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Abstract: With the high flexibility and low cost of the deployment of UAVs, the application of UAV-
assisted data collection has become widespread in the Internet of Things (IoT) systems. Meanwhile,
the age of information (AoI) has been adopted as a key metric to evaluate the quality of the collected
data. Most of the literature generally focuses on minimizing the age of all information. However,
minimizing the overall AoI may lead to high costs and massive energy consumption. In addition, not
all types of data need to be updated highly frequently. In this paper, we consider both the diversity
of different tasks in terms of the data update period and the AoI of the collected sensing information.
An efficient data collection method is proposed to maximize the system utility while ensuring the
freshness of the collected information relative to their respective update periods. This problem is
NP-hard. With the decomposition, we optimize the upload strategy of sensor nodes at each time
slot, as well as the hovering positions and flight speeds of UAVs. Simulation results show that our
method ensures the relative freshness of all information and reduces the time-averaged AoI by 96.5%,
44%, 90.4%, and 26% when the number of UAVs is 1 compared to the corresponding EMA, AOA,
DROA, and DRL-eFresh, respectively.

Keywords: AoI; diversity update period; UAV assisted; data collection

1. Introduction
1.1. Growing Volume of Data Generated by IoT

As indicated by Forbes, in light of the exponential expansion of the Internet of Things
(IoT) and the surge of big data, it is projected that the volume of generated data will reach
an astounding 175 ZB by the year 2025 [1]. This will create enormous opportunities and
challenges for applications in various technical fields, such as smart cities, smart trans-
portation, smart grids, natural disaster monitoring, etc. Various data collection methods
have been proposed to realize effective data collection to cope with the increasing amount
of information.

1.2. Role of UAVs in Data Collection

UAVs have gained significant attention and found numerous applications in data
collection and network coverage expansion because of simple deployment, high mobility,
and low operating costs. UAVs collect data from various locations and transmit them to
the base station (BS) for further processing. Wireless sensor nodes provide timely sensing
data for various applications, including search-and-rescue operations, emergency response,
and disaster monitoring. The fully controllable maneuverability of UAVs allows them
to approach ground equipment and establish a low air-to-ground communication link.
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In the case of a limited ground Internet infrastructure, UAVs can flexibly collect sensing
data from sensor nodes deployed on the ground, save the transmission energy of sensor
nodes, and prolong the lifetime of sensor networks. Integrating UAVs into communication
networks presents a series of challenging design issues, such as UAV functionality, flight
trajectory design, and energy efficiency.

UAVs could act as mobile stations [2] or flying relays [3], providing reliable communi-
cation with small and power-limited terrestrial wireless devices. UAVs could also be used
as mobile edge computing (MEC) servers [4], transforming them into an effective means of
data collection and auxiliary computing. This could reduce the power consumption and
computing burden of IoT devices.

1.3. Importance of Energy Efficiency

Liu et al. in [5] proposed an iterative sensor node association and trajectory planning
strategy for UAVs. Optimizing the trajectory and speed of the UAV can enhance system
performance [6–8]. In [9,10], all the authors studied the development of optimal UAV flight
trajectories based on energy-efficient strategies. Optimizing the flight trajectories of UAVs
can achieve the minimum energy consumption, depending on the flight speed, direction,
and acceleration of UAVs.

The size and weight of UAVs are limited, and their onboard energy constrains their
performance and range. The energy efficiency of UAV-assisted systems is one of the most
important research topics. Zeng et al. in [10] proposed an efficient design to maximize
energy efficiency under the constraints of minimum and maximum velocity and accel-
eration of the UAV. Ahmed et al. in [11] maximized the throughput by optimizing the
trajectory and transmission power of the UAV. In [10,12], the authors considered both the
communication throughput and energy consumption of UAVs and proposed efficient de-
signs to optimize the behavior of UAVs, including speed and hovering position. Samir et al.
in [7] transformed the energy efficiency problem into maximizing the throughput to energy
consumption ratio and addressed the component problem with the Dinkelbach method.

1.4. Freshness of Information

The studies mentioned above meticulously investigated the trajectory optimization of
the UAV and the improvement of the energy efficiency of the system. UAVs enhance the
effectiveness of data collection in IoT systems. Furthermore, there is currently a significant
focus on information freshness in the research community.

The age of information (AoI) has been used as a performance metric to evaluate the
freshness of collected data. AoI measures the elapsed time since the generation of the
last received update. Unlike throughput or latency, which are packet-centric measures,
AoI focuses on the destination node and is better suited for assessing the timeliness of
updates. The vast majority of studies concentrate on obtaining fresh data. In [2,4,5,13–16],
the authors aimed to minimize the average AoI of all tasks to achieve the freshness of the
entire system. In [3,5,12], the authors attempted to estimate the freshness of information
by the concept of peak AoI, as it provides the peak value of the AoI. On the other hand,
in [6,7], the authors focused on the age of overall information.

1.5. Contribution of Our Work

The studies above did not consider the diverse AoI requirements of different tasks.
In particular, users have varying needs across different applications. In some IoT appli-
cations, the status of the sensing target changes rapidly, requiring a high frequency of
data collection and transmission to keep the sensing data up to date. For instance, road
traffic monitoring requires real-time data, updated once every minute, while environmental
monitoring data can be updated less frequently, such as once every hour. Therefore, it is
not necessary to equally reduce the AoI for all tasks. The focus should be on considering
the relative freshness of information to meet the update requirements of different tasks.
Given the diverse AoI requirements of different tasks, optimizing the UAVs’ trajectory
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and flight speed becomes crucial to ensure the relative freshness of information for each
task. Moreover, the flight speed of the UAV is directly linked to energy consumption,
making it essential to strike a balance between maximizing system utility, minimizing
energy consumption, and maintaining the relative freshness of information for various
tasks. Achieving this delicate balance presents a significant challenge.

In this paper, we jointly consider the diverse needs of different tasks for the update
period and the maximization of the amount of data collected by UAVs with the lowest
energy consumption. The main contributions of this paper are as follows:

• We propose an efficient data collection method to ensure the relative freshness of the
sensing data of different tasks rather than blindly minimizing the age of all information.
We consider the data collection for tasks with different update requirements. Not all
types of data require high-frequency updates.

• We propose an algorithm to maximize the system utility. The flight speeds and flight
trajectories of the UAVs at each time slot are optimized. UAVs consume energy
during the movement stage, the data collection stage, and the data transmission stage.
Throughout the process, the objective is to collect more data while minimizing energy
consumption and maintaining the relative freshness of different types of information.

• Our proposed method outperforms the other four methods in terms of average AoI.
Specifically, the proposed method can reduce the time-averaged AoI by 96.5%, 44%,
90.4%, and 26% compared with the counterparts EMA, AOA, DROA, and DRL-eFresh,
respectively, when the number of UAVs is 1. In addition, our proposed method
can achieve the relative freshness of information for the collected sensing data with
different update periods.

The remainder of this paper is organized as follows. Section 2 summarizes the related
works. The system model is described in Section 3. We introduce the problem formula-
tion and propose the iterative optimization algorithm in Section 4. We then discuss the
performance evaluation in Section 5. Finally, the conclusions of the paper are in Section 6.

2. Related Works

This section presents the related works, which consist of UAV-aided communication
and the AoI in IoT systems. Table 1 depicts the comparison of the current work with other
state-of-the-art approaches.

