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Abstract: Secret sharing schemes are widely used to protect data by breaking the secret into pieces
and sharing them amongst various members of a party. In this paper, our objective is to produce a
repairable ramp scheme that allows for the retrieval of a share through a collection of members in the
event of its loss. Repairable Threshold Schemes (RTSs) can be used in cloud storage and General Data
Protection Regulation (GDPR) protocols. Secure and energy-efficient data transfer in sensor-based
IoTs is built using ramp-type schemes. Protecting personal privacy and reinforcing the security of
electronic identification (eID) cards can be achieved using similar schemes. Desmedt et al. introduced
the concept of frameproofness in 2021, which motivated us to further improve our construction with
respect to this framework. We introduce a graph theoretic approach to the design for a well-rounded
and easy presentation of the idea and clarity of our results. We also highlight the importance of secret
sharing schemes for IoT applications, as they distribute the secret amongst several devices. Secret
sharing schemes offer superior security in lightweight IoT compared to symmetric key encryption or
AE schemes because they do not disclose the entire secret to a single device, but rather distribute it
among several devices.

Keywords: combinatorial secret sharing; secure eID; cloud storage; SBIoT

1. Introduction

The Internet of Things (IoT) is a rapidly growing network of interconnected devices
that communicate with each other to perform various tasks. As the number of IoT devices
increases, so does the need for secure communication between them. Cryptography is
an essential tool for securing IoT devices, and secret sharing schemes are one of the most
promising cryptographic elements for IoT. For example, the Datachest application encrypts
and stores sensitive data in commercial cloud storage systems using secret sharing [1].
The application uploads the data in encrypted form, and cryptographic keys are divided
into shares. Each cloud receives one share, and this solution improves the security of
users’ sensitive data in the cloud. In this paper, we identify the importance of applicability
of secret sharing schemes to IoT, and pay particular attention to the value our proposed
distribution design may introduce through frameproofness of the underlying scheme in
such applications as well as possibilities for integrating multiple or multi-level systems
without complete loss of distinction of the underlying individual systems.

A secret sharing scheme is a useful tool in modern cryptography. They are distinctive
in distributing a secret amongst multiple devices, ensuring that no single device has access
to the entire secret. This makes secret sharing schemes ideal for IoT applications where mul-
tiple devices need to work together to perform a task. For example, in a smart home system,
multiple devices such as sensors, cameras, and smart locks need to communicate with each
other to provide security and convenience to the homeowner. In secret sharing-based IoT
(SBIoT), each cloud server is given a share constructed using a secret sharing scheme. A
collection of servers can reconstruct the secret provided that they satisfy the reconstruction
criteria of the underlying scheme (instead of privately owned keys in encryption-based
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schemes). Such a scheme enables processing without the need of decryption. Energy effi-
ciency refers to the total energy consumption of an IoT network, which affects the lifetime
of a network [2]. It is well-known that use of a ramp-type scheme improves the security and
energy efficiency in SBIoT networks [3]. It provides better security against various types of
attacks, including replay attack, modification attack, selective forwarding attack, and data
leakages when a passive attacker is encountered. These benefits contribute to enhancing
the overall security and performance of data transfer in SBIoT networks. Using a threshold
scheme enhances personal information protection for eID cards by not storing any personal
information per se in the card [4]. Instead, sensitive personal information is divided into
two parts for distributed storage in the client and the eID card. This ensures safety even
when eID cards are lost because none of the original information can be figured out from a
single secret share. With this structure, no information whatsoever on the original can be
known from only the secret share in the card.

Consider b players and a positive integer τ ≤ b. Suppose a dealer distributes a secret
to these b players such that any collection of τ players can reconstruct the secret with their
shares, but no smaller collection of players can do so. This is called a (τ, b)-threshold secret
sharing scheme with threshold τ. If the dealer distributes shares to b players such that any
collection of τ1 players can reconstruct the secret but no collection of τ2 or less players can
do so (for τ2 < τ1 ≤ b), then it is called a (τ1, τ2, b)-ramp scheme. Thus, if τ1 − τ2 = 1, then
it is a (τ1, b)-threshold scheme. In this paper, we shall present a repairable ramp scheme,
which we call a tensor design.

Secret sharing schemes also play a crucial role in ensuring secure data storage within
cloud environments. These schemes involve the division of data into multiple shares,
which are then stored on different servers. This approach provides a safeguard against
any potential compromise of a single server, thereby maintaining the security of the data.
In [5], the authors present an exploration of the comparative performance of Shamir’s
secret sharing algorithm [6] and Rabin’s IDA [7] within a private cloud framework utilizing
the OpenStack cloud infrastructure. The experimental results indicated that Shamir’s
secret sharing algorithm outperformed Rabin’s IDA in terms of generating the shares and
reconstructing the data. However, Rabin’s IDA exhibited a lower storage overhead when
compared to Shamir’s secret sharing algorithm. These findings underscore the importance
of considering various factors, such as generation time, reconstruction time, and storage
requirements, when selecting an appropriate secret sharing scheme for secure data storage
in cloud environments.

In their 2019 work, Stinson and Kacsmar [8] demonstrated non-ideal secret sharing
schemes stemming from an ideal scheme (viz. Shamir scheme) as the base scheme. They
presented a distribution design which was a threshold scheme with the ability to repair
lost shares with a certain probability, and secure against any adversary with lesser players
than the threshold. Our work further generalizes the domain over which our distribution
designs are defined, in addition to providing it with easier secret reconstruction and share
repairability, and securing it in more than one context. In short, we revisit the combinatorial
design and some of its key properties first.

1.1. Combinatorial RTS

Consider the problem of securely reconstructing the lost share of a player by that player
and a subset of the other players. A combinatorial solution to this problem was proposed
by Stinson and Wei [9]. These schemes are termed combinatorial RTS. A repairable threshold
scheme (RTS) is a (τ, b)-threshold scheme in which a subset of players can repair another
player’s share in the event that their share is lost or corrupted, without the participation
of the dealer who set up the scheme. The repairing protocol should not compromise the
(unconditional) security of the threshold scheme.
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1.2. A Drawback and an Idea of Extension

The combinatorial model proposed so far produces shares that are in a finite field Fk
q.

Whether we can extend this notion to an integer ring is the first question. In this work, we
propose a method to construct a distribution design with entries from an integer ring, thus
generalizing the domain. We further show that this is a ramp scheme and consequently
give a method of secret reconstruction for it, which is significantly easier in comparison
to [8]. The size of the authorized coalition that can recover the secret is significantly reduced
in our framework. Example 3 will demonstrate the fact.

