coarse to ultrafine. 
Grid-independent results were achieved at 4.8 million tetrahedral cells with five layers of 
prismatic cells and a near-wall cell height of 50 µm [27,30,31]. ANSYS Fluent (Canonsburg, 
PA, USA) was used to simulate the inhalation/exhalation flows and generate the exhaled 
aerosol images. During the inhalation, particles were injected into the mouth and exited 
from the lung. During the exhalation, the particles reversed their direction to enter the 
bronchioles and travel through the respiratory tract. Their positions were recorded at the 

Figure 1. Computational mouth-lung models: (a) normal and diseased airway geometries with
varying levels of bronchiolar constrictions in the left lower lung (i.e., D0, D1, and D2), as well
as varying throat openings (i.e., Th0, Th1, Th2, and Th3); (b) a computational mesh with a fine,
body-fitted prismatic mesh.

The morphology of the normal mouth-lung model (D0) was modified to generate
two diseased models (D1, D2) in the left lower lobe (red dashed rectangle, Figure 1a). In
doing so, Hypermorph (Troy, MI) was used to shrink the bronchioles at G7-9 twice (D1,
D2, Figure 1a). Similarly, the normal throat opening, or glottal aperture, was progressively
decreased by 1 mm, 2 mm, and 3 mm to generate three constricted throats (Th1, Th2, and
Th3, Figure 1a). The normal and modified airway models were subsequently meshed using
Ansys ICEMCFD for fluid-particle simulations (Figure 1b).

2.2. Numerical Methods for Image Generation

ANSYS ICEMCFD was applied to create the computational mesh in the mouth-lung
airway geometries. To sufficiently resolve the drastic flow variation in the near wall
region, body-fitted meshes were generated that contained a five-layer prism mesh. A
grid-independent study was conducted by varying mesh densities from coarse to ultrafine.
Grid-independent results were achieved at 4.8 million tetrahedral cells with five layers of
prismatic cells and a near-wall cell height of 50 µm [27,30,31]. ANSYS Fluent (Canonsburg,
PA, USA) was used to simulate the inhalation/exhalation flows and generate the exhaled
aerosol images. During the inhalation, particles were injected into the mouth and exited
from the lung. During the exhalation, the particles reversed their direction to enter the
bronchioles and travel through the respiratory tract. Their positions were recorded at
the mouth opening, and their distribution pattern collectively formed the exhaled aerosol
image to be used in the subsequent CNN training and/or testing.
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The turbulent k-ω model was used to simulate the inhalation and exhalation airflows.
Ambient pressure was prescribed at the mouth opening. Negative/positive pressures were
specified to generate a prescribed inhalation/exhalation flow rate. The particle motion
was tracked with a Lagrangian discrete phase model (DPM). Particles are deposited on the
airway wall upon contact. Considering the dilute nature of the particles, one-way coupling
(i.e., flow to particles) was assumed during the particle tracking. User-defined MATLAB
codes were developed to generate particles at the mouth inlet and reverse the particle
velocities at the bronchiolar outlets. Different test cases were simulated with varying
inhalation/exhalation flow rates, particle sizes, and airway geometries, as illustrated in
Figure 2a–d. One exhalation aerosol image required one inhalation, one exhalation, and
particle tracking, which required approximately 4 h, 4 h, and 10–90 min, depending on the
particle size, respectively, in an AMD Ryzen 3960X 24-Core workstation with 3.79 GHz
processors, 256 G RAM, and an 8 G GPU. For a total of 2745 images used in this study
(11 flow rates, 4 geometrical models), a cumulative of 3200 computational hours or so
were used.
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size (dp), respiration flow rate (Q), and throat opening (Th); (b) Baseline dataset (Base, 1080 images)
with dp ranging 0.5–10 µm, Q ranging 10–19 L/min, and a normal throat opening (Th0), i.e., breath
test design space; (c) Inbox dataset with both Q and dp falling within the design space, but either Q
or dp differing from the baseline (i.e., Inbox_Q and Inbox_dp); (d) Outbox dataset with at least one of
the three factors (i.e., dp, Q, Th) falling out of the design space, including outbox_Q, Outbox_Q_dp,
Outbox_Th, and Outbox_Q_dp_Th. Explanations of the shape and colors of symbols were provided
in text (see Section 2.3, 1st, 2nd, and 3rd paragraphs).

2.3. Data Architecture

In the baseline dataset (Base), the throat was kept constant in the three airway models
(D0, D1, and D2). The recommended range (or design space) of the breath tests included
particle sizes ranging 0.5–10 µm and flow rates ranging 10–19 L/min. Specifically, the
particle sizes considered included 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 5, 7, 9, and 10 µm, while the
respiratory flow rates included 10, 12.5, 14.5, 15, 16.5, 17, 17.5, 18, 18.5, 18.5, and 19 L/min.
In total, the baseline dataset contained 1080 images, of which 90% were used for training
and 10% for testing in Round 1 (cycles of varying colors in Figure 2a,b).