Table 1. Comparison of our method with other state-of-the-art approaches.

Year Reference Main Focus Energy Efficiency Trajectory
Design Security UAV-Swarm AoI

2023 Proposed work Diverse AoI
requirements

√ √ √ √

2023 [9]
Delay-sensitive,

geographical
fairness

√ √ √

2023 [17] Energy recharging
√ √ √

2023 [15] Total average AoI
√ √ √

2022 [18] Real-time
trajectory plan

√ √ √

2022 [19] Security
challenges

√

2022 [20] UAV swarm
control

√
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In recent years, there has been a growing interest in leveraging UAVs as an auxiliary
method for data collection within the IoT domain. Some articles focus on data transmission
in communication. Refs. [3,7] proposed UAV-assisted intelligent systems that can collect
data packets from vehicles. Refs. [2,5] analyzed the communication between UAVs and
ground sensors.

Some studies focused on the energy consumption of UAVs. Zeng et al. in [10] proposed
that the propulsion energy consumption of UAVs is determined by their flight speed and
acceleration. The authors maximized the data transmission rate while minimizing energy
consumption, and energy-efficient systems could be designed. In addition, Yang et al.
in [11] considered the energy efficiency of the system and also optimized the flight trajec-
tory of the UAV. The team jointly considered the UAV throughput and propulsion energy
consumption. The flight path, transmission power, and flight speed of the UAV were
optimized to maximize the throughput. Che et al. in [21] proposed UAV-assisted wire-
less energy transmission and wireless information transmission modes, where the UAV
transmitted wireless information and energy to a low-power terminal. The authors in [18]
proposed a continuous and real-time path planning model and a task allocation model,
where heterogeneous teams of UAVs from different BSs are used to collect readings from
ground sensors and pass these readings to ground sensors.

UAVs are highly susceptible to cyberattacks due to their open operational characteris-
tics, leading to significant security vulnerabilities, including cyberattacks and eavesdrop-
ping on navigation and communication links. Considering the widespread use of UAVs,
the demands for UAV communication security escalated significantly. Military UAVs are
relatively secure, and in [22], the authors proposed a secure UAV communication system
specifically designed for military environments. This system ensures perfect forward se-
crecy, maintains secure UAV-to-UAV (and UAV-to-global control system) communications,
and supports non-repudiation. However, all other UAVs are vulnerable to being hijacked
or misused, similar to any other connected device. In [19], the focus was on the security
challenges related to UAV usage. They aimed to identify the primary types of security
attacks that might target UAVs and explored various countermeasures that could be imple-
mented to address these threats and attacks effectively. The authors in [23] addressed the
issue of secure communication between UAVs and multiple ground users. They proposed
a Q-learning-based approach aimed at maximizing the average secrecy rate (ASR) and
enhancing the overall security of the communication system.

When UAVs operate with a certain level of autonomy, the careful planning of task
execution and resource optimization becomes crucial to achieve specific objectives. In [20],
the authors proposed a UAV swarm communication model for search and rescue appli-
cations, utilizing machine learning methods. They analyzed a dataset comprising five
triangular swarm formations using the K-means clustering method and studied dendro-
grams to identify correct swarm formations. In [24], a UAV swarm model was developed
with a multilevel-based clustering approach. The authors proposed a tree-based multi-stage
scheme employing clustering localization and designed a localization algorithm using a
coalitional game framework to explore the model’s features. In [25], the authors enhanced
the multi-UAV collaborative tasking algorithm by incorporating fuzzy mean (FCM) cluster-
ing and ant colony optimization (ACO) algorithm concepts. Qu et al. in [26] investigated
the challenge of efficient edge intelligence (e-EIC) within a UAV swarm network clustering
context. They focused on jointly optimizing computation resource allocation and UAV
clustering to minimize the total energy consumption of the UAV swarm.

AoI is considered a key performance metric in UAV-assisted IoT systems. Dai et al.
in [9] jointly considered the amount of collected data, geographic fairness, and energy
consumption and utilized data durability to ensure its freshness. In [2], Dai et al. proposed
using MU-MIMO techniques between UAVs and sensor nodes to collect data and minimize
the average AoI, characterizing the freshness of the system.

Furthermore, both [2,9] focused on optimizing the overall AoI of the system. Zhang et al.
in [6] considered the sensing time, transmission time, and UAV path optimization to mini-
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mize the total AoI of the tasks. Liu et al. in [5] defined the sum of data upload time and
UAV flight time for all sensor nodes as AoI and optimized both the peak and average AoI.

However, little research has considered the relative freshness of information from tasks
with diverse update periods. We need to consider not only the diverse needs of different
tasks and the optimization of the flight trajectories and flight speeds of UAVs. In addition,
we need to achieve a trade-off between the energy consumption and the AoI of tasks.

3. System Model

As shown in Figure 1, we consider a UAV-assisted sensing data collection system
consisting of one BS, several UAVs, and multiple sensor nodes. Let N = {1, 2, . . . , N}
andM = {1, 2, . . . , M} denote the set of UAVs and sensor nodes, respectively. UAVs are
scheduled to collect data from sensor nodes and transmit the collected data back to the BS.
The location of each sensor node j ∈ M and the BS is represented by three coordinates as
lsn
j = (xsn

j , ysn
j , 0) and lbs = (xbs, ybs, Hbs), respectively. We consider a time-slotted system

with T = {1, 2, . . . , T}, and the time duration of each time slot is denoted as t f .

Figure 1. UAV-aided sensing data collection system.

We assume that UAVs fly at a fixed altitude H. Then, the UAV trajectory can
be considered two-dimensional movement on the horizontal plane. At each time slot
t, UAV i ∈ N has two stop locations denoted as luav

i,1 (t) = (xuav
i,1 (t), yuav

i,1 (t), H) and
luav
i,2 (t) = (xuav

i,2 (t), yuav
i,2 (t), H), respectively. At the first stop location luav

i,1 (t), UAV i is
arranged to collect data from sensor nodes. At the second stop location luav

i,2 (t), UAV i
transmits the collected data to the BS.

3.1. Channel Models

Channel model between UAV and sensor node: We consider both line-of-sight (LoS) and
non-line-of-sight (NLoS) channels between UAVs and sensor nodes. According to the
channel modeling in [27], the probability that there exists LoS and NLoS link between UAV
i and sensor node j can be expressed as

pj
i,los = (1 + a exp(−b[

180
π

arcsin(
H

dj
i(t)

)− a]))−1 (1)

and
pj

i,nlos = 1− pj
i,los, (2)

respectively, where a and b are environment parameters. dj
i(t) is the distance between UAV

i and sensor node j, which can be expressed as

dj
i(t) = ‖l

uav
i,1 (t)− lsn

j ‖. (3)
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The channel gain for the communication channel between UAV i and sensor node j
can be given as [27]

hj
i(t) =

β0

( 4π fc
c )2(dj

i(t))
2[pj

i,losµlos + pj
i,nlosµnlos]

, (4)

where fc is the UAVs carrier frequency, and c is the speed of light. µlos and µnlos are average
additional losses to free space propagation for LoS and NLoS connections, which depend
on the environment. β0 is the channel gain at the reference distance d0 = 1 m. The data
transmission rate of sensor node j to UAV i is expressed as [28]

Rj
i(t) = Bi log2[1 +

Pj(t)h
j
i(t)

σ2 ], (5)

where Bi is the bandwidth allocated to UAV i, and σ2 denotes the noise power. Pj(t) is the
transmission power of sensor node j.