Repairability Problem

Techniques from network reliability theory are heavily used in reliability studies of
these combinatorial repairable threshold schemes in a setting where players may not be
available to take part in the repair of a given player’s share. Reference [8] deals with the
problem of reliability of such schemes and reconstruction of secrets and repairing shares
without participation of the dealer.

The scheme proposed in this paper produces a far more efficient share repairability,
which is possible due to the generalized domain, and based heavily on the easier secret
reconstruction mentioned beforehand.

1.3. Frameproofness

Moving forward with the concept of repairing shares, another similar possibility was
recently explored, called framing. Instead of simply specifying the minimum size of a
set of players that can access the secret, suppose the dealer defines the share distribution
through some other process. Say f : P → {0, 1} (where P denotes the power set of the
set of all players P) such that any coalition of players A ⊆ P can access the secret if and
only if f (A) = 1 (thus, in a Shamir scheme, f (A) = 1 if and only if |A| ≥ τ). If A ⊆ P
maps to 1 through f , then A is called an authorized coalition; if it maps to 0, then A is an
unauthorized coalition.

Given such an access structure over a secret sharing scheme, suppose a coalition A of
players can gain information about the share of a player P ∈ P \A dishonestly. ThenA can
wrongly accuse P of releasing information about the secret that only A is not authorized to
access, i.e., A can frame P. Framing a player (or players) evidently undermines the security
of any secret sharing scheme, as it allows a group of players to access extra information
about the secret illegally. Thus, it is imperative to limit such capabilities and/or size of
any such coalition when constructing a combinatorial RTS. The concept of frameproofness
was examined by Desmedt et al. in their recent paper [10]. In this paper, we improve the
extension scheme so that no framing is possible for any coalition of smaller size than the
threshold. The question of what can be the minimum size of a coalition that can frame a
player under this modification currently remains open.

2. Results

In this paper, we first introduce an operation, the Krönecker product of two matrices,
extendable to a Krönecker product of two BIBDs. Following up with some properties
of this operation, we present methods to solve two inherent problems with Krönecker
products; firstly, the operation does not produce a BIBD from two BIBDs, and secondly, we
resolve the issue of uniqueness that arises with the introduction of this operation. Our next
theorem deals with the existence of secret reconstruction, which we prove by producing an
algorithm. A probabilistic proof is given next.

An immediate consequence of our results on the new scheme is its extendability to
multiple BIBDs. We discuss it briefly though a dealer’s algorithm. We proceed with an
example to illustrate our algorithms further. We make considerable improvements on the
method of share repair described in [8] for our proposed Krönecker product-induced BIBDs.
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Next, we explore the concept of frameproofness for our proposed model and improve it
significantly through certain changes in the model. We also prove existence of frameproofness
of the modified scheme through results based on matchings of bipartite graphs.

Finally, we note the importance of secret sharing schemes in varied IoT applications,
especially for their lightweight functionality, uniquely encapsulated through the non-
accessibility of the full secret to any single entity, which we strengthen by frameproofness
and can expand by incorporating multiple systems by our Krönecker product.

Organization of the Paper

Our paper starts with a brief review of the work performed by Stinson and Wei [9] in
Section 3. We then move on to describe our construction, beginning with an introduction
of the Krönecker product of two BIBDs in Section 4. We describe the secret reconstruction
procedure for such an object illustrated through an example in Section 5. Next, we briefly
describe the method of share repair and compute the corresponding repair probabilities,
much like in [8], in Section 6. We then proceed to modify this scheme to give a frameproof
construction in Section 7. Furthermore, we answer the question of existence of such a modi-
fied construction in Section 8. Finally, we draw the reader’s attention to the applicability of
our results to secret sharing applications on the Internet of Things, especially in a secure,
lightweight context, in Section 9.

3. Stinson and Wei’s Model [9]

The classical Shamir scheme is defined over a finite field Fq (q ≥ b + 1). It involves
the following:

• an initialization phase, in which the dealer chooses distinct, non-zero public elements
x1, x2, . . . , xb from Fq, and gives value xi to player Pi;

• a share distribution phase in which the dealer chooses a secret K = a0 ∈ Fq, then secretly
chooses a1, . . . , aτ−1 ∈ Fq independently and uniformly at random, and finally com-

putes the share yi = a(xi)

(
where a(x) :=

τ−1
∑

j=0
ajxj

)
and gives it to

player Pi.

The combinatorial solution proposed by Stinson and Wei [9] to the share repairability
problem is based on an old technique by Benaloh and Leichter, namely, giving each player
a subset of shares from an underlying threshold scheme called a base scheme (which is, say,
a (σ, m)-Shamir scheme over the base field Fq). Each player is then given a certain subset of
d of the m shares, by use of a set system (or design) consisting of b blocks of size d, defined
on a set of m points. This design is termed the distribution design:

y11 y12 · · · y1d
y21 y22 · · · y2d

...
yb1 yb2 · · · ybd

,

∣∣∣∣∣{yij}i∈{1,2,...,b}
j∈{1,2,...,d}

∣∣∣∣∣ ≤ m. (1)

The resulting expanded (τ, b)-threshold scheme consists of each player Pi correspond-
ing to a block Bi ∈ B of the distribution design. For each point x ∈ Bi, the player Pi is
given the subshare sx. If X denotes the set of m points on which the design is defined and
B = {B1, . . . , Bb} is the set of all blocks, then this forms an (X,B)-distribution design.

Definition 1. Suppose 2 ≤ k < v. A (b, v, k, r, λ)-balanced incomplete block design or a
(b, v, k, r, λ)-BIBD is a design (X,B) such that:

1. |X| = v;
2. each block B ∈ B contains exactly k points;
3. every pair of distinct points from X is contained in exactly λ blocks.
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Observe that if each point occurs in exactly r blocks, then the parameters b, v, k, r, λ of a BIBD
satisfy the following relations [11]:

(i) bk = vr;
(ii) λ(v− 1) = r(k− 1);
(iii) b ≥ v (and hence r > k).

Definition 2. We shall call a distribution design a tensor design if it simply satisfies property
(i) above.

Design Properties

Next, we consider an example to demonstrate the fact that the object constructed in
Section 4 is in fact a ramp scheme. For the purpose of computations, we recall some results
from [8] on block designs.

Theorem 1 (Replication Number). Every point in a (v, k, λ)-BIBD occurs in exactly r = λ(v−1)
k−1

blocks. The value r is termed the replication number of the scheme.

Theorem 2 (Blocks and Block Size). A (v, k, λ)-BIBD has exactly

b = vr
k = λ(v2−v)

k2−k blocks of size k.