The inbox database included 535 images with either particle size or flow rate that were
never seen in the baseline database. However, these particle sizes and flow rates were still
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within the design space. Two separate folders were generated, with one having a flow rate
of 13.5 L/min (Inbox_Q, green triangles in Figure 2a) and the other having particle sizes of
2.5, 4, 6, and 8 µm (Inbox_dp, pink asterisks in Figure 2a), which was also summarized in
Figure 2c.

The outbox database included 649 images and represented scenarios outside of the
design space. These included different flow rates (i.e., 20, 21, and 22 L/min, termed
Outbox_Q: black diamonds and Outbox_Q_dp: blue asterisks in Figure 2a), geometries
(varying glottal apertures, termed as Outbox_Th), and their combinations (Outbox_Q_dp
and Outbox_Q_dp_Th), as shown in Figure 2d. It noted that the images with 2.5, 4, 6, and
8 µm (pink and blue asterisks) were reserved for testing only and have never been included
in the training datasets.

2.4. Design of CNN Model Training/Testing

Four convolutional neural network (CNN) models were selected in this study: AlexNet,
EfficientNet, MobilNet, and ResNet-50. AlexNet and ResNet were selected because they
were the 2012 and 2014 winners of the ImageNet competition, respectively [32,33]. AlexNet
was groundbreaking in its use of GPUs for training deep neural networks, while ResNet
introduced residual connections between different layers to improve gradient flow and
enable the training of even deeper neural networks [34,35]. EfficientNet and MobilNet
were chosen for their simpler architecture and smaller computational requirements [36–39].
It will be desirable to run a computer-aided diagnostic (CAD) system on a personal com-
puter or even a smartphone, provided it can achieve sufficient diagnostic accuracy. This
study employed both Python and MATLAB platforms for CNN model training/testing,
and the performance results were compared between the corresponding cases. For each
model, all network layers were kept identical during training, and only the number of
outputs in the classification layer was changed to match the classification task (two-class
or three-class). Thus, an ablation study was not performed that selectively removed or
modified certain components or hyperparameters to assess their individual contributions
to the model’s performance.

The training/testing processes are shown in Table 1. There were three rounds of
training and testing. In each round, testing was conducted on three datasets with varying
levels of similarity to the training datasets. By training one model several rounds with
augmented datasets and testing its performance for datasets with decreasing similarities, it
was aimed to (1) select the optimal CNN model, (2) test the model’s ability to extrapolate,
and (3) test the model’s ability to learn from new data.

Table 1. Three-round training/testing procedures to evaluate the model capacity of interpolation,
extrapolation, and continuous learning. These procedures will be tested in four models (AlexNet,
ResNet-50, MobileNet, and EfficientNet) for both two-class (normal vs. disease) and three-class (D0
vs. D1, D2) classifications.

Training
Testing

Level 1 Level 2 Level 3

Round 1 90% Base 10% Base Inbox Outbox

Round 2: (plus 90% Base) Th1, Th2 10% Base Inbox Outbox

Round 3
(plus 90% Base,
and Th1, Th2)

25% Outbox 10% Base Inbox Outbox

50% Outbox 10% Base Inbox Outbox

75% Outbox 10% Base Inbox Outbox

In Round 1, we aimed to validate a model (i.e., level 1) as well as test whether the
model could predict new samples within (level 2) and outside (level 3) the design space. In
doing so, 90% of the baseline was used for training and 10% was set aside for validation
purposes (level 1). The level 2 test database included two folders with either different flow
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rates (Inbox_Q) or particle sizes (Inbox_dp, Figure 2c). Similarly, the level 3 database also
included two folders, with either outbox flow rates (i.e., 20, 21, 22 L/min, Outbox_Q) or
modified throats (Outbox_Th), as shown in Figure 2d.

In Round 2, new images with varying levels of throat constriction (Outbox: Th1 and
Th2) were added to the training dataset. The newly trained model would be tested at three
levels. Because new features related to the throat variation were added, the classification
results for the outbox dataset should be improved.

In Round 3, additional images with Outbox flow rates (20, 21, and 22 L/min) were
introduced into the training dataset to enhance the model’s performance. To determine the
minimum number of images required to attain a notable improvement, various proportions
of the Outbox images (25%, 50%, and 75%) were included in the training dataset. The
newly trained models subsequently underwent testing on the Level 1, Inbox, and Outbox
test datasets to assess their performance.

