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Abstract: The smart manufacturing ecosystem enhances the end-to-end efficiency of the mine-to-
market lifecycle to create the value chain using the big data generated rapidly by edge computing
devices, third-party technologies, and various stakeholders connected via the industrial Internet of
things. In this context, smart manufacturing faces two serious challenges to its industrial IoT big
data integrity: real-time transaction monitoring and peer validation due to the volume and velocity
dimensions of big data in industrial IoT infrastructures. Modern blockchain technologies as an
embedded layer substantially address these challenges to empower the capabilities of the IIoT layer
to meet the integrity requirements of the big data layer. This paper presents the trusted consortium
blockchain (TCB) framework to provide an optimal solution for big data integrity through a secure and
verifiable hyperledger fabric modular (HFM). The TCB leverages trustworthiness in heterogeneous
IIoT networks of governing end-point peers to achieve strong integrity for big data and support
high transaction throughput and low latency of HFM contents. Our proposed framework drives the
fault-tolerant properties and consensus protocols to monitor malicious activities of tunable peers
if compromised and validates the signed evidence of big data recorded in real-time HFM operated
over different smart manufacturing environments. Experimentally, the TCB has been evaluated
and reached tradeoff results of throughput and latency better than the comparative consortium
blockchain frameworks.

Keywords: IIoT; big data; blockchain; integrity; smart manufacturing; cybersecurity; Industry 4.0

1. Introduction

One of the fourth industrial revolution goals aims to shift manufacturing paradigms
from automation to smartness due to the vast demand for quality, productivity, safety,
efficiency, sustainability, and reliability in various industrial domains [1]. The deep-seated
Industry 4.0 transformation is to integrate the industrial Internet of things capabilities into
operations and production environments to foster interconnectivity, improve real-time
monitoring, and empower control [2].

Since decades ago, automated manufacturing has evolved from monolithic proprietary
systems to decentralized smart systems. It swiftly embraces the industrial Internet of things
(IIoT) to collect big data at an ever-increasing rate from smart objects and monitored
systems [3]. IIoT technologies provide sharper computing speed, advanced big data
analytic capabilities, and cost-effective maintenance of proactively and remotely industrial
infrastructures, leading to valuable business results [4].

In the industrial IoT era, big data integrity is the fundamental requirement of successful
smart manufacturing that transformed from passively monitoring and controlling processes
to improving overall operational effectiveness, acquiring big data in real-time, immediately
accessing analysis outputs, and enabling on-the-spot actions anytime and anywhere [5].
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Regularly, the big data of smart manufacturing is extracted, captured, and aggregated
from different origins of smart industrial objects connected via IIoT networks at high
speed with huge size to move through multiple manipulations, analysis, and interpretation
processes stack along the integration cycle ended with greater outcomes [6].

These large-scale data are exchanged autonomously among machines, usually suffer-
ing from integrity issues when attacked or compromised during transmission from sources
until they reach their destinations. Big data corruption leads to incorrect industrial controls
and, therefore, improper engines of decision-making that cause a significant threat to the
whole manufacturing value [7].

Industrial big data integrity is a serious concern for smart manufacturing. First, it is a
substitute for industrial improvement and business profit and influences the national econ-
omy [8]. The latter is a research domain that implies more investment in digital technologies,
modern concepts, and innovative methods to manage the v-dimensions constellation of the
industrial IoT big data wisely and efficiently, practically volume and velocity.

The volume dimension, the foundation of big data, refers to the initial size and quantity
of data collected. It is defined as massive data sets constantly being generated. In the
industrial environment, it is not mainly created by human interactions but also by machines,
networks, and smart objects, resulting in an enormous volume of data being analyzed [9].

The other dimension is the high-velocity data, such as IIoT sensor data streams, that
have a high rate at which new data is generated and flows in from various sources for
made available for analysis in real-time using data processing methods. With the vast and
continuous growth, this real-time data is effectively managed to deliver more insight; thus,
more value is created faster in smart manufacturing [10].

Nevertheless, the high architectural complexity of both dimensions presents a barrier
for industrial environments to harness and analyze all the IIoT big data that is gathered.
Handling the volume and velocity is challenging to address issues related to the potential
of big data integrity [11].

Despite its multidimensional complexity, ensuring integrity automatically creates a
clear path showing how big data has been used over time and its origins and becomes
much easier and more reliable. Additionally, using suitable solutions, tracking down the
single block of big data, and diverting significant industrial resources to sidestep all the
disturbances to fulfill subject access requests without disrupting the big data pipeline [12].
At the same time, the (CIA) triad forms the foundation of data security and denotes the
three primary pillars: confidentiality, integrity, and availability. Confidentiality indicates
protecting against unauthorized disclosure of sensitive data. Integrity means ensuring
that data cannot be tampered with or modified without authorization. Availability implies
safeguarding authorized access to the data when needed [13].