Channel model between UAV and BS: We consider LoS channels between UAVs and the
BS. Therefore, the channel gain between UAV i and the BS can be expressed as follows [27]:

hbs
uav,i(t) =

β0

( 4π fc
c )2(dbs

uav,i(t))
2

, (6)

where dbs
uav,i(t) is the distance between UAV i and the BS, dbs

uav,i(t) = ‖luav
i,2 (t)− lbs‖. There-

fore, the data transmission rate can be expressed as [28]

Rbs
uav,i(t) = Bi log2[1 +

Pi(t)hbs
uav,i(t)

σ2 ], (7)

where UAV i transmits data and reuses bandwidth Bi. Pi(t) is the transmission power of
UAV i.

3.2. UAVs’ Behavior and Features

At each time slot, UAV i firstly moves to the first stop location to collect data from
sensing nodes within its coverage. Then, with the collected sensing data, UAV i moves
to the second stop location and transmits the collected sensing data to the BS. Therefore,
we divide the behavior of UAV i at each time slot into four stages as shown in Figure 2:
the first movement stage, the data collection stage, the second movement stage, and the data
transmission stage.

Figure 2. UAV i’s behavior at each time slot.

The energy consumption of UAV i consists of three parts: (1) propulsion energy during
two movement stages denoted as Ei,1(t) and Ei,3(t) respectively; (2) hovering energy during
the data collection stage denoted as Ei,2(t); and (3) transmission energy during the data
transmission stage denoted as Ei,4(t). The corresponding energy consumption of UAV i at
each stage is elaborated in detail as follows.

• The first movement stage: Given that UAV i will fly to the first stop location luav
i,1 (t)

with a constant speed vi,1(t), the flight distance is ‖luav
i,1 (t)− luav

i,0 (t)‖, where luav
i,1 (t) and
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luav
i,0 (t) are the first stop location and initial location of UAV i at time slot t, respectively.

So the time duration of the first movement stage is

τi,1(t) =
‖luav

i,1 (t)− luav
i,0 (t)‖

vi,1(t)
. (8)

The propulsion energy consumed by UAV i during the first movement stage can be
expressed as [29]

Ei,1(t) = [s1(1 +
3(vi,1(t))2

(vtip)2 ) + s2(

√
1 +

(vi,1(t))4

4(v0)4 −
(vi,1(t))2

2(v0)2 )
1
2 +

1
2

s3(vi,1(t))3] · τi,1(t), (9)

where s1, s2, s3 are constants corresponding to the blade profile power, derived power,
and air resistance, respectively; vtip represents the tip speed of the rotor blade; and v0
is the mean rotor induced velocity in hovering, a constant for each UAV.

• The data collection stage: At this stage, UAV i hovers at the first stop location luav
i,1 (t)

to collect data from sensor nodes within its coverage. The associated sensor nodes
are scheduled to upload their sensed data to the UAV using multiple access schemes.
In this paper, we apply the time division multiple access (TDMA) scheme, where each
sensor node j performs its current sensing task and packs data into a packet of length
Lj. The corresponding sensor nodes then sequentially upload data to UAV i. Thus,
the data collection time is denoted as

τi,2(t) = ∑
j∈M

αj(t)
Lj

Rj
i(t)

, (10)

αj(t) is the data uploading decision of sensor node j at time slot t.
The energy consumption by UAV i when hovering for data collection can be given
as follows:

Ei,2(t) = P0 × τi,2(t), (11)

where P0 is the hovering power for each UAV.
• The second movement stage: After all data are uploaded, UAV i will fly to the

second stop location luav
i,2 (t) with speed vi,2(t). Location luav

i,2 (t) is determined by the
movement time τi,3(t) and UAV i’s data transmission rate Rbs

uav,i(t), which corresponds
to the distance between UAV i and the BS. The time it takes for UAV i to perform the
second movement is

τi,3(t) =
‖luav

i,2 (t)− luav
i,1 (t)‖

vi,2(t)
. (12)

The propulsion energy consumed by UAV i during the second movement stage can be
expressed as [29]

Ei,3(t) = [s1(1 +
3(vi,2(t))2

(vtip)2 ) + s2(

√
1 +

(vi,2(t))4

4(v0)4 −
(vi,2(t))2

2(v0)2 )
1
2 +

1
2

s3(vi,2(t))3] · τi,3(t). (13)

• The data transmission stage: At this stage, the collected data are transmitted to the
BS. The data transmission time depends on the amount of data and the second stop
location of UAV i. It can be expressed as follows:

τi,4(t) = ∑
j∈M

αj(t)
Lj

Rbs
uav,i(t)

. (14)

The energy consumption by UAV i during the transmission stage can be expressed as

Ei,4(t) = Pi(t)× τi,4(t). (15)
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In summary, when a UAV i ∈ N is arranged to collect data, it either moves or hovers to
complete tasks (e.g., data collection or data transmission), consuming different amounts of
energy. It is important to note that not all UAVs are assigned to collect sensing data during
each time slot. For those UAVs that are not assigned to collect data during a particular time
slot (e.g., UAV 1 in Figure 1), they simply keep hovering with an energy consumption of
P0 × t f , where P0 is the hovering power of each UAV, and t f is the duration of one time slot.

3.3. Diverse AoI Requirements of Tasks

In a smart city, government departments have to collect various types of information
for a wide range of public services. This information includes environmental monitoring
data, traffic information, tourist attractions, the flow of people, parking space informa-
tion, and so on. Users have different update requirements for each type of information.
For example, the parking space availability in the city center may need to be updated more
frequently, such as in intervals of minutes. In contrast, environmental monitoring data
can be updated periodically, such as in intervals of hours. Due to the diverse AoI require-
ments of different types of sensing information, corresponding sensing nodes will generate
sensing data with varying update periods. The update frequency of sensor node j ∈ M is
denoted as λj, and the update period of sensor node j is denoted as νj =

1
λj

. Each sensor
node will generate fresh data periodically, and UAVs will be optimally arranged to collect
the latest data within one update period νj for sensor node j. Otherwise, if the data are
not collected within the update period, the sensor node will generate new data at the next
generation time, and the previous data will become invalid even if they remain uncollected.

In this paper, we propose an efficient scheduling method for sensor nodes to update
their sensing data, ensuring the AoI of the data at the BS side and avoiding the invalidity of
generated data at the sensor node side. Considering the diverse requirements of different
types of information, we optimize the flight trajectories of UAVs to ensure the relative
freshness of information according to the specific needs of tasks.