4. Tensor Design Generated by Two BIBDs

Given two matrices A and B, the usual matrix product operation can be carried out
only when the column size of the left matrix A is equal to the row size of the right matrix B.
The Krönecker product can be applied on any two matrices, irrespective of their dimension.
This operation has several applications in Linear Algebra, of which, we consider some
properties that shall be useful for working with BIBDs.

4.1. Definition of the Krönecker Product

The Krönecker product of two matrices Ab1×k1 and Bb2×k2 is the block matrix

A⊗B =


a11B a12B . . . a1k1B
a21B a22B . . . a2k1B

...
ab11B ab12B . . . ab1k1B

, (2)

where aij denotes the entry in the ith row and jth column of A.
Observe that Krönecker products follow the associative property. Thus, for matrices

A, B, and C,
(A⊗B)⊗ C = A⊗ (B ⊗ C).

Another interesting property of Krönecker products is that they maintain structure
over block matrices. Thus, if A is written as a block matrix

A11 A12 · · · A1k
A21 A22 · · · A2k

...
Ab1 Ab2 · · · Abk

 for some b ≤ b1 and k ≤ k1,

then A⊗B =


A11 ⊗B A12 ⊗B · · · A1k ⊗B
A21 ⊗B A22 ⊗B · · · A2k ⊗B

...
Ab1 ⊗B Ab2 ⊗B · · · Abk ⊗B

. (3)
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4.2. Krönecker Product of Two BIBDs

Let A and B be the share matrices generated by ramp schemes with, respectively, b1
and b2 blocks having shares of sizes k1 and k2. Suppose A and B also denote the b1 × k1
and b2 × k2 matrices corresponding to the two schemes. The Krönecker product of A⊗B
is therefore

M =


a11B a12B . . . a1k1B
a21B a22B . . . a2k1B

...
ab11B ab12B . . . ab1k1B

 =


T1
T2
...

Tb1

, (4)

where Ti (i ∈ {1, 2, . . . , b1}) is the ith row-block submatrix of M containing rows
(i − 1)b2 + 1, (i − 1)b2 + 2, . . . , ib2. If the share matrix A is defined over the field Fp1

and B over the field Fp2 for some primes p1 and p2, then we define the scalar multiplication
by simple integer multiplication:

Fp1 × Fp2 → Z
such that (x1, x2) 7→ x1 · x2.

The reason behind taking such a multiplication is that the product elements are not
distinguishable from integers. Therefore, M is a matrix over the integer ring Z.

At this point, the first observation that we make is that the Krönecker productA⊗B of
two BIBDs A and B does not always produce a BIBD. To illustrate the fact, we start with a
small example, and then we describe a method for resolving this issue. Also, the Krönecker
product in general does not produce an injective mapping fromMb1×k1 ×Mb2×k2 to the
matrix spaceMb1b2×k1k2 . So it is hopeless to search for a secret reconstruction procedure
from a given Krönecker product matrix. We shall thus impose a condition producing an
injective map and in turn, ensuring the existence of secret reconstruction.

Consider an example of two 2− (4, 3, 2) Shamir schemes in F5 and F7 over the points
{1, 2, 3, 4} and {1, 2, 3, 5} constructed using two polynomials modulo F5 and F7, respec-
tively. These can be represented by share matrices A and B, respectively, with r1 = r2 = 3:

A =


1 2 3
2 1 4
3 4 2
4 3 1

 and B =


1 2 3
2 3 5
3 5 1
5 1 2

. (5)

The Krönecker product of the BIBDs A and B is as follows:

1 2 3 2 4 6 3 6 9
2 3 5 4 6 10 6 9 15
3 5 1 6 10 2 9 15 3
5 1 2 10 2 4 15 3 6
2 4 6 1 2 3 4 8 12
4 6 10 2 3 5 8 12 20
6 10 2 3 5 1 12 20 4

10 2 4 5 1 2 20 4 8
3 6 9 4 8 12 2 4 6
6 9 15 8 12 20 4 6 10
9 15 3 12 20 4 6 10 2

15 3 6 20 4 8 10 2 4
4 8 12 3 6 9 1 2 3
8 12 20 6 9 15 2 3 5

12 20 4 9 15 3 3 5 1
20 4 8 15 3 6 5 1 2
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Hence, A⊗B has the parameters b = 16, v = 12, and k = 9; the parameters r and λ
are not well-defined. Obviously, neither does this satisfy property 3 of a BIBD (Definition 1),
nor the relation (i) of a tensor design (Definition 2). Lemmas 1–3 and Theorem 3 ensure
that we always obtain a tensor design from a Krönecker product, and furthermore that we
always obtain a secret reconstruction for such a share distribution scheme.

4.3. Some Results on the Krönecker Product of BIBDs

We now resolve these issues by defining some properties of a tensor design. Let A
and B be share matrices defined on points {x1, x2, . . . , xn} and {y1, y2, . . . , ym}, respectively.
Let Bd be the same distribution scheme as B, but on the points {y1 + d, y2 + d, . . . , ym + d}.
The position of an element in the Krönecker product of these two matrices can be found by
simple counting, and is stated in the following lemma:

Lemma 1. The product of aij ∈ A and bkl ∈ B can be found in the row (i− 1)b2 + k (which is
also the player number in the repair scheme represented by M), and the column (j− 1)k2 + l of M.

The next result helps ensure that A⊗B is indeed a BIBD:

Lemma 2. Let {x1, x2, . . . , xn} and {y1, y2, . . . , ym} be two collections of integers. Then there ex-
ists an integer d such that {x1, x2, . . . , xn} and {y1 + d, y2 + d, . . . , ym + d} have no multiplicative
collisions of the type xiyj = xkyl for (i, j) 6= (k, l).

Proof. Set d ≥ max
i,k∈{1,2,...,n}
j,l∈{1,2,...,m}

{xiyj − xkyl}+ 1. Suppose xi(yj + d) = xk(yl + d).

=⇒ xiyj + xid = xkyl + xkd

=⇒ (xk − xi)d = xiyj − xkyl

=⇒ d =
xiyj − xkyl

xk − xi
; (6)

however, since d ≥ max
i,k∈{1,2,...,n}
j,l∈{1,2,...,m}

{xiyj − xkyl} + 1, this is a contradiction. Therefore,

{x1, x2, . . . , xn} and {y1 + d, y2 + d, . . . , ym + d} produce no multiplicative collisions.

Lemma 3. Given a list of distinct elements {y1, y2, . . . , ym}, we can choose an integer d̂ such that
gcd(y1 + d̂, y2 + d̂, . . . , ym + d̂) = 1.