As a second pillar of the above security triad, IIoT big data integrity interrelates with
concepts of trustworthiness, consensual understanding, and appropriateness for use. It
is determined by the originality of the data, the responsibility of the data source, and the
standardization of the data usage [14].

The impacts of big data integrity improve the overall productivity of smart manufac-
turing through connected edge computing devices, industrial technologies, and diverse
participants based on IIoT. However, there are challenges in ensuring the integrity of these
data. One solution is to use blockchain technology to address these challenges and secure
big data integrity [15].

In the course of this research, the trusted consortium blockchain (TCB) benefits from
a secure and verifiable hyperledger fabric modular (HFM) to leverage trustworthiness in
heterogeneous IIoT networks and guarantee the integrity of big data with high transaction
throughput and low latency [16]. The proposed framework also has the ability to monitor
and validate big data recorded in real-time, and experiments have shown that it performs
better than other comparable blockchain frameworks.
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2. Background
2.1. Smart Manufacturing Ecosystem

A smart manufacturing ecosystem has three overlapped perspectives: a smart factory,
a digital thread, and a value chain. The smart factory perspective lines up with the purposes
of the industrial internet of things, while the digital thread perspective is associated with
the objectives of model-based manufacturing. Additionally, the value chain perspective
supports the aims of the connected organization [17].

All these perspectives have substantial components that intersect in one focal part:
operations management. Such a component orchestrates resource allocation, optimizes
production processes alongside engineering specifications, and delivers a real-time flow of
big data to improve supply chain functionality, as illustrated in Figure 1.
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Figure 1. Smart manufacturing ecosystem.

At a glance, the components of the smart factory perspective include business intel-
ligence to obtain cyclic updates of gathered big data for business goals and performance
metrics. Connected enterprise systems to maintain real-time synchronization over big data
interactions with used resources, the status of the production processes, and manufactured
products [18].

The smart controllers and OT-IT bridge operations technology and information tech-
nology by exchanging big data immediately between systems and machines to help ease
supervision, inspection, and maintenance duties. The final component presents the interac-
tions of smart devices and the workforce via integrated systems and structured communi-
cations feeding simultaneous big data of production processing status [19].

In the second perspective, the digital thread components involve specifications and
product service management. The specifications management fabricates product variations,
process configurations, and engineering practices [20]. Meanwhile, product service man-
agement maintains the product lifecycle with big data gathered from process performance,
adaptations, and substitution of products.
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The third perspective is value chain management, which focuses on customers, compli-
ance, resources, and suppliers. Customer management explores the needs and expectations
of stakeholders regarding product requirements, orders in process, and change requests
approval. The compliance management component provides institutional guidelines,
administrates auditing, and monitors performance internally and externally [21].

Furthermore, resource management keeps the equipment and systems up and run-
ning based on vital capabilities and technical configurations. Last, supplier management
identifies and establishes the supply chain to coordinate partners and sustain an acceptable
level of quality [22].

2.2. Big Data Integrity

Big data integrity necessitates attaining the key principles of attributable, legible, con-
temporaneous, original, and accurate (ALCOA). Big data attributes reveal who and when
it is observed and recorded, while legibility indicates an easy permanent understanding of
the initial preserved big data [16].

The contemporary principle ensures that the big data is recorded as extracted and
executed. The original form of the big data should also be sustained and accessible. Lastly,
big data is considered accurate if it conforms to the protocols and is error-free, as depicted
in Figure 2.
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On the other hand, managing physical and logical types of big data integrity entails
understanding the overall methods that enforce ALCOA principles in big data sets relation-
ally and hierarchically. Hence, physical integrity keeps the stored and retrieved big data
unchanged against several kinds of disasters, especially natural ones [23].

In contrast, logical integrity protects big data from being compromised by intentional
or unintentional actions of humans. It is separated into four categories: entity integrity,
referential integrity, domain integrity, and peer-defined integrity.

Entity integrity depends on creating unique values as the primary keys to identifying
big data pieces to ensure they are not recorded more than once in various relational
systems [18]. Next, referential integrity concerns the rules and constraints embedded into
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structured big data to eliminate duplicate entries, occur proper changes, and guarantee
that it is stored accurately and used uniformly.