For each training, a 10-fold cross-validation approach was adopted, where the base-
line dataset was randomly divided into 10 subgroups. This approach ensured that each
subgroup was used once for validation and the remaining nine subgroups for training.
Given that every subgroup was used for both training and validation at some point, this
approach facilitated a more robust and unbiased estimation of the models’ performance.
To mitigate the class imbalance in the dataset, several data augmentation strategies were
implemented, including random rotation (‘RandRotation’: [−5◦ 5◦]), random reflections
across both axes (‘RandXReflection’: 1, ‘RandYReflection’: 1), and random shearing in
both the x and y dimensions (‘RandXShear’: [−0.05 0.05], ‘RandYShear: [−0.05 0.05]). By
increasing the size and variety of the minority class, a more balanced class distribution
could be obtained, which mitigated bias towards the majority class and thus improved the
model’s performance. All models were trained on a workstation with an Intel 9900k proces-
sor, an RTX 2070 Super GPU, and 128 G RAM. With a 10-fold cross-validation, the training
time was around 80 min for AlexNet, 100 min for ResNet-50, 70 min for EfficientNet, and
only 5 min for MobileNet. This indicated that these transfer learning models could be
trained in an efficient manner despite their inherent complexities. Note that MobileNet,
known for its streamlined architecture, demonstrated much faster training times than the
deeper ResNet-50 and AlexNet models. To evaluate the network classification performance,
various indices were quantified, including the accuracy, sensitivity, specificity, precision,
AUC (area under curve), and ROC (receiver operating characteristic) curve.

3. Results
3.1. Exhaled Aerosol Images at Mouth Opening
3.1.1. Cumulative Aerosol Images

The exhaled aerosol images obtained from physiology-based simulations are shown
in Figure 3a–c for the normal airway (D0), stage 1 disease (D1), and stage 2 disease (D2),
respectively. Under each category, aerosol images are presented for different particle sizes
(0.5, 1, and 5 µm), flow rates (10, 15, and 20 L/min), and throat opening (normal vs. Th3).
One major characteristic of these images is their complex appearance, which may seem
chaotic at first glance. A closer inspection reveals some regular patterns in these images,
with fine, subtle discrepancies in these patterns among different images and between health
(Figure 3a) and diseases (Figure 3b,c). These exhaled aerosol images can be considered
a conference of many particle scouts that travel through the lung and come back to the
mouth opening to report what they have experienced. Because the trajectory of a particle is
dictated by the lung geometry it traveled through, any airway structural change will cause
a disturbance to the particle motion and deposit it at a different position on the filter at
the mouth opening. It is thus possible that all these scout particles collectively telltale the
health of the lung. Considering that a severe airway remolding will affect more particles,
the resultant particle patterns should differ more from normal and can be used to correlate
to the disease severity.
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3.1.2. Disease-Associated Aerosol Distributions

To understand the disease-associated flow disturbance and particle trajectories, par-
ticles were released only from the disease-afflicted bronchioles during exhalation. The
resultant particle distributions at the mouth opening are shown in Figure 4a,b for the
normal and mildly constricted (D1) lungs. Compared to the normal condition, much fewer
particles were exhaled from the diseased bronchioles for two reasons: (1) fewer particles
reached this region during inhalation due to reduced ventilation, and (2) the flow distur-
bance in this region made it more likely for exhaled particles to deposit. For the same
reason, nearly no particles were exhaled from the severely constricted (D2) bronchioles
(Figure not shown). Figure 4c compares the expiratory stream traces and velocity contours
in the disease-affected bronchioles, which differ notably among the three models (D0, D1,
and D2).
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Further insights into the image-disease correlation can be obtained by examining
the particle responses to disease-elicited disturbances under varying breathing conditions.
First, for a given flow rate (15 L/min, first column), similar particle distributions were
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observed among particles of 0.5, 1, and 5 µm. This was interesting because theoretically, the
particle response time (τp = ρdp

2/18 µ) varied with dp
2; the observed small discrepancies

among particles at 15 L/min resulted from the fact that the τp for 0.5–5 µm particles was
much smaller than the flow time. This also explained the much larger differences in particle
distributions among different flow rates (10, 15, and 20 L/min) (Figure 4a,b).

One interesting observation was made regarding the distribution of 1-µm particles
with throat variation of Th3. At a flow rate of 15 L/min, the distribution resembled the
corresponding case of Th0, but it differed significantly from the distributions at 10 and
20 L/min. This observation prevailed for both normal and disease conditions (Figure 4a,b),
suggesting that flow rate had a greater impact on particle distribution than particle size or
throat variation.

3.2. Round 1 Training/Testing
3.2.1. Test Data with Decreasing Similarities

In Round 1, the four models (AlexNet, EfficientNet, MobileNet, and ResNet-50) were
trained on the 90%-base dataset, as defined in Figure 2, and represented the first-generation
diagnostic system. Their performances tested on samples with decreasing similarities
(Level 1, Inbox, and Outbox) are summarized in Table 2. In this study, Level 1 testing was
equivalent to validation, while Inbox and Outbox testing signified the model’s ability for
interpolation within and extrapolation out of the design space, respectively.