Proof. Without loss of generality, we may assume y1 < y2 < · · · < ym. Let
l = gcd(y1, y2, . . . , ym) and fix i < j in {1, 2, . . . , m}. Thus, yi = lki and yj = lk j such that
ki < k j. Choose d̂ such that gcd(d̂, l) = 1 and gcd(d̂+ yi, k j− ki) = 1 for some j in {1, 2, . . . , m}.
Now, gcd(yi + d̂, yj + d̂) = gcd(lki + d̂, lk j + d̂) = gcd(lki + d̂, l(k j − ki)) = 1.

Theorem 3 (Reconstruction from Tensor Designs). Consider a (v1, k1, λ1, b1, r1)-BIBD A and
a (v2, k2, λ2, b2, r2)-BIBD B.

1. The matrix A⊗Bd produces a tensor design (over the integer ring Z) for a (public) integer
d such that there are no multiplicative collisions of the type xi(yj + d) = xk(yl + d) for
(i, j) 6= (k, l).

2. • If gcd(x1, x2, . . . , xv1) = 1;
• if gcd(y1, y2, . . . , yv2) = 1;
then A and B can be reproduced from a collection of players in the new scheme A⊗Bd, hence
enabling share repair and secret reconstruction.

This theorem can be generalized for finitely many such Krönecker products, and
motivates us to present the following algorithm for a share distribution scheme.
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Proof. The parameters of the Krönecker product A⊗B are b = b1b2, v = v1v2,
k = k1k2, r = r + 1r + 2, λ = λ1λ2. Part 1 of the theorem therefore follows from Lemma 2,
which ensures a well-defined value for r, and Lemma 3, which ensures a well-defined value
for λ.

In order to prove part 2, we describe two ways to reproduce A and B. Recall first that
any τ1 rows of A produce all points of A, and similarly τ2 rows for Bd. Furthermore, we
claim the following:

[I] A collection of players that has

(i) τ2 players from one row-block Ti of M;
(ii) at least one player from distinct τ1 − 1 row-blocks Tj 6= Ti of the remaining

b1 − 1 row-blocks

can reconstruct the secret.

[II] Let Sj (j ∈ {1, 2, . . . , b2}) be the collection of players
{

Pb2k+j : k ∈ {0, 1, . . . . . . , b1− 1}
}

.
A collection of players that contains

(i) τ1 players from one Sj;
(ii) at least one player from τ2 − 1 Si, i 6= j

can also reconstruct the secret.

We now present an algorithm to prove claim [I]; claim [II] follows similarly.

1. The share of the jth player Pi·b2−1+j of the ith row-block Ti is of the form

ai1 · {bj1, bj2, . . . , bjk2}, ai2 · {bj1, bj2, . . . , bjk2}, . . . , aik1 · {bj1, bj2, . . . , bjk2}.

Fix any i ∈ {1, 2, . . . , b1} and choose j1, j2, . . . , jτ2 to ensure that
gcd(bj11, bj12, . . . , bj1k2 , bj21, bj22, . . . , bj2k2 , . . . , bjτ2 1, bjτ2 2, . . . , bjτ2 k2) = 1.

2. Therefore, the values of ai1, ai2, . . . , aik1 become known. Divide aiαbjk β by aiα (for
α ∈ {1, 2, . . . , k1}, β ∈ {1, 2, . . . , k2} and k ∈ {1, 2, . . . , τ2}) to obtain bjk1, bjk2, . . . , bjkk2 .

3. Construct the complete matrix Bd using the shares of τ2 players of Bd that are now
known. Hence construct B.

4. Using the values of the elements in Bd, compute the values ai′1, ai′2, . . . , ai′k1
for τ1 − 1

indices i′ that are distinct from each other as well as from i.
5. Hence, construct A from the shares of τ1 players of A thus obtained.
6. Finally compute the secret from A and B.

This reconstruction algorithm is clearly better than the one in [8] in the sense that the
size of the authorized coalition is smaller. In fact, the size of the authorized coalition, while
not unique, has a lower bound in the number of players. The following section provides a
proof that there is always a secret reconstruction for this scheme.

4.4. Proof of Existence of Secret Reconstruction

Let us redefine the problem in terms of random variables. Let X1, X2, . . . , Xn be
sampled without replacement from the collection of all players. We assume a uniform
probability distribution over the set of all players.

Let Ii,j =

{
1 if Xi ∈ Sj, i ∈ [n], j ∈ [b2],
0 otherwise.

Also let Ji,k =

{
1 if Xi ∈ Tk, i ∈ [n], k ∈ [b1],
0 otherwise.

We further define nk =
n
∑

i=1
Ji,k and rj =

n
∑

i=1
Ii,j. Then the condition for reconstruction

becomes
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[I]

(i) max
k∈[b1]

nk ≥ τ2,

(ii) nk ≥ 1 for at least τ1 indices k.

[II]

(i) max
j∈[b2]

rj ≥ τ1,

(ii) rj ≥ 1 for at least τ2 indices j.

Let E1 be the event that condition [I] is satisfied and E2 be the event that condi-
tion [II] is satisfied. Also, let D(n0) be the event that n ≥ n0. We find an n0 such that
Pr[E1 ∪ E2 | n ≥ n0] ≈ 1. This is equivalent to Pr

[
Ec

1 ∩ Ec
2 | n ≥ n0

]
≈ 0. In fact, it is suffi-

cient to show Pr
[
Ec

1 | n ≥ n0
]
≈ 0 and Pr[Ec

2 | n ≥ n0] ≈ 0.
As E1 = E1(i) ∩ E1(ii), Ec

1 = E1(i)c ∪ E1(ii)c,

Pr[Ec
1 | n ≥ n0] = Pr[E1(i)c ∪ E1(ii)c | n ≥ n0]

= Pr
[

E(
1i)c | n ≥ n0

]
+ Pr[E1(ii)c | n ≥ n0]− Pr[E1(i)c ∩ E1(ii)c | n ≥ n0]

Lemma 4. Pr[E1(i)c ∩ E1(ii)c | n ≥ (τ1 − 1)(τ2 − 1) + 1] = 0.

Proof. We observe that E1(i)c is the event max
k∈[b1]

nk < τ2 and E1(ii)c is the event that nk ≥ 1

for at most τ1 − 1 indices k. Thus, if there are (τ1 − 1)(τ2 − 1) + 1 players in a collection,
then by the pigeonhole principle, either E1(i)c or E1(ii)c is violated.

Lemma 5. Pr[E1(i)c | n ≥ (τ2 − 1)b1 + 1] = 0.

Proof. We observe that E1(i)c is the event max
k∈[b1]

nk < τ2 and there are b1 nks. Thus, if there

are (τ2− 1)b1 + 1 players in a collection, then by the pigeonhole principle, E1(i)c is violated,
since there is at least one nk with τ2 or more players.