3.4. AoI Evolution

Most of the literature generally focuses on minimizing the age of all information,
and a strategy that immediately generates new data once it has been transmitted to its
destination can achieve this goal very well. However, minimizing the overall AoI may lead
to high costs and significant energy consumption. Moreover, not all types of data need to
be updated highly frequently. In this paper, we consider both the diversity of different tasks
in terms of the data update period and the AoI of the collected sensing information. We
aim to design an efficient data collection scheme that ensures the freshness of information
relative to their respective update periods. Figure 3 depicts the AoI update process of the
data generated by sensor node j ∈ M. The set of data generation instants is denoted as
Gj = {g1

j , g2
j , . . . , gϕ

j , . . . }, where gϕ
j = (ϕ− 1)× νj + 1, ϕ is the index of data generated by

sensor node j, and νj is the time period of sensing data generation for the sensor node j.
{t1

j , t2
j , . . . } is the set of the transmission instants for sensor node j. For example, for sensor

node j, the data update period νj = 3, the first data generation time is g1
j = 1, and gϕ

j will

update to g2
j = νj + 1 = 4 when the second sensing data are generated.

All data must be transmitted as soon as possible before new data are generated.
Therefore, at time slot t, based on the uploading decision of sensor node j, the AoI for
sensor node j will be updated as

∆j(t + 1) =

{
∆j(t) + 1, αj(t) = 0;
t− gϕ

j + 1, αj(t) = 1.
(16)

As shown in Figure 3, at the time slot t = 4, sensor node j generates its second sensing
data (i.e., g2

j = 4), and it decides not to upload the newly generated data (i.e., αj(t) = 0).
The AoI for sensor node j increases linearly in this time slot since the BS does not receive
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new data updates from sensor node j. Therefore, the corresponding AoI will be updated
to ∆j(t) + 1 at the next time slot t + 1. At the time slot t = 5, sensor node j uploads the
second sensing data with αj(t) = 1. Thus, at the next time slot t + 1, the corresponding
AoI is updated to t− gϕ

j + 1, which is the time interval from the second data generation

instant to the data upload instant plus 1 unit, where gϕ
j and t are the second data generation

instant and transmission instant, respectively, t f = 1 unit is the time interval from the data
transmission instant t to the time slot t + 1, and ϕ = 2. Therefore at time slot t = 6, the AoI
is updated to 2.

Figure 3. Evolution process of the AoI for sensor node j, νj = 3.

3.5. Value Function of the Collected Data

For each task, when a sensor node generates new data, the old data become invalid
if they are not collected by UAVs. In order to collect more valid data, tasks that need to
be updated frequently are more urgent in data collection. At the same time, we aim to
minimize the AoI of all tasks. Therefore, we define that the value of the collected data
depends on two factors: νj and ∆j(t), j ∈ M.

For the sensing data of two tasks with the same update period, the smaller the AoI of
the collected sensing data, the higher the value of the sensing data. Additionally, for a task,
a smaller update period means that it is more urgent to collect the generated sensing data.
Therefore, with the same AoI of the collected sensing data from different tasks, the shorter
its update period νj, the higher the value of the collected data. Based on the aforementioned
features, we define the value of the collected data from sensor node j as

Fj(t) = γ(
ω1

νj
+

ω2

∆j(t)
), (17)

where ω1 and ω2 are parameters used to balance data uploading decisions of sensor nodes
with different update periods, for example, ω1 can be set to a high value when the update
requirements of sensor nodes in the system are more urgent, and vice versa. γ is a scaling
parameter about the value of the collected data.

When αj(t) = 1, sensor node j decides to upload sensing data to a UAV, the UAV
needs to move to and hover above the sensor node j to collect the sensing data, and the
energy consumption during the flight is related to the distance and speed of the flight. As a
result, there is a trade-off between collecting more valid data and minimizing the energy
consumption of the UAV.
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4. Problem Formulation

Considering the value of all collected data and the energy consumption of all UAVs,
we define the system utility function as the value of collected data minus the total energy
consumption of all UAVs, which is described as

U(t) = ∑
i∈N

∑
ck∈C(t)

η
ck
i (t) ∑

j∈ck

αj(t)× Fj(t)− ∑
i∈N

∑
ck∈C(t)

η
ck
i (t)[Ei,1(t) + Ei,2(t)

+ Ei,3(t) + Ei,4(t)]− ∑
i∈N

[1− ∑
ck∈C(t)

η
ck
i (t)]P0 × t f .

(18)

η
ck
i (t) = 1 represents that UAV i is arranged to collect data from sensor nodes of

cluster ck at time slot t. ck denotes one cluster which covers several sensor nodes. At each
time slot t, the cluster set C(t) = {c1, c2, . . . , ck, . . . }, ∀ck ∈ C(t) is divided according to the
upload decisions of sensor nodes, and the details are discussed in Section 4.2. When UAV i
is not arranged to collect any sensing data (i.e., it will keep hovering at its current location),
we have ∑ck∈C(t) η

ck
i (t) = 0.

Our objective is to maximize the system utility given in (18) while satisfying different
data freshness requirements during the whole sensing period. There exists a trade-off
between collecting more valuable data and consuming less energy. Therefore, we optimize
the UAVs trajectories, the UAVs flight speeds, and the sensor nodes’ upload decisions with
the constraints of diverse AoI requirements. We formulate the whole problem as follows:

P1 : max
α,η,luav ,v

U(t) (19)

s.t. τi,1(t) + τi,2(t) + τi,3(t) + τi,4(t) = t f , ∀i ∈ N , (19a)

αi,j(t) ∈ {0, 1}, ∀i ∈ N , ∀j ∈ M,

αj(t) ∈ {0, 1}, ∀j ∈ M, (19b)

∑
i∈N

η
ck
i (t) ∈ {0, 1}, (19c)

∑
ck∈C(t)

η
ck
i (t) ∈ {0, 1}, (19d)

lim
T→∞

1
T

T

∑
t=0

∆j(t) ≤ νj, ∀j ∈ M, (19e)

vmin ≤ vi,1(t) ≤ vmax, ∀i ∈ N ,

vmin ≤ vi,2(t) ≤ vmax, ∀i ∈ N . (19f)

The constraint (19a) indicates that each UAV must perform the four stages within
a time slot. At time slot t, the data upload decision αj(t), ∀j ∈ M and the UAV cluster-
matching decision η

ck
i (t), ∀i ∈ N , ∀ck ∈ C(t) are integer variables in (19b–19d). Sensor

node j can only upload data to one UAV at a time, denoted as αj(t) = ∑i∈N αi,j(t) ≤ 1.
In case UAV i is arranged to collect data from sensor node j, it is denoted as αi,j(t) = 1;
otherwise, αi,j(t) = 0. Therefore, we need to optimize the location of UAVs and try to avoid
overlapping coverage of UAVs. The time to collect data τi,2(t), the time to transmit data
τi,4(t), the movement time τi,1(t) and τi,3(t) are non-integer variables no less than zero
as are vi,1(t) and vi,2(t), the flying velocities of UAV i. The speeds of UAVs during the two
movement stages cannot exceed the limit in (19f). In order to maintain the freshness of
the information, the average AoI cannot exceed the update period of each sensor node as
in (19e). The flight speed and flight trajectory require optimal decision making at each time
slot. The optimization problem P1 becomes complicated and intractable when all these
variables are coupled at each time slot.

Therefore, we decompose problem P1 into two sub-problems P2 and P3. As shown
in Figure 4, in problem P2, we solve the upload decision of sensor nodes given the initial
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location and flight speed of UAVs. Then, we determine the flight trajectory and flight speed
of UAVs in problem P3, according to the obtained uploading decision of sensor nodes:

P2 : max
α

U(t)

s.t. (19b, 19e).
(20)

P3 : max
η,luav ,v

U(t)

s.t. (19a, 19c, 19d, 19f).
(21)

Problem P3 is also difficult to solve directly since the variables are complicated. We
then decouple problem P3 into two sub-problems P4 and P5. P4 is to determine the first
stop location of UAVs and the matching outcome η while maximizing system utility;
the matching algorithm is used to solve this problem. Then we solve the UAVs speed
v1, v2 and the second stop location in problem P5, which is a convex optimization problem.
At last, we perform P2 and P3 iteratively to obtain the solution.