Table 2. Round-1 performance comparison among models (AlexNet, ResNet-50, MobileNet, and
EfficientNet) that were trained on 90% Base and tested on samples with decreasing similarities
(Level 1, Inbox, and Outbox) for both 2-class and 3-class classifications. AUC: area under the curve.

Round 1 2-Classes 3-Classes

Network (%) Level 1 Inbox Outbox Level 1 Inbox Outbox

AlexNet

Accuracy 100 98.88 58.49 99.24 83.52 47.07
AUC 100 99.89 63.86 100 100 59.63

Specificity 100 99.17 60.61 98.90 76.11 32.83
Sensitivity 100 98.28 55.16 100 98.85 69.44
Precision 100 98.28 47.12 97.62 66.67 39.68

ResNet-50

Accuracy 100 99.63 65.12 99.24 82.77 60.65
AUC 100 100 75.10 100 99.98 84.06

Specificity 100 100 73.74 98.90 74.44 43.69
Sensitivity 100 98.85 51.59 100 100 87.30
Precision 100 100 55.56 97.62 65.41 49.66

MobileNet

Accuracy 99.24 96.6 3 60.19 97.73 73.40 45.8
AUC 99.76 99.68 67.58 100 99.02 70.53

Specificity 100 99.44 51.26 96.70 65.28 26.26
Sensitivity 97.56 90.80 74.21 100 90.23 76.59
Precision 100 98.75 49.21 93.18 55.67 39.79

EfficientNet

Accuracy 96.97 91.20 61.27 90.15 70.22 41.98
AUC 100 95.98 67.12 99.57 96.12 66.38

Specificity 100 97.22 61.87 89.01 63.06 29.55
Sensitivity 90.24 78.74 60.32 92.68 85.06 61.51
Precision 100 93.20 50.17 79.17 52.67 35.71

For the 2-class classification task (i.e., normal vs. disease, in Table 2 and Figure 5a),
both AlexNet and ResNet-50 achieved 100% accuracy on the Level 1 dataset; MobileNet and
EfficientNet also achieved high accuracy on Level 1, i.e., 99.24% and 96.97%, respectively.
All models gave slightly lower classification accuracy on the Inbox dataset, which was
expected considering that Inbox images still came from the same design space, although
their exact operating conditions (flow rate and particle size) had not been considered by the
model. These similarly high accuracies between the Level 1 and Inbox datasets indicated
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that all models herein had a satisfactory interpolation capacity for the 2-class classification.
In other words, their response surface spanning the design space was not highly nonlinear.
This observation was also valid for sensitivity and specificity (Figure 5a, middle and lower
panels). By contrast, the performance dropped significantly on the Outbox set for all modes
considered (Figure 5a), indicating a poor extrapolation capacity or an increasingly nonlinear
response surface outside the design space.
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Figure 5. Performance comparison on three test datasets with decreasing levels of similarity (Level 1,
Inbox, and Outbox) in terms of accuracy, sensitivity, and specificity in Round 1 testing: (a) 2-class
classification (normal vs. disease); (b) 3-class classification (D0 vs. D1 vs. D2).

For the three-class classification task (D0 vs. D1 vs. D2, in Table 2 and Figure 5b),
significantly lower accuracies were obtained on both the Inbox and Outbox sets, even
though the accuracy on Level 1 was still high. It was thus much more challenging to
classify more than two categories (such as disease staging) than a 2-class disease detection.
In particular, the specificity, which measures the network’s ability to correctly identify
negative samples, significantly dropped (Figure 5b, lower panel).

3.2.2. Comparison of Model Performance

Network performances in 3-class clarification were further compared in Figure 6a.
Among the four models, EfficientNet had the lowest overall performance across all three
test data sets in both accuracy and sensitivity (Figure 6a). Even though not necessarily the
direct cause, EfficientNet used the sigmoid-based Swish activation function as opposed to
the ReLU function in the other three models [40–42]. Regarding the Inbox set, AlexNet and
ResNet-50 maintained higher performance than the two simpler models. Regarding the
Outbox set, ResNet-50 excelled over the other three models in all indices considered, with
a margin of 15.7 ± 2.6% in accuracy, 18.1 ± 7.5 in sensitivity, and 14.1 ± 3.3 in specificity
(Figure 6a and Table 2). By contrast, AlexNet’s performance dropped more significantly on
the Outbox set; both the ROC profile (Figure 6b) and AUC (Table 2) were the lowest among
models, reflecting AlexNet’s poor performance outside of the design space.
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3.3. Continous Training/Testing
3.3.1. Round 2

The reduced performance on the Outbox data set could result from three factors: a
different throat opening, flow rate, or particle size. Considering that the network training in
Round 1 did not include information on varying throat openings, new images from Th1 and
Th2 were added to the Round-1 training set (90% Base), as shown in Table 1. All network
models were trained again on the new data and tested on Level 1, Inbox, and Outbox sets
(Figure 7a and Table 3). As expected, for the 2-category classification, all models maintained
high accuracies on the Level 1 and Inbox data sets. Improved performances on the Outbox
images were observed in AlexNet and MobileNet; however, only limited improvement was
observed in ResNet-50 and EfficientNet (Figure 7a, left panel). Similar observations were
also made for the more challenging 3-class classification task (Figure 7a, right panel). This
might be attributed to influencing factors other than the throat opening variation, such as
the flow rate (20–22 L/min) outside the design space (10–19 L/min), which had not been
included in the Round 2 training.