Lemma 6. Pr[E1(ii)c | n ≥ (τ1 − 1)b2 + 1] = 0.

Proof. We observe that E1(ii)c is the event that nk ≥ 1 for at most τ1 − 1 indices k. By
definition, each nk can have at most b2 elements. Thus, any collection of (τ1 − 1)b2 + 1
players violates E1(ii)c.

Lemma 7. Pr[E2(i)c ∩ E2(ii)c | n ≥ (τ1 − 1)(τ2 − 1) + 1] = 0.

Proof. We observe that E2(i)c is the event max
j∈[b2]

rj < τ1 and E2(ii)c is the event that rj ≥ 1

for at most τ2 − 1 indices j. Thus, if there are (τ1 − 1)(τ2 − 1) + 1 players in a collection,
then by the pigeonhole principle, either E2(i)c or E2(ii)c is violated.

Lemma 8. Pr[E2(i)c | n ≥ (τ1 − 1)b2 + 1] = 0.

Proof. We observe that E2(i)c is the event max
j∈[b2]

rj < τ1 and there are b2 rjs. Thus, if there

are (τ1− 1)b2 + 1 players in a collection, then by the pigeonhole principle, E2(i)c is violated,
since there is at least one rj with τ1 or more players.

Lemma 9. Pr[E2(ii)c | n ≥ (τ2 − 1)b1 + 1] = 0.
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Proof. We observe that E2(ii)c is the event that rj ≥ 1 for at most τ2 − 1 indices j. By
definition, each rj can have at most b1 elements. Thus, any collection of (τ2 − 1)b1 + 1
players violates E2(ii)c.

For n0 = max{(τ2 − 1)b1 + 1, (τ1 − 1)b2 + 1}, Lemmas 4–6 imply
Pr
[
Ec

1 | n ≥ n0
]
= 0 and n0 = max{(τ2 − 1)b1 + 1, (τ1 − 1)b2 + 1}, and Lemmas 7–9 imply

Pr[Ec
2 | n ≥ n0] = 0.
Note that the bound given here for the reconstruction number is tight, as we might

expect. In the example presented in Section 5, the bound turns out to be 5, which matches
all the bounds above. Corresponding counterexamples can be constructed to show that
no smaller-sized general collection can complete the reconstruction. This result can be
generalized for three or more designs. These results provide us with the tools to present a
generalized scheme, which we do now.

4.5. A Generalized Share Distribution Scheme

1. Dealer selects n (not necessarily distinct) BIBDs A1,A2, . . . ,An, where for
i ∈ {1, 2, . . . , n}, Ai is defined over points {xi

1, xi
2, . . . , xi

vi
}.

2. Dealer finds an integer d1 such that gcd(x1
1 + d1, x1

2 + d1, . . . , x1
v1
+ d1) = 1.

3. For i ∈ {2, . . . , n}:
• Dealer finds an integer di (using Lemmas 2 and 3) such that di breaks all pairwise

multiplicative collisions and makes the gcd of all elements xj
l + dj (j ∈ {1, . . . , i−

1}, l ∈ {1, . . . , vj}) and xi
1 + di, xi

2 + di, . . . , xi
vi
+ di is 1.

4. M←A1 ⊗A2 ⊗ · · · ⊗ An.
5. Dealer distributes each row i of M as share to player Pi and outputs (d1, d2, . . . , dn)

publicly.

Note that by Theorem 3, M is a tensor design, and the algorithm in the proof of the
theorem can be generalized for secret reconstruction of this scheme.

5. Example

Recall the previous example (5). Using the algorithm in Section 4.5, we produce a
tensor design A⊗B21 using an integer d = 21 satisfying Lemma 3. Representing the share
matrix modified from B by B21 (and noting that both share matrices are undeclared), with
r1 = r2 = 3:

B21 =


22 23 24
23 24 26
24 26 22
26 22 23

, (7)

we still have b1 = 4, b2 = 4, k1 = 3, and k2 = 3. Observe that τ1 = 2 and τ2 = 2 are
the reconstruction numbers of A and B, respectively. The Krönecker product of the two
matrices A and B21, represented by the matrix M, is shown in Figure 1.
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22 23 24 44 46 48 66 69 72

T1={P1,P2,P3,P4}
23 24 26 46 48 52 69 72 78
24 26 22 48 52 44 72 78 66
26 22 23 52 44 46 78 66 69
44 46 48 22 23 24 88 92 96

T2={P5,P6,P7,P8}
46 48 52 23 24 26 92 96 104
48 52 44 24 26 22 96 104 88
52 44 46 26 22 23 104 88 92
66 69 72 88 92 96 44 46 48

T3={P9,P10,P11,P12}
69 72 78 92 96 104 46 48 52
72 78 66 96 104 88 48 52 44
78 66 69 104 88 92 52 44 46
88 92 96 66 69 72 22 23 24

T4={P13,P14,P15,P16}
92 96 104 69 72 78 23 24 26
96 104 88 72 78 66 24 26 22
104 88 92 78 66 69 26 22 23
S1={P1,P5,P9,P13} S2={P2,P6,P10,P14} S3={P3,P7,P11,P15} S4={P4,P8,P12,P16}

Figure 1. The matrixA⊗B21 is the Krönecker product ofA and B21 as in Equation (7), and is a secret
sharing scheme with reconstruction number 2. A secret reconstruction algorithm for this scheme is
detailed in Section 5.1.

5.1. Secret Reconstruction

The matrix A⊗B21 in the above example produces interesting results.

1. A collection of three players—exactly two from one of the sets T1, T2.T3, T4 and one
from another—allows reconstruction of the secret. For example, consider the set of
three players {P1, P2, P5}. This set can reconstruct the secret:

(i) gcd(22, 23, 24, 23, 24, 26) = 1; hence, the first row of MA is (1 2 3) and the
first two rows of MB are (22 23 24) and (23 24 26). As τ2 = 2, MB can be
obtained from its two rows.

(ii) Now, observing 5 = 4 · 1 + 1, we readily know P5 uses the first row of MB
and the second row of MA; this yields the second row of MA, (2 1 4). Since
τ1 = 2 and we have two rows of MA, the whole matrix MA is known.

2. Any collection of three players—two from one of the sets S1, S2, S3, S4 and one from
another—also allows reconstruction of the secret.

3. Reconstruction of the secret is ensured for a collection of five or more players.

This idea can be generalized to a secret reconstruction algorithm in the general case.