Figure 4. Algorithm flowchart of the system optimization problem P1.

4.1. Data Collection Optimization

The data collection optimization problem P2 is to solve the uploading decision of
sensor nodes as follows:

P2 : max
α

U(t)

s.t. (19b, 19e).
(22)

With distinct requirements for data freshness, each sensor node updates its sensing
data with a different update period. To ensure the relative freshness of different types
of information, the average AoI must not exceed the update period of sensing data for
each sensor node, which is the time-average constraint given in (19e). To address this, we
employ Lyapunov optimization [30] and first construct the dynamic virtual queue Qj(t),
representing the relative update period increment of the AoI for sensor node j at time slot t:

Qj(t + 1) = max{Qj(t) + ∆j(t)− νj, 0}, (23)

where ∆j(t) is the AoI for sensor node j at time slot t, and νj is the time interval between suc-
cessive data generated at sensor node j. The larger the difference between them, the lower
the freshness of the collected data.

Then, we construct the Lyapunov function denoted as L(t) = 1
2 Q(t)2. In order to

keep the virtual queue Q(t) rate stable at each time slot, the Lyapunov drift [30] should be
minimized as follows:
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min ∆L(t) =
1
2 ∑

j∈M
[Qj(t + 1)2 −Qj(t)2]

=
1
2 ∑

j∈M
[max{Qj(t) + ∆j(t)− νj, 0}2 −Qj(t)2]

=
1
2 ∑

j∈M
[max{Qj(t) + (1− αj(t))(∆j(t) + 1) + αj(t)(t− gϕ

j + 1)− νj, 0}2 −Qj(t)2].

(24)

Our objective is to maximize system utility while ensuring the average AoI constraint
in (19e). As the flight speed and the stop location of UAVs are known, we can calculate
the energy consumption during the two movement stages of UAVs. Consequently, we
only need to focus on energy consumption during the stages of data collection and data
transmission. Therefore, at each time slot, our aim is to minimize the Lyapunov drift minus
the system utility [30], which can be expressed as follows:

∆L(t)− χ ∑
j∈M

αj(t)[Fj(t)− P0
Lj

Rj
i(t)
− Pi(t)

Lj

Rbs
uav,i(t)

]

≤W + ∑
j∈M

[Qj(t) + ∆j(t) + 1− νj][t− gϕ
j − ∆j(t)]αj(t)

+ χ[P0 ∑
j∈M

Lj

Rj
i(t)

+ ∑
j∈M

Pi(t)
Lj

Rbs
uav,i(t)

− Fj(t)]αj(t).

(25)

χ is a control parameter for a trade-off between the queue length of the AoI relative
increment and the system utility. W is a constant. We assume that UAV i collects data from
sensor node j at time slot t.

Theorem 1. At time slot t, given UAV i’s stop location and flight speed, namely luav
i,1 (t), luav

i,2 (t),
vi,1(t), and vi,2(t), the optimal uploading decision αj(t) is given as

αj(t) =

1, Qj(t) ≤ χ[Fj(t)− P0
Lj

Rj
i(t)
− Pi(t)

Lj

Rbs
uav,i(t)

](t− gϕ
j − ∆j(t))−1 − ∆j(t)− 1 + νj;

0, else.
(26)

Proof of Theorem 1. To minimize the drift minus utility, we need to find the upper bound
of the right side of inequality (25). If the virtual queue length Qj(t) is no more than

χ[Fj(t)− P0
Lj

Rj
i(t)
− Pi(t)

Lj

Rbs
uav,i(t)

](t− gϕ
j − ∆j(t))−1 − ∆j(t)− 1 + νj, this means the relative

AoI increment of sensor node j is larger, and the urgency of the next data update of sensor
node j is much higher. Otherwise, αj(t) = 0.

4.2. UAV and Cluster Matching Problem

After all sensor nodes decide whether to upload data at time slot t, we cluster all
sensor nodes with αj(t) = 1 using the K-means clustering method [31]. This divides
all sensor nodes with αj(t) = 1 into several clusters. The cluster set is denoted as
C(t) = {c1, c2, . . . , ck, . . . }, where each ck ∈ C(t) includes several sensor nodes. At each
time slot, the sensing data from sensor nodes in one cluster are collected by one UAV.
Problem P4 aims to solve the arrangement of the first stop location of UAVs to efficiently
collect the sensing data for different clusters:

P4 : max
η

U(t)

s.t. (19c, 19d).
(27)
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Since the decision of each sensor node is determined, the problem of maximizing the
system utility can be transformed into the problem of minimizing energy consumption.
That is, the problem P4 is equivalent to the following problem:

min
η

E(t) = ∑
i∈N

η
ck
i (t)[Ei,1(t) + Ei,2(t) + Ei,3(t) + Ei,4(t)]− ∑

i∈N
[1− ∑

ck∈C(t)
η

ck
i (t)]P0 × t f

s.t. (19c, 19d).
(28)

We apply a one-to-one matching algorithm [32] to solve this problem. With a set of
clusters composed of different sensor nodes and a set of UAVs N , our objective is to decide
the outcome of the one-to-one matching between the set of clusters and the set of UAVs,
denoted as the matching pair set κ = {(i, ck), . . . }, i ∈ N , ck ∈ C(t).

The one-to-one matching of UAVs and clusters is the result of the first stopping
locations of UAVs. UAV i will match with, at most, one of the clusters at each time slot,
or fail to match, which means that UAV i keeps hovering at its location in this time slot.
If UAV i does not match any cluster, the matching pair is denoted as (i, c0), where c0 denotes
the unmatched state of each UAV. Cluster ck will also match, at most, one UAV, or fail to
match, which means that no UAV will go over to cluster ck to collect data at this time slot,
corresponding to constraint (19c,19d).

Let Vi(ck) denotes the utility function of UAV i and the cluster ck, which is given as

Vi(ck) =η
ck
i (t)[Ei,1(t) + Ei,2(t) + Ei,3(t) + Ei,4(t)] + [1− η

ck
i (t)]P0 × t f ,

∀ck ∈ C(t), ∀i ∈ N .
(29)

According to the utility function, at each time slot, each UAV can choose one cluster
that is most willing to match or stay in place, and the cluster can find the most preferred
UAV to pair with. Algorithm 1 gives the detailed process to solve η(t) and matching pair set
κ. At the beginning, we compute the utility of all UAVs and clusters. Next, for each i ∈ N ,
we find the UAV i’s preferred cluster ck from the set C†(t) based on (29); C†(t) is equivalent
to the cluster set C(t). Then, for the cluster ck, when it is successfully matched with UAV
i, UAV i will move to cluster ck for data collection at time slot t, and η

ck
i (t) = 1. Then we

remove UAV i from the set N and remove ck from C(t). If cluster ck is not successfully
matched with UAV i, we will delete cluster ck from the set C†(t); UAV i continues to match
with the other clusters in the set C†(t) until this set is empty. UAVs that are not successfully
matched will stay in place.