Table 3. Round-2 performance comparison among models (AlexNet, ResNet-50, MobileNet, and
EfficientNet) that were trained on 90% Base and tested on samples with decreasing similarities
(Level 1, Inbox, and Outbox) for both 2-class and 3-class classifications.

Round 2 2-Classes 3-Classes

Network (%) Level 1 Inbox Outbox Level 1 Inbox Outbox

AlexNet

Accuracy 98.60 98.69 68.06 99.30 80.15 54.01
AUC 99.98 99.94 79.55 100 99.97 78.42

Specificity 98.90 99.17 61.36 98.90 71.67 35.10
Sensitivity 98.08 97.70 78.57 100 97.70 83.73
Precision 98.08 98.27 56.41 98.11 62.50 45.09

ResNet-50

Accuracy 99.30 99.44 65.90 100 91.01 58.18
AUC 100 99.99 84.50 100 99.99 82.13

Specificity 98.90 100 53.54 100 86.67 44.70
Sensitivity 100 98.28 85.32 100 100 79.37
Precision 98.11 100 53.88 100 78.38 47.73
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Table 3. Cont.

Round 2 2-Classes 3-Classes

Network (%) Level 1 Inbox Outbox Level 1 Inbox Outbox

MobileNet

Accuracy 97.90 95.88 71.14 95.10 77.34 54.48
AUC 99.89 99.33 83.96 100 99.40 79.35

Specificity 98.90 99.44 62.12 92.31 68.33 36.11
Sensitivity 96.15 88.51 85.32 100 95.98 83.33
Precision 98.04 98.72 58.90 88.14 59.43 45.36

EfficientNet

Accuracy 97.90 93.07 61.88 93.0 68.73 56.33
AUC 99.87 98.19 71.12 99.81 97.06 77.21

Specificity 97.80 96.94 58.08 91.21 61.39 48.48
Sensitivity 98.81 85.06 67.86 96.15 83.91 68.65
Precision 96.23 93.08 50.74 86.21 51.23 45.89
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3.3.2. Round 3, 25% Outbox

Further training was conducted by adding 25% of Outbox images to the training
dataset, as listed in Table 1. The testing results are shown in Figure 7b and Table S1. As
expected, the 2-class classification accuracy remained high on the Level 1 and Inbox sets;
it increased significantly on the Outbox set, which became almost equivalent to that on
Level 1 and Inbox. It was worth noting that adding only 25% of the new data (Outbox)
greatly improved the network’s ability to distinguish the other 75%. In other words, by
being exposed to a small amount of new data (162 images), the networks successfully
learned new disease-distinguishing features that were either absent or too weak to make
an accurate classification in Round 2.

Due to the same reason, significant improvements were also observed in the 3-class
classification on the Outbox set (right panel, Figure 7b). Surprisingly, it even surpassed
that on the Inbox and was only slightly lower than that on the Level 1 set for all models
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considered. No significant improvement was observed in the 3-class Inbox classification
because no new features from the Inbox set were added.

3.3.3. Round 3, 50% Outbox

Adding more Outbox images (i.e., 50%) into the training dataset elicited only marginal
improvement on the 2-class classification than the previous round, as shown in Figure 7c
vs. Figure 7b, left panel, indicating a saturation of Outbox features that distinguished health
vs. disease from the first 25% set. Quantitative comparisons can be viewed in Table S2.
For the more challenging 3-class classification task, the accuracy continued to improve on
the Outbox set but remained unchanged on the Inbox set. This was reasonable as more
features distinguishing the two disease stages (D1 vs. D2) were needed, which needed
more relevant data to learn from.