6. Share Repair for a Krönecker Product-Induced Distribution Design

Let A and B be (v1, k1, 1)- and (v2, k2, 1)-BIBDs with b1 and b2 blocks, and replication
numbers r1 and r2, respectively. Consider player P1, whose share is the first block (i.e., row)
of A⊗B. Thus,

share of P1 = a11b11 a11b12 · · · a11b1k2 | a12b11 a12b12 · · · a12b1k2 | · · ·
· · · | a1k1b11 a1k1b12 · · · a1k1b1k2 = L1 | L2 | · · · | Lk1 .

Using the notations and method described in [8] (and making the same assumption
that any player is available with a fixed probability p), the probability of availability of at
least one repair set is

R(p) =
(
1− (1− p)r1r2

)k1k2 . (8)
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We improve this method significantly. For this, observe that each block Lk

(k ∈ {1, 2, . . . , k1}) (possibly with a different factor ami for some m ∈ {1, 2, . . .

. . . , b1}, i ∈ {1, 2, . . . , k1}, from A) occurs in the shares of r1 − 1 players other than P1. (9)

Furthermore, the share of P1 can also be characterized as

a11b11 a11b12 · · · a11b1k2 | a12b11 · · · a12b1k2 | · · · · · · | a1k1b11 · · · a1k1b1k2 ;

K1 := a11b11 a12b11 · · · a1k1b11,

K2 := a11b12 a12b12 · · · a1k1b12,
...

Kk2
:= a11b1k2 a12b1k2 · · · a1k1b1k2 .

It is thus clear that each Kj(j ∈ {1, 2, . . . , k2}) (possibly with a different

factor bl j for some l ∈ {1, 2, . . . , b2}, from B) occurs in the shares of r2 − 1

players other than P1. (10)

Let us assume that we have t1 players of type (9) and t2 players of type (10). Then

R∗(t1,t2)
(p) = R∗t1

(p)R∗t2
(p)R∗δ(p), (11)

where

(i) t1 are selected from type (9);
(ii) t2 are selected from type (10);
(iii) δ := k1k2 − t1k1 − t2(k2 − t1) are selected independently, and

R∗t1
(p) =

(
1− (1− p)r1−1

)t1

R∗t2
(p) =

(
1− (1− p)r2−1

)t2

R∗δ(p) =
(

1− (1− p)(r1−1)(r2−1)
)δ

.

Observe that δ = (k1 − t2)(k2 − t1). Therefore, the probability of at least one repair set
being available in this case is

R∗(p) = ∑
t1,t2

R∗t1
(p)R∗t2

(p)R∗δ(p).

Let E∗(p) be the expected number of minimal repair sets. In general, this expected
number is the product of the total number of possible repair sets and the probability of
availability of each repair set. Ref. [8] sets E(p) = (r1r2)

k1k2 . We denote by C(t1, t2), the
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number of partitions of a set of size k1k2 into three sets of sizes t1, t2 and k1k2 − t1 − t2. By
an argument similar to the previous,

E∗t1
(p) = (r1 − 1)t1 pt1 ,

E∗t2
(p) = (r2 − 1)t2 pt2 , and

E∗δ (p) = [(r1 − 1)(r2 − 1)]δ pδ, so that

E∗(t1,t2)
(p) = C(t1, t2)E∗t1

(p)E∗t2
(p)E∗δ (p).

Hence, E∗(p) = ∑
t1,t2

C(t1, t2)E∗t1
(p)E∗t2

(p)E∗δ (p).

Table 1 shows a comparison of share repair probability on three projective plains for
two different methods.

Table 1. A comparison table showing probability of share repairability on three projective planes.

A B R(p) R∗(p)

(3, 2, 1) (3, 2, 1) (1− q3)4 > (1− q)4 + . . .

(3, 2, 1) (7, 3, 1) (1− q5)6 > (1− q2)6 + . . .

(7, 3, 1) (7, 3, 1) (1− q8)9 > (1− q4)9 + . . .

7. Frameproofness

Consider matrix representations of two BIBDsA =
(
aij
)

i∈{1,...,b1}
j∈{1,...,k1}

and B =
(
bij
)

i∈{1,...,b2}
j∈{1,...,k2}

,

and their Krönecker product as depicted in Equation (4). We show here how the share of a
player, say P1, can be retrieved (i.e., player P1 can be framed; see [10] for more details) by only
two other players. For clarity, we mention here that the share of P1 is
a11b11, a11b12, . . . , a12b11, a12b12, . . . , a13b11, . . ..

1. There exist (b2 − 1) + (r1 − 1) · b2 players that possess the element a11bij for some
i ∈ {1, 2, . . . , b2} and j ∈ {1, 2, . . . , k2}, since r1 is the replication number ofA. Of these,
(r1− 1) · 1 players possess the first k2 elements of the share, i.e., a11b11 a11b12 . . . a11b1k2 .
If any of these players know the ratios a12

a11
, a13
a11

, . . ., then they could construct the entire
share of P1.

2. Note that for j 6= 1, any of the b2 − 1 players with shares

a11B2 | a12B2 | . . . | a1k1B2,

a11B3 | a12B3 | . . . | a1k1B3,
...

a11Bb2 | a12Bb2 | . . . | a1k1Bb2

know these ratios.

Therefore, only two players — one from the r1 − 1 players possessing a11b11 and one
from the b2 − 1 players possessing a12

a11
, a13
a11

, . . . — can reconstruct the entire share of player
P1, and hence, frame this player.

We try to address this problem by reducing the repetitive nature of shares of the
participants. We shall do this by decreasing the size of each share, while retaining all the
information that a player had in the previous construction (i.e., Equation (4)).
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7.1. A Modified Scheme

Given two matrices A and B of the same dimension r× c, we define the operation
A�B as the r× c matrix generated by position-wise products of elements of A and B, i.e.,

if A =

a11 a12 · · · a1c
...
ar1 ar2 · · · arc

 and B =

b11 b12 · · · b1c
...

br1 br2 · · · brc

, then

A�B =

a11b11 a12b12 · · · a1cb1c
...

ar1br1 ar2br2 · · · arcbrc

.

The operator � is well-behaved in the sense that it is commutative and respects scalar
multiplication on integer-valued matrices.

Let π : {1, 2, . . . , b} → {1, 2, . . . , b} be a permutation. Given i ∈ {1, 2, . . . , b} and
π(i) = j, we define π̃ : {1, 2, . . . , b} → {1, 2, . . . , k} as π̃(i) = j (mod k), for any integer
k ≤ b. Now given BIBDs Ab1×k1 and Bb2×k2 , we modify their Krönecker product by first
choosing a permutation π1 randomly from the set of all permutations over {1, 2, . . . , b2}
and producing π̃1. Then we produce π̃2, π̃3, . . ., π̃k1 by simple translations.