Algorithm 1 UAV cluster-matching algorithm

1: Compute the utility of all UAVs and clusters based on (29);
2: Matching pair set κ ← ∅, η

ck
i (t) = 0, ∀i ∈ N , ∀ck ∈ C(t);

3: for each UAV i ∈ N do
4: C†(t) = C(t)
5: while C†(t) 6= ∅ do
6: ck = argmax{Vi(ck), ck ∈ C†(t)};
7: ρ = argmax{Vi(ck), i ∈ N};
8: if ρ = i then
9: η

ck
i (t) = 1, κ ← (i, ck);

10: Delete ck from C(t), Delete i from N ;
11: break;
12: else
13: Delete ck from C†(t),
14: end if
15: end while
16: end for
17: return Matching pair set κ and η(t).
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4.3. UAV Trajectory and Speed Optimization

At time slot t, we obtain the upload decision α(t) for sensor nodes and the matching
variable η(t) for UAVs and sensor clusters. With these determined parameters, the flight
speed and flight trajectory of UAVs at each time slot can be solved in the problem P5:

P5 : max
luav ,v

U(t)

s.t. (19a, 19f).
(30)

Since the uploaded decision and matching variable are already determined, we trans-
form the objective function of problem P5 into minimizing the energy consumption of
UAVs with four stages:

min
luav ,v

E2(t) = ∑
i∈N

∑
ck∈C(t)

η
ck
i (t)[Ei,1(t) + Ei,2(t) + Ei,3(t) + Ei,4(t)]

s.t. (19a, 19f).
(31)

It can be proved that the function E2(t) is a convex function [33] and the variables v1
and v2 can be solved with the CVX solver. The energy consumption function E2(vi,1, vi,2)
of UAV i is expressed as follows:

E2(vi,1, vi,2) = Ei,1(t) + Ei,2(t) + Ei,3(t) + Ei,4(t)

=[s1(1 +
3(vi,1(t))2

(vtip)2 ) + s2(

√
1 +

(vi,1(t))4

4(v0)4 −
(vi,1(t))2

2(v0)2 )
1
2 +

1
2

s3(vi,1(t))3] · τi,1(t) + P0 × τi,2(t)

+ Pi × τi,4(t) + [s1(1 +
3(vi,2(t))2

(vtip)2 ) + s2(

√
1 +

(vi,2(t))4

4(v0)4 −
(vi,2(t))2

2(v0)2 )
1
2 +

1
2

s3(vi,2(t))3] · τi,3(t)

s.t. τi,1(t) + τi,2(t) + τi,3(t) + τi,4(t) = t f ,

vmin ≤ vi,1(t) ≤ vmax,

vmin ≤ vi,2(t) ≤ vmax.

(32)

Since τi,2(t) and τi,4(t) are determined, E2(vi,1, vi,2) is the function with respect to
variables vi,1 and vi,2.

Theorem 2. The function E2(vi,1, vi,2) is a convex function with respect to vi,1, vi,2.

Proof of Theorem 2.

∂E2

∂vi,1
= 3

s1

(vtip)2 + s3vi,1 +
s2(vi,1)

2

[(

√
1 + (vi,1)4

4(v0)4 −
(vi,1)2

2(v0)2 )(1 +
(vi,1)4

4(v0)4 )]
1
2 4(v0)4

− s2

(

√
1 + (vi,1)4

4(v0)4 −
(vi,1)2

2(v0)2 )
1
2 2(v0)2

−
s2(

√
1 + (vi,1)4

4(v0)4 −
(vi,1)

2

2(v0)2 )
1
2 + s1

(vi,1)2 .

(33)
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∂2

∂vi,1∂vi,1
E2 = s3 +

s2

2(v0)4[(

√
1 + (vi,1)4

4(v0)4 −
(vi,1)2

2(v0)2 )(1 +
(vi,1)4

4(v0)4 )]
1
2

+
s2(vi,1)

3

8(v0)8(

√
1 + (vi,1)4

4(v0)4 −
(vi,1)2

2(v0)2 )
1
2 (1 + (vi,1)4

4(v0)4 )
3
2

s2

(

√
1 + (vi,1)4

4(v0)4 −
(vi,1)2

2(v0)2 )
1
2

[
(vi,1)

3

4(v0)4(1 + (vi,1)4

4(v0)4 )
1
2

− 1
2(v0)2 ][

1
2(v0)2 −

(vi,1)
2

4(v0)4(1 + (vi,1)4

4(v0)4 )
1
2

− 1
(vi,1)2 ] +

2s2(

√
1 + (vi,1)4

4(v0)4 −
(vi,1)

2

2(v0)2 )
1
2

(vi,1)3 +
2s1

(vi,1)3 .

(34)

∂2

∂vi,1∂vi,2
E2 = 0,

∂2

∂vi,2∂vi,1
E2 = 0. (35)

The energy consumption function E2(vi,1, vi,2) of UAV i is a function with respect
to two variables vi,1 and vi,2 with the range [vmin, vmax]. The function E2(vi,1, vi,2) has
continuous second derivatives on the definition domain, and ∂2

∂vi,2∂vi,2
E2 gives the similar

result as in (34).
The second-order partial derivative matrix of the function E2 is denoted as follows [33]:

H =

 ∂2

∂vi,1∂vi,1
E2

∂2

∂vi,1∂vi,2
E2

∂2

∂vi,2∂vi,1
E2

∂2

∂vi,2∂vi,2
E2

 ≥ 0. (36)

For (vi,1, vi,2) and (vo,1, vo,2), ∀i, o ∈ N , and 0 ≤ θ ≤ 1, the following inequality is
held [33]:

E2(θvi,1 + (1− θ)vo,1, θvi,2 + (1− θ)vo,2) ≤ θE2(vi,1, vi,2) + (1− θ)E2(vo,1, vo,2). (37)

The first-order derivative of the function E2 exists and is continuous, and the second-
order derivative exists and is semi-positive definite. We demonstrate that the problem P5 is
a convex optimization problem. Therefore, the flight speeds vi,1, vi,2 of UAV i can be solved
by convex optimization. The second stopping location luav

i,2 of UAV i can be determined by
the flight speeds vi,1, vi,2 and movement time τi,1, τi,3 of UAV i.

4.4. Iteration Algorithm

We propose the Algorithm 2 to solve the upload decision α(t) of the sensor nodes,
the trajectories luav

1 (t), luav
2 (t), and the flight speeds v1(t), v2(t) of UAVs at time slot t.

For the first iteration with n = 1, the problem P1 is decoupled into two sub-problems: P2
and P3. In P2, we know the initial flight speeds v0

1 and v0
2 of UAVs, which allows us to solve

the uploading strategy α1. Efficient data upload decision for sensor nodes with different
update requirements can be achieved using Lyapunov optimization while ensuring the
relative AoI for each task.
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Algorithm 2 Optimal diversified demands algorithm (ODDA)

1: Input: Q(t), ∆(t)
2: Output: luav

1 (t), luav
2 (t), U(t);

3: Initialize v0
1, v0

2, E0, luav,0
1 , luav,0

2 ;
4: n = 1;
5: while

∣∣En − En−1
∣∣ ≥ ε and n ≤ nmax do

6: Determine the uploading decision αn by Lyapunov optimization;
7: Determine the clusters Cn for all sensor nodes with αn = 1;
8: Perform Algorithm 1 to obtain the matching pair set κ and the first stop location

luav,n
1 of UAVs;

9: Perform convex optimization to obtain flight speed vn
1 , vn

2 and the second stop loca-
tion luav,n

2 of UAVs;
10: Compute the energy consumption En with (28);
11: n = n + 1;
12: end while
13: Update the AoI ∆(t + 1) with (16);
14: Update the queue Q(t + 1) with (23);
15: Compute the system utility U(t) with (18).