3.3.4. Outbox-Tested ROC Curves: Round 2 vs. 3

Figure 8 shows the ROC curves based on the Outbox dataset in Round 2 and Round 3.
For a 3-class classification, there will be three piecewise ROC curves, and only ROC curves
for normal vs. disease (i.e., D0 vs. D1 + D2) are shown here. Overall, all models performed
better after adding 25% more Outbox data to the training set. Among the four models
considered, ResNet-50 performed the best and EfficientNet the worst in both Rounds.
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3.3.5. ResNet-50

The performance of the ResNet-50 on the Outbox testing dataset was evaluated sys-
temically in Figure 9 when trained on five data sets with an increasing number of images.
For both 2-class and 3-class classification tasks, an abrupt increase in accuracy was ob-
served between R2 and R3-25%, which added 25% Outbox data (i.e., 20, 21, 22 L/min)
into the training set; this indicated that the flow-associated features were predominant in
classification. By comparison, the improvement in accuracy was incremental and insignifi-
cant in other scenarios (i.e., from R1 to R2, or from R3, 25% to 50% to 75%, left columns,
Figure 9a,b), indicating that (1) features associated with throat-opening were less critical
than flow-associated features and (2) a threshold amount of training images might exist
for the model to reach feature saturation. Detailed classification results for R3-75% can be
viewed in Table S3.

The sensitivity and specificity of ResNet-50 on five training sets are shown in the
middle and right columns of Figure 9. For the 3-class classification, the sensitivity and
specificity were calculated for the normal (D0). Overall, both metrics increased with
training datasets that contained more images and more features, indicating that a network
model would perform better in identifying both true positives and true negatives with
continuous training. However, nonlinear variations were also observed from R1 to R2
(i.e., adding throat-related features) in both sensitivity (middle panel, Figure 9b) and
specificity (left panel, Figure 9a). Note that the R1 training dataset (90% Base) did not
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contain throat-variation features, the above nonlinearity might result from the weight
decrease of principle features due to the addition of non-critical features.
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3.4. Model Performance on New Test Datasets (Inbox_dp and Outbox_dp)
3.4.1. Inbox_dp vs. Outbox_Q_dp

Two new datasets, Inbox_dp and Outbox_dp, were prepared following the operating
conditions listed in Figure 2c,d, respectively. Note that all models have never been trained
on images with a particle size of 2.5, 4, 6, or 8 µm. Quantifying model performance on such
datasets would evaluate the model’s interpolation capacity in terms of particle size.

Figure 10a compares the ResNet-50 performance tested on the new datasets. Note
that the ResNet-50 model was trained three times separately on different training sets,
i.e., Round 1 (R1), Round 2 (R2), and Round 3 with 25% Outbox images (R3-25%). All three
sub-models achieved high accuracies on the Inbox_dp dataset, indicating that ResNet-50
could adequately interpolate the dp-associated features. Lower accuracies were achieved on
the Outbox_Q_dp set, which contained features associated with both Q and dp. Thus, the
flow rate Q might have a more dominant effect than the particle size on the classification
performance. The accuracy increased from R1, to R2, to R3-25%, with R3-25% nearly
reaching that tested on the Inbox_dp, which corroborated the benefits of continuous
training/learning by the model to handle images that were similar but fell outside of the
trained scope.

3.4.2. Different Models on Outbox_Q_dp

A comparison of different model performances on the Outbox_Q_dp dataset in differ-
ent rounds is shown in Figure 10b. It is interesting to note that in Round 1, AlexNet and
ResNet-50 had lower accuracy on the Outbox_Q_dp dataset for the 2-class classification
task, while MobileNet and EfficientNet had higher accuracy. This may have been due to
overfitting, which is a common issue in more complex neural network models. However,
in Round 2, AlexNet and ResNet-50 regained their superiority.

For the 3-class classification task, all models had relatively low accuracies in Rounds 1
and 2, but a significant increase in accuracy occurred in Round 3–25%, where the training
dataset included throat-variation information and outbox-flow information. This suggests
that the relevance of the training data strongly correlates with the model’s performance.
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3.4.3. ROC on Outbox_Q_dp

The ROC curves are compared in Figure 10c among different models in the 3-class
classification on the Outbox_Q_dp. A significant improvement was observed for all models
in R3-25% compared to R1 and R2. In R3-25%, both AlexNet and ResNet-50 performed
significantly better than the two simpler models. However, ResNet-50 exhibited a more
robust performance in all three rounds.

3.5. Heat Map and ReLU Features

To further evaluate the model’s capacity to capture the key features for classification,
heat maps of a sample image from the four models were plotted in Figure 11a. The
true class of this sample image was D2 (disease, 2nd stage, with 0.5, 15 L/min), with
EfficientNet misclassifying it as D1 and the other three models classifying it correctly. By
comparing the heat map in Figure 11 with the particle distributions from the diseased
bronchioles in Figure 4a, we observed apparent similarities between these two, particularly
for AlexNet and ResNet-50. This similarity suggested that the heat maps did provide a
visual representation of which parts of the image were most influential in the classification
decision. The heat maps from MobileNet and EfficientNet were less focused and covered a
larger area, indicating either the inclusion of non-essential features or non-decisive weights
for key features. For all models, we did not see heat spots in the background (4 corners).