Next, we represent application of the function π̃l to the mth block matrix (of size
b2 × k2) of block-row t in A⊗B by θmt = l, and define matrix Nb1b2×k1k2 = (nij) divided
into blocks of size b2 × k2 similarly as A⊗B such that{

nij = 1 if π̃l(i) = j
nij = 0 if otherwise

,

where nij is the element in the ith row and jth column of the (m, t)th block matrix of M. Fi-
nally, the ith row of matrix (A⊗B)�N produces the share of player Pi (i ∈ {1, 2, . . . , b1b2})
by omitting the zeroes.

7.2. Example

Consider another example, where a 2− (4, 3, 2)-BIBD and a 2− (5, 4, 3)-BIBD over the
points {1, 2, 3, 4} and {22, 23, 24, 25, 26} are represented by matrices A and B, respectively
(note that r1 = 3, r2 = 4):

A =


1 2 3
2 3 4
3 4 1
4 1 2

, and MB =


22 23 24 25
23 24 25 26
24 25 26 22
25 26 22 23
26 22 23 24

. (12)

Then b1 = 4, b2 = 5, k1 = 3 and k2 = 4; τ1 = 2 and τ2 = 2 are the reconstruction
numbers of A and B, respectively.

Modifying the matrix in Figure 2, as shown in Figures 3 and 4, we obtain a scheme for
which it is no longer possible to reconstruct the secret of the scheme in Figure 4 from just
two players (as was possible in the example in Section 5). In fact, the proceeding section
provides an algorithm for secret reconstruction from this scheme using τ1 + τ2 players.
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22 23 24 25 44 46 48 50 66 69 72 75
23 24 25 26 46 48 50 52 69 72 75 78
24 25 26 22 48 50 52 44 72 75 78 66
25 26 22 23 50 52 44 46 75 78 66 69
26 22 23 24 52 44 46 48 78 66 69 72
44 46 48 50 66 69 72 75 88 92 96 100
46 48 50 52 69 72 75 78 92 96 100 104
48 50 52 44 72 75 78 66 96 100 104 88
50 52 44 46 75 78 66 69 100 104 88 92
52 44 46 48 78 66 69 72 104 88 92 96
66 69 72 75 88 92 96 100 22 23 24 25
69 72 75 78 92 96 100 104 23 24 25 26
72 75 78 66 96 100 104 88 24 25 26 22
75 78 66 69 100 104 88 92 25 26 22 23
78 66 69 72 104 88 92 96 26 22 23 24
88 92 96 100 22 23 24 25 44 46 48 50
92 96 100 104 23 24 25 26 46 48 50 52
96 100 104 88 25 26 22 23 48 50 52 44
100 104 88 92 25 26 22 23 50 52 44 46
104 88 92 96 26 22 23 24 52 44 46 48

Figure 2. The matrix A⊗B is the Krönecker product of A and B as in Equation (12), and is a secret
sharing scheme with reconstruction number 2.

1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0

Figure 3. The matrix N, right-operated as �N on the tensor design A⊗B in Figure 2
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22 0 0 0 0 0 0 50 0 0 72 0
23 0 0 0 46 0 0 0 0 0 0 78
0 25 0 0 48 0 0 0 72 0 0 0
0 0 22 0 0 52 0 0 75 0 0 0
0 0 0 24 0 0 46 0 0 66 0 0
0 0 0 50 0 0 72 0 88 0 0 0

46 0 0 0 0 0 0 78 92 0 0 0
48 0 0 0 72 0 0 0 0 100 0 0
0 52 0 0 75 0 0 0 0 0 88 0
0 0 46 0 0 66 0 0 0 0 0 96
0 0 72 0 88 0 0 0 0 0 0 25
0 0 0 78 92 0 0 0 23 0 0 0

72 0 0 0 0 100 0 0 24 0 0 0
75 0 0 0 0 104 0 0 0 26 0 0
0 66 0 0 0 0 92 0 0 0 23 0

88 0 0 0 0 0 0 25 0 0 48 0
92 0 0 0 23 0 0 0 0 0 0 52
0 100 0 0 25 0 0 0 48 0 0 0
0 0 88 0 0 26 0 0 50 0 0 0
0 0 0 96 0 0 23 0 0 44 0 0

7→

22 50 72
23 46 78
25 48 72
22 52 75
24 46 66
50 72 88
46 78 92
48 72 100
52 75 88
46 66 96
72 88 25
78 92 23
72 100 24
75 104 26
66 92 23
88 25 48
92 23 52

100 25 48
88 26 50
96 23 44

Figure 4. The matrix on the left is (A⊗B)� N, and the one on the right is the share distribution
scheme obtained from this operation, as described in Section 7.1.

7.3. Secret Reconstruction for the Modified Scheme

1. Choose a player Pm
i (which is the ith player in the mth row-block of A⊗ B, or the

((m− 1)b2 + i)th player from the top), for any m ∈ {1, 2, . . . , b1} and i ∈ {1, 2, . . . , b2}.
2. Consider elements amtbij in the share of player Pm

i , i.e., θmt = l and π̃l(i) = j. For such
an element amtbij, set y = bij (note that the value y ∈ {y1, y2, . . . , yv2} is not known,
but the positions at which the matrix B contains elements bî ĵ = y is known).

3. Construct set Sy :=
{

l̂ :
(

π̃ l̂(î) = ĵ
)
∧
(

bî ĵ = y
)}

. By Theorem 6, for a maximal set
Sy (if not, then another value y may be chosen by selecting a different element am′t′bi′ j′ )
the set {

am̂t̂ : am̂t̂bî ĵ ∈ the share of player Pm̂
î such that bî ĵ = y

}
= {x1, x2, . . . , xv1}

is the set of all values in A.
4. Construct matrix A, since the positions of all values x1, x2, . . . , xv1 in this matrix are

now known.
5. Compute bi′ j′ for am′t′bi′ j′ ∈ share of player Pm′

i′ using the known values am′t′ until all
values y1, y2, . . . , yv2 are known.

6. Construct matrix B, since the positions of all values y1, y2, . . . , yv2 in this matrix are
now known.

7. Compute A⊗B from the two known matrices.

Thus, framing any player is not possible for just two other participants, and requires a
much larger coalition.