Next, we further decouple the problem P3 into problem P4 and problem P5. Based on
the determined upload decision αn, all sensor nodes with αn = 1 are clustered, and each
cluster may serve as the first stop location of UAVs in P4. Notably, each UAV can cover
at most one cluster, and sensor nodes in each cluster can upload data to, at most, one
UAV. Therefore, by using a one-to-one matching algorithm, we can determine the first stop
locations luav,n1 of UAVs. Subsequently, with the first stop locations of UAVs, the value of
the collected data, and the time consumed to upload the data to UAVs, we can transform
problem P5 into a convex optimization problem aiming to minimize the energy consump-
tion of UAVs. Solving this convex optimization problem yields the flight speeds vn

1 and vn
2 ,

as well as the second stopping locations of UAVs luav,n2.
The first iteration is then completed, and we proceed with subsequent iterations until

the difference in energy consumption En of UAVs between two consecutive iterations is
less than the given threshold ε, or the number of iterations exceeds the maximum specified
number of iterations nmax. At that point, the iteration terminates, and we move on to the
next time slot t + 1.

5. Performance Evaluation

In this section, we present simulation results to demonstrate the performance of our
proposed method ODDA. We consider a UAV-assisted sensing data collection system
that consists of one BS, N UAVs, and M sensor nodes. The sensor nodes are randomly
distributed in a rectangular area with a length of 20 km and a width of 15 km. The whole
sensing time is divided into T = 1000 time slots. Other parameters are listed in Table 2.

Figure 5 depicts the average AoI versus different weights ω1, where the number of
UAVs and the sensor nodes are set as N = 2 and M = 10, respectively. Each of the ten
sensor nodes has a data update period of either 3 or 8. ν = 3 represents the sensor node
that requires a higher frequency of information updates, and ν = 8 represents the sensor
node that requires a lesser frequency of updates. It is observed that with the increase in
ω1, the shorter average AoI can be achieved. We define the average AoI as the ratio of
the sum of the information ages of the corresponding sensor nodes to the total time slot
T. Meanwhile, the average AoI for sensor nodes with short update periods (e.g., ν = 3) is
smaller than the average AoI for sensor nodes with long update periods (e.g., ν = 8) since
we consider the relative AoI for sensor nodes with different update periods, rather than
blindly minimizing the age of all information. With the same value of ω1, the average AoI
of the sensor node gradually decreases as the weight ω2 increases for sensor nodes with
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ν = 3 or ν = 8. Meanwhile, it is also observed that ω1 has more significant impacts on the
sensor node with a shorter data update period (e.g., ν = 3).

Table 2. Simulation parameter.

Designation Notation Value

The maximal UAV flight velocity vmax 20 m/s
The minimal UAV flight velocity vmin 5 m/s

The UAV flight height H 50 m
Time duration of each time slot t f 150 s
Transmission power of UAV i Pi 0.1 watt

Carrier frequency fc 2 GHz
Noise power σ2 −110 dBm

The speed of light c 3× 108 m/s
The channel gain at d0 = 1 m β0 −60 dB

Average additional loss of LoS link µlos 1 dB
Average additional loss of NLoS link µnlos 10 dB

Environment constants a, b 10, 0.3
System bandwidth allocate to UAV i Bi 10 MHz

The data packet length L 1 Mbits
Data update period of sensor nodes ν 1∼8

Figure 5. Average AoI versus different weight ω1.

To further demonstrate the achieved AoI with respect to the corresponding sensing
data update period, we define the relative AoI as the ratio of the achieved average AoI
to the update period of the corresponding sensing data denoted as ∆/ν. Figure 6 depicts
∆/ν for sensor nodes with ν = 3 versus different values of the weight ω2 for different
sets of the weight ω1. It is observed that the relative AoI decreases with the increase in
ω2. In addition, with the same value of ω2, the relative AoI decreases with increases in ω1.
This is because increasing ω1 enhances the importance of sensor nodes with a short update
period, resulting in faster data collection and consequently lower relative AoI for sensor
nodes with an update period ν = 3.
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Figure 6. Relative AoI versus different weight ω2, ν = 3.

Figure 7 shows the convergence of relative AoI for sensor nodes with different update
periods. We set the update periods for six sensor nodes as ν ∈ {2, 3, 4, 5, 6, 8}, indicating
that the AoI requirements vary across sensor nodes. It is observed that the relative AoI
gradually converges to a constant value. It is also observed that the relative AoI ∆/ν for
each sensor node is less than 1, demonstrating that our proposed method ensures the
relative freshness of information from sensor nodes with various update periods.

Figure 7. The convergence of the relative AoI under time slot t.

Figure 8 demonstrates the algorithm convergence with different settings of M (i.e., the
number of sensor nodes). It is observed that the system utility can quickly converge to a
stable value in different settings.
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Figure 8. The algorithm convergence with different settings of M.

We then compare the performance of our proposed method with the following
four methods:

(1) Age optimal algorithm (AOA): Based on our proposed method, at each time slot t, we
consider a strategy in that sensing data are collected as early as possible after their
generation, aiming to minimize the AoI of all sensor nodes without considering the
diversity of sensor nodes’ update periods. In computing F(t), we omit the effect of ω1.
Other parameters are set in the same way as in our method.

(2) Diverse requirement optimal algorithm (DROA): Based on our proposed method,
at each time slot t, we consider a strategy that only focuses on the diversity of sensor
nodes’ update periods. It does not take into account the overall system’s AoI. The effect
of weight ω2 is omitted. Other parameters are set in the same way as in our method.

(3) Energy minimizing algorithm (EMA): Based on our proposed method, at each time
slot t, we consider a strategy that focuses on minimizing the energy consumption
of UAVs. It disregards the overall system’s AoI and the diversity of sensor nodes’
update periods. We do not consider the effect of data values. The effects of ω1 and
ω2 are ignored. The objective function is to minimize energy consumption. The other
parameters are set in the same way as in our method.

(4) DRL-eFresh [8]: DRL-eFresh guarantees data freshness by setting a deadline in each
time slot, aiming to maximize the collected data amount and geographical fairness
without considering the diversity of the sensor nodes’ update periods.

Figure 9 depicts the average AoI versus different numbers of UAVs, where the number
of sensor nodes is set as M = 10. The number of sensor nodes is set to 10, which assumes
that when the number of UAVs is 4, it is possible for all UAVs to cover all sensor nodes
through scheduling. It is observed that our proposed method ODDA can achieve a shorter
average AoI compared with the other four methods. EMA focuses solely on minimizing
energy consumption, disregarding the timeliness of information. DROA only considers the
urgency of different types of data to ensure timeliness by prioritizing frequently updated
data while neglecting the less frequently updated data. It is observed that DROA and EMA
perform much worse than our proposed ODDA, AOA, and DRL-eFresh when the number
of UAVs is 1. AOA aims to reduce the age of all information but overlooks the varying
urgency levels of different types of sensing data. DRL-eFresh focuses on the collected
data amount and geographical fairness but neglects the different levels of data urgency
requirements. With the increase in the number of UAVs, the average AoI reduces due to the
increased flexibility of the UAVs’ operation, which allows for more dynamic and efficient
data collection.
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Figure 9. Average AoI versus different numbers of UAVs.