Figure 11b shows the features from the sample image at the second convolutional
layer. The first three networks used the ReLU (rectified Linear Unit) activation function,
and the last one (EfficientNet) used a smoother Sigmoid-based Swish function. This might
explain the presence of a large portion of black-out features in the first three compared to
the smoother representations in EfficientNet. Image features became increasingly abstract
and unrecognizable in deeper layers (not shown).
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4. Discussion
4.1. Model Sensitivity to Small Airway Remodeling

The disease models in this study were generated by progressively constricting the G7-9
bronchioles in the left lower lobe. The bronchiolar diameters in these small airways are
smaller than 1 mm, which is much smaller than the minimal nodule size that can be detected
by current radiological techniques (i.e., 3–4 mm) [29]. It is essential that the selected CNN
model can effectively detect and differentiate these disease-elicited disturbances in the
exhaled aerosol images amidst a variety of confounding factors, which include flow rate,
particle size, and throat opening. Specifically, the variations in throat opening were even
larger than the disease-associated bronchiolar remolding. This study demonstrated that
the CNN models, particularly ResNet-50, could effectively detect/differentiate disease-
associated features from other features. One inherent advantage of CNN models is their
ability to capture local patterns and spatial dependencies from input images with multiple
layers, features, and dimensions. It is thus natural for a CNN model to differentiate input
images according to any labeled features, even for weak disturbances from small airway
remodeling, as in this study.

4.2. Geometrical, Breathing, and Aerosol Effects on Classification Decision

The breath tests that generate exhaled aerosol images can be affected by many other
factors, like geometrical, breathing, and aerosol variants. Considering that CNN models are
good at capturing features from individual factors, their effects on classification must result
from their interactions with the target factor, here, the small airway constrictions. In this
study, we observed that the variation in flow rate exerted a larger effect than particle size
and throat variation on classification accuracy (Figures 7 and 10). Adding images with flow
rates of 20–22 L/min to the test dataset significantly lowered the classification accuracy
(Outbox-testing in Figure 5, Table 2), while adding 25% of these images to the training
dataset greatly improved the model performance (Figure 7b, Table S1). By comparison,
relatively high classification accuracies were still achieved on new test images with particles
of 2.5, 4, 6, and 8 µm (Figure 10a, Inbox_dp), indicating their weaker interactions with
the airway constrictions. Likewise, adding images from throat variations Th1 and Th2
into the training dataset in R2 led to only limited improvements in the classification
accuracy (Figure 7), suggesting a nonsignificant impact from this geometrical variation on
classification decisions.
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The finding that the flow rate played a more important role in the classification decision
than the particle size and throat variation was consistent with the observations in Figure 4,
where the particle distributions from the diseased bronchioles were more dependent on
the flow rate than the particle size and throat variation. One reason was that the particle
response time (τp = ρdp

2/18 µ), despite being proportional to dp
2, was still much smaller

than the flow time from the disease site (G7-9) to the mouth opening. After a prompt
adjustment to local flows, the particles mainly followed the bulk flow, whose dynamics
within a given airway were mostly determined by the flow rate.

4.3. Model Evaluation and Continous Learning

In this study, four CNN models were compared in their ability to diagnose and stage
small airway constrictions. The 2-class (normal vs. disease) classification accuracy was
always higher than the corresponding 3-class (D0 vs. D1 vs. D2) classification (Table 2). The
capacity of the model to classify images inside and outside the original design space was
assessed. In doing so, each model was tested on three levels of data with decreasing similar-
ities, with Level 1 being similar images as the training set (for validation purposes), Level
2 being unseen images within the same design space (i.e., Inbox, to evaluate the model’s
interpolation capacity), and Level 3 being new images with dissimilarities (i.e., Outbox,
to evaluate extrapolation capacity). This multi-level testing aimed to simulate the clinical
applications more realistically, where test images from patients could be either within or
outside the original training dataset. The results in this study (Table 2, Figures 5 and 6) clearly
show that, despite high validation accuracy in Level 1, the accuracy for Inbox images
could be noticeably compromised and that for Outbox images could be remarkably lower,
indicating a limited extrapolation capacity of the network model. For instance, the accuracy
ranged from 46 to 61% for 3-class classification on the Outbox set, which was too low to be
clinically applicable (Table 1). Thus, continuous learning was needed to ensure the high
performance of the CNN-aided diagnostic/staging system.

With this objective in mind, each model was trained in three rounds, with Round 1
representing the original training dataset, Round 2 adding images with throat variations
to the training set, and Round 3 adding a specific amount of Outbox images, as listed in
Table 1. With the model being exposed to more new images, the classification accuracy also
increased progressively (Table 3, Figures 7–10). The similarity between the training and
testing datasets strongly correlated with the model performance, as demonstrated by the
low accuracies of R2-trained models vs. the high accuracies of the R3-trained models on the
Outbox test dataset (Figure 7a vs. Figure 7b). It was also observed that ResNet-50 was the
most robust of the four models considered. ResNet-50 excelled over the other three models
when tested on both inbox and outbox images and for both diagnostic (2-class: normal
vs. disease) and staging (3-class: D0, D1, D2) purposes.