8. Graphical Representation and Proof of Existence of Permutations
Matching in Bipartite Graphs

Given an undirected graph G, a matching of G is a subgraphM containing all vertices
of G such that each vertex in M has either 0 or 1 edge incident to it. M is a maximal
matching of G if it is not a subgraph of any other matching of G. Thus, adding even one
more edge to a maximal matchingM ensures that it is no longer a matching. The number
of edges in a maximal matching of G is called the matching number of G.
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A perfect matchingM of G is such that each vertex ofM has an edge incident to it.
Furthermore, a vertex cover of a graph G is a subgraph containing all edges of G such that
every edge is incident to at least one vertex in the subgraph, and an edge cover of a graph
G is a subgraph containing all vertices of G such that every vertex has at least one edge
incident to it. Thus, if G has no isolated vertices, then the sum of the number of vertices
in its minimal vertex cover and the number of edges in its minimal edge cover equals the
total number of its vertices.

If the vertex set V of a graph G can be partitioned into two disjoint subsets as
V = A t B such that any edge from a vertex in A can only be incident to a vertex in
B and vice versa, then G is called a bipartite graph. Let us recall some interesting results on
matching in bipartite graphs.

Theorem 4 (König, [12]). In any bipartite graph, the number of edges in a maximum matching
equals the number of vertices in a minimum vertex cover.

Theorem 5 (Hall, [13]). Given a bipartite graph G = (V , E) with V = A t B, G has a matching
of size |A| if and only if for every S ⊆ A we have |N(S)| ≥ |S|, where N(S) = {b ∈ B : ∃ a ∈
S with (a, b) ∈ E}.

Figure 5 shows a bipartite graph for the tensor design.

P V

P1

P2

P3

P4

P5

x1

x2

x3

x4

x5

Figure 5. A bipartite graph for the tensor design B defined in Sect. with 5 players and 5 points. Each
edge (Pi, xj) denotes the inclusion of point xj in the share of player Pi. The collection of red edges
shows one possible maximal matching for the graph.

Definition 3. A bipartite graph G = (V , E) is said to induce a tensor design B if

• the vertex set V = P tV the disjoint union of the set of players P = {P1, . . . , Pb} and the set
of points V = {x1, . . . , xv} of B;

• the edge set is the collection
⋃

i∈[b]
j∈[v]
{(Pi, xj) : xj ∈ share of Pi}.

Theorem 6. Given a bipartite graph G inducing a tensor design B, and given subsets
δ(Pi) ⊆ N(Pi) of size s,

(i) If
⋃

i∈[b] δ(Pi) = V, then reconstruction of the modified scheme (A⊗B)modified is possible.
(ii) If s ≥ 1, then (i) holds.
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Proof. Assuming the usual notations for a tensor design, it is clear that in G,

|N(xj)| = r ∀ xj ∈ V

|N(Pi1 ∩ Pi2)| = λ (13)

From Equation (13) and the inclusion-exclusion principle,

|N({xi1 , . . . , xim})| ≥ m(r− λ)

Since r ≥ λ, Hall’s theorem (Theorem 5) implies G has a matching of size v, i.e.,⋃
i∈[b] δ(Pi) = V. Thus, (i) holds by the reconstruction algorithm in Section 7.3. Now choose

δ(Pi) such that each subset contains at least one point matched with Pi in this matching, so
that (ii) holds. This proves the theorem.

9. Secret Sharing Schemes and the Internet of Things

Secret sharing schemes can be used to distribute the security key amongst numerous
devices in an IoT system, ensuring that no single device has access to the entire key. They
are also lightweight and require less computational power compared to other cryptographic
elements. Additionally, their ability to detect and prevent attacks that attempt to modify
or delete parts of the secret is particularly important in IoT applications where security
is critical.

For example, in a healthcare IoT system, the security of patient data is of utmost
importance. Secret sharing schemes can be used to distribute the patient data amongst
multiple devices, ensuring that no single device has access to the entire data. Ref. [14]
proposes an AI heuristic decision algorithm, utilizing a best-first search (BFS) approach. It
effectively balances energy load and reduces communication overhead in smart healthcare
technologies. The utilization of homomorphic secret sharing in IoT-based e-health applica-
tions provides various advantages in terms of privacy and security. It securely distributes
secret pairs among medical nodes, ensuring the confidentiality of sensitive health data
during transmission and storage within the network. This is achieved by encrypting data
through homomorphic secret sharing, thereby preventing unauthorized access to medical
data. Access to medical records is limited to authorized entities possessing the necessary
secret keys to decrypt and utilize the shared data. Thus, the incorporation of homomorphic
secret sharing adds an extra layer of protection against unauthorized modifications or
alterations to medical records. A generalization of this scheme to multiple levels—possibly
to combine data between different hospitals or chains of healthcare providers, different
states within a country, or even different countries—can be easily achieved through the
Krönecker product of the individual schemes used by each hospital system. The fields
on which these schemes are based provide a perfect foundation for the homomorphism,
which can be easily maintained by the integer ring over which the Krönecker product is
then defined.

A frameproof tensor product of multiple distribution designs can be distinctly useful
for lightweight IoT applications, as it allows for a multi-level or multi-system secret sharing
scheme IoT implementation in a secure and efficient manner, while detecting and prevent-
ing any attempt to modify or delete parts of the secret data. This approach ensures that
even if some levels are compromised, the overall security of the system(s) remains intact.

The wide range of applicability of our generalizations can be further seen in, say, the
management of massive data, such as [15], which proposes a non-interactive approach for
IoT data aggregation that utilizes additive secret sharing, addressing numerous challenges
including privacy concerns, security risks, high communication overhead, and user interac-
tion. The additive secret sharing effectively masks the original data, preventing malicious
analysis by the servers. The scheme also supports offline mobile users, maintains privacy,
and provides efficient algorithms for result verification. However, ref. [15] only splits
the secret between two servers at a time. A frameproof tensor product can be smoothly
applied in this context for connecting a large number of such systems, due to the underlying
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fields over which the secrets are split between servers in individual systems, as well as the
generalized integer ring over which the tensor product is then defined.

Figure 6 shows an application of tensor design in multi-system IoT.

+ =data breach

Figure 6. An application of the tensor product of repairable threshold schemes in multi-system IoT,
where each system (say, a single hospital) may possess a separate RTS for sharing its own secret key,
while multiple systems (say, a chain of hospitals) may share their individual secrets to non-colluding
cloud storage providers through a tensor product of the individual schemes.

10. Conclusions and Future Work

In this paper, we have first generalized the concept of combinatorial RTS and then
improved our secret sharing scheme by producing a frameproof one. We believe our results
can be extended further to an arbitrary number of distribution designs. We also believe
that the Krönecker product of BIBDs can be generalized to t-designs, and all corresponding
results will hold for these. Furthermore, a frameproof modification for the generalized
scheme also remains an open problem.

Furthermore, we have discussed the extensive scope of applicability for our proposed
scheme in a diverse array of IoT contexts. A fascinating avenue for further investigation
entails the examination of specific instances of these applications.
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