Figure 10 depicts the achieved system utility versus different numbers of UAVs.
It is observed that our proposed method ODDA outperforms the other four methods.
Specifically, our proposed method can improve the system utility by 714%, 47%, 124%,
and 1088% with the setting of 2 UAVs compared to EMA, AOA, DROA, and DRL-eFresh,
respectively. It is also observed the system utility with our proposed method increases at
first, then decreases with the increasing numbers of UAVs. The change in the number of
UAVs will have impacts on both the number of data collected and the energy consumption
of UAVs. On the one hand, increasing the number of UAVs leads to an increase in the
amount of collected sensing data, which can positively impact the system’s utility. On the
other hand, increasing the number of UAVs results in an increase in the energy consumption
of UAVs. In the beginning, the positive impacts outweigh the negative impacts of the
increasing energy consumption, leading to an increase in the achieved system utility.
Gradually, however, the increase in energy consumption starts to outweigh the benefits of
collecting more data. Consequently, the system utility tends to decrease. Thus, employing
a larger number of UAVs may not be the most efficient approach in terms of system
utility performance.

Figure 10. System utility versus different numbers of UAVs.
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In different application scenarios, the requirements for data freshness can vary. In
Figure 11, we consider four scenarios with different percentages of urgent sensing data:
{20%, 40%, 60%, 80%}, where we set the data update period for urgent demand as ν ∈ {1, 2, 3}
and the number of sensor nodes as M = 5, and νj, j ∈ {1, 2, 3, 4, 5} denotes the data update
period of sensor node j. It can be observed in Figure 11 that the average AoI increases with
the increase in the sensor node’s update period. Specifically, the first sensor node with
the most urgent update period achieves the shortest AoI, while the 5th sensor node with
the longest update period obtains the longest AoI. This is due to the consideration of the
relative freshness of sensor nodes at different update periods. As the percentage of urgent
data increases, the average AoI for the sensor node with a large update period (e.g., ν5 = 8)
also increases. This is because higher priority is put on the urgent data.

(a) (b)

(c) (d)
Figure 11. Average AoI versus different urgent data percentages: (a) Urgent data percentage = 20%.
(b) Urgent data percentage = 40%. (c) Urgent data percentage = 60%. (d) Urgent data percentage = 80%.

Figures 12 and 13 depict the average AoI and system utility versus the percentage of
data with urgent requirements, respectively. It is observed that our method ODDA can
achieve the smallest average AoI among the five methods. As the percentage of sensing data
with urgent update requirements increases, more sensor nodes update their sensing data
faster, leading to a higher frequency of collecting sensing data. Consequently, the average
AoI decreases, and the system utility increases.
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Figure 12. Average AoI versus the percentage of urgent data.

Figure 13. System utility versus the percentage of urgent data.

Figure 14 shows the average AoI with three scenarios (denoted as multi-type, urgent
type, and moderate type). In the smart city, the multi-type scenario includes diverse types
of sensor nodes with the update periods ranging from ν ∈ [1, 8]. The urgent-type scenario
emphasizes relatively urgent update requirements, with the update periods for all sensor
nodes set in the range of ν ∈ [1, 3]. For example, traffic monitoring and public safety
require real-time data collection for timely decision making and response to emergencies.
In the moderate-type scenario, the update periods of all sensor nodes are relatively lenient,
with the update periods set in the range of ν ∈ [6, 8]. Applications such as environmental
monitoring, for example, where data can be updated less frequently, can follow a certain
cycle of data collection. It is observed that our proposed method ODDA outperforms the
other four counterparts in all three scenarios. Specifically, in the urgent-type scenario, our
method can achieve average AoI reductions of 56%, 40%, 34%, and 26% compared to EMA,
AOA, DROA, and DRL-eFresh, respectively. It is also observed that the achieved average
AoI is the smallest in the urgent-type scenario and the largest in the moderate-type scenario.
More sensor nodes update their sensing data faster in the urgent-type scenario, leading to
a higher frequency of collecting sensing data.
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Figure 14. Average AoI versus different application scenarios.

Our method employs an efficient data collection strategy to meet various information
updating requirements. By monitoring the data update period and timeliness requirements
of different tasks, we can flexibly adjust the task execution order and path planning of
UAVs in each time slot based on the urgency and priority of different tasks. For tasks with
relatively urgent update requirements, UAVs can be prioritized for data collection and
transmission to ensure timely data transmission. On the other hand, for tasks with lenient
update requirements, data collection can be scheduled for subsequent time periods, thereby
reducing system energy consumption and improving overall efficiency.

Figure 15 illustrates the relative AoI for sensor nodes with different update periods,
where the update periods of sensor nodes 1 to 5 are set as 2, 3, 5, 6, and 7, respectively.
The result clearly demonstrates the superior performance of our method compared to
the other four methods in terms of the relative AoI of each sensor node. Our method
ensures that the relative information freshness ∆/ν of each sensor node remains below 1,
rather than simply minimizing the overall AoI for the system. This highlights its ability to
outperform other methods for tasks with different update requirements.

Figure 15. Relative AoI for sensor nodes with different update periods.
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Figure 16 shows the average AoI versus the maximum flight speeds of UAVs, where
the maximum flight speeds of UAVs are set as vmax ∈ {16, 20, 25, 30}. Evidently, our
proposed method ODDA outperforms the other four methods. By increasing the maximum
UAV flight speed and implementing a scheduling strategy that optimizes data collection,
more data can be efficiently collected, resulting in a notable decrease in the average AoI.

Figure 16. Average AoI versus the maximum flight speed of UAVs.

Figure 17 shows the system utility versus the maximum flight speeds of UAVs. It is
observed that our proposed method ODDA outperforms the other four methods. The max-
imum UAV flight speed is increased, and our method enables us to optimize both the
data collection scheduling and UAV flight speed, resulting in an enhanced system utility.
However, the system utility of the other four methods diminishes with rising maximum
flight speeds, as higher UAV energy consumption leads to reduced system utility.

Figure 17. System utility versus the maximum flight speed of UAVs.

6. Conclusions

In this paper, we consider both the diversity of different tasks in terms of the data
update periods and the AoI of the collected sensing information in the UAV-assisted
sensing data collection system. We propose an efficient data collection method that takes
advantage of the high flexibility and low cost of the deployment of UAVs to maximize
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the system utility while ensuring the freshness of the collected information relative to
their respective update periods. Then, we propose an algorithm to solve the proposed
optimization problem and optimize the data upload strategy of sensor nodes, and the
hovering locations and flight speeds of UAVs.

The simulation results demonstrate that the proposed method outperforms the other
four counterparts in terms of the achieved average AoI when the number of UAVs is 1.
And our method outperforms the other four methods in terms of the relative AoI for sensor
nodes with different update periods.
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