The hyperparameters played a pivotal role in both the training process and the model’s
performance. The MaxEpochs parameter, which dictates the number of complete passes
through the training dataset, significantly influenced the training process. A larger value of
MaxEpochs, such as 50 epochs used for AlexNet, resulted in improved model performance
than using 30 epochs, albeit at the expense of increased computational time. Another key
parameter is the initial learning rate. A smaller learning rate (0.0001) used for ResNet50
allowed the model to converge more finely to an optimal solution. In contrast, a higher
rate (0.001) might accelerate learning, but with the risk of overshooting optimal solutions.
Lastly, the MiniBatchSize parameter affected both the convergence speed and memory
requirements during training. In this study, a larger batch size of 32 was used for MobileNet
and EfficientNet, which resulted in faster training compared to a smaller batch size of 25.

4.4. Limitations

As an exploratory study, the exhaled aerosol images used in this study were not
from human subjects but were generated using computational fluid-particle simulations
in physiologically realistic airway models. Currently, no breath test has been conducted
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in humans, so there are no in vivo images for training/testing. Future in vitro breath
tests will be carried out on 3D-printed mouth-lung replicas with normal and diseased
airways. Regarding the validity of simulation-generated images, previous studies have
demonstrated that physiology-based simulations could sufficiently reproduce in vivo con-
ditions [43,44]. Two numerical limitations existed in current simulations: steady flows
and rigid walls, which would alter the exhaled aerosol distributions [45–49]. However,
the differences caused by other variables could still be captured, which was the basis for
classification. Methodology-wise, this study can be further improved by considering a
time series of exhaled aerosol images rather than the cumulative static images used in this
study. A dynamic variation of bolus distribution/concentration vs. expiration time will
presumably provide more information about airway structures and thus be more accurate
in diagnosing/staging airway structural abnormalities [50–53].

It is noted that exhaled aerosols can be affected by many factors, such as airway
motion, turbulence, intersubject variability, etc. A natural question is whether the proposed
aerosol breath testing can still differentiate diseases under various compounding factors.
Here we list five common questions surrounding the clinical applications of the proposed
method: (1) How will the breath test be performed? (2) How can a classifier be developed
when there is no record of aerosol images at the patient’s first visit? (3) How to minimize
the compounding effects of geometrical and breathing variability among different patients?
(4) What is the turbulent effect on model performance? and (5) how to tell the disease
location from aerosol images? Detailed answers to these five questions were provided in Si
and Xi [18], and interested readers can find more relevant information there.

5. Conclusions

This study explored the feasibility of using convolutional neural networks (CNN)
to diagnose and stage obstructive lung diseases. Multiple-round and multi-class train-
ing/testing were conducted on exhaled aerosol images generated by physiology-based
simulations in normal and diseased airways. Four CNN models, AlexNet, ResNet-50,
MobileNet, and EfficientNet, were tested on their capacity to classify images inside and
outside the design space (i.e., Inbox and Outbox), as well as the effect of continuous learning
on their performance. Specific findings included:

(1) All models showed reasonably high classification accuracy on inbox images; the accu-
racy decreased notably on outbox images, with the magnitude varying with models;

(2) ResNet-50 was the most robust among the four models when tested on both inbox
and outbox images and for both diagnostic (2-class: normal vs. disease) and staging
(3-class: D0, D1, D2) purposes;

(3) CNN models could detect small airway remodeling (<1 mm) amidst a variety of
variants (including glottal aperture changes of larger magnitudes, i.e., 3 mm);

(4) Variation in flow rate was observed to be more important than throat opening and
particle size in classification decisions;

(5) Continuous learning significantly improved classification accuracy, with the relevance
of training data strongly correlating with model performance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jnt4030011/s1. Table S1: Round-3-25% performance comparison
among models (AlexNet, ResNet-50, MobileNet, and EfficientNet) that were trained on (90% Base,
Th1,2, and 25% Outbox) and tested on samples with decreasing similarities (Level 1, Inbox, Outbox)
for both 2-class and 3-class classifications. Table S2: Round-3–50% performance comparison among
models (AlexNet, ResNet-50, MobileNet, and EfficientNet) that were trained on (90% Base, Th1,2,
and 50% Outbox) and tested on samples with decreasing similarities (Level 1, Inbox, Outbox) for both
2-class and 3-class classifications. Table S3: Round-3–75% performance comparison among models
(AlexNet, ResNet-50, MobileNet, and EfficientNet) that were trained on (90% Base, Th1,2, and 75%
Outbox) and tested on samples with decreasing similarities (Level 1, Inbox, Outbox) for both 2-class
and 3-class classifications.
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