As well, domain integrity is a set of acceptable measures and controls applied to each
piece of big data to confirm the accuracy, limit the format, filter the type, and check the
number of values allowed to be recorded in a particular domain [19].

At last, peer-defined integrity comprises the procedures and restrictions designed by
the stakeholders to meet their precise prospects. However, these categories of logical in-
tegrity, in addition to physical integrity, must be considered and encompassed to safeguard
big data integrity [24].

The outer shell in Figure 2 shows big data quality and security aspects, which play
crucial roles incorporated with big data integrity to achieve optimum big data analytics and
reach smart manufacturing goals. Big data security employs cohesive packages of systems,
methods, and measures that protect big data from unauthorized access and prevent it from
being corrupted over time.

In turn, big data quality moves further by encompassing an assortment of tasks and
practices to govern the reliability, relevance, completeness, and maturity of collected, stored,
and transferred big data [21].

2.3. IIoT Trust Styles

IIoT is the core pillar in Industry 4.0 that integrates industrial operations and infor-
mation technologies to connect heterogeneouscyber–physical objects and communication
protocols in the context of smart manufacturing. Thus, realizing, processing, and exchang-
ing IIoT big data in real-time between machine-to-machine networks and business decisions
saves capital expenditures and production expenses [25].

Although industrial data is critical to boosting smart manufacturing operations, three
aspects influence the IIoT big data integrity, including the growing number of industrial
things incessantly, storing and analyzing big data in a decentralization manner simultane-
ously, and end devices mobility with unstable interlinks in IIoT environments [23].

Based on that, trust among peers across IIoT systems is undoubtedly the most signifi-
cant factor in securing big data integrity against complicated malicious activities depending
on several indirect and non-measurable parameters.

However, IIoT trustworthiness is the combination of operational technology (OT) and
information technology (IT). Additionally, it splits into five trust-based styles: behavior-
based trust, computation-based trust, reputation-based trust, honesty-based trust, and
accuracy-based trust, as shown in Figure 3.

IoT 2023, 4, FOR PEER REVIEW 5 
 

 

The outer shell in Figure 2 shows big data quality and security aspects, which play 
crucial roles incorporated with big data integrity to achieve optimum big data analytics 
and reach smart manufacturing goals. Big data security employs cohesive packages of 
systems, methods, and measures that protect big data from unauthorized access and pre-
vent it from being corrupted over time.  

In turn, big data quality moves further by encompassing an assortment of tasks and 
practices to govern the reliability, relevance, completeness, and maturity of collected, 
stored, and transferred big data [21]. 

2.3. IIoT Trust Styles 
IIoT is the core pillar in Industry 4.0 that integrates industrial operations and infor-

mation technologies to connect heterogeneouscyber–physical objects and communication 
protocols in the context of smart manufacturing. Thus, realizing, processing, and exchang-
ing IIoT big data in real-time between machine-to-machine networks and business deci-
sions saves capital expenditures and production expenses [25]. 

Although industrial data is critical to boosting smart manufacturing operations, three 
aspects influence the IIoT big data integrity, including the growing number of industrial 
things incessantly, storing and analyzing big data in a decentralization manner simulta-
neously, and end devices mobility with unstable interlinks in IIoT environments [23]. 

Based on that, trust among peers across IIoT systems is undoubtedly the most signif-
icant factor in securing big data integrity against complicated malicious activities depend-
ing on several indirect and non-measurable parameters.  

However, IIoT trustworthiness is the combination of operational technology (OT) 
and information technology (IT). Additionally, it splits into five trust-based styles: behav-
ior-based trust, computation-based trust, reputation-based trust, honesty-based trust, and 
accuracy-based trust, as shown in Figure 3. 

The first style of IIoT trust is based on the expected behavior of peers in the industrial 
network. This style considers the state of any peer has trustworthiness if it behaves as 
anticipated, even if its predictable behavior is not constant over time [24]. 

Secondly, computation-based trust is provided by technology from side-to-side com-
putational techniques. It evaluates trustworthiness among IIoT devices within computing 
proximity and peer group interactions. 

Thirdly, reputation-based trust is the accepted status of one peer on the basis of mu-
tual IIoT big data from other peers in the entire network. This joint IIoT big data builds on 
a permutation of current observations and the historical statuses of the peers within a 
definite time and particular IIoT environment [25]. 

 
Figure 3. IIoT trust styles. Figure 3. IIoT trust styles.



IoT 2023, 4 32

The first style of IIoT trust is based on the expected behavior of peers in the industrial
network. This style considers the state of any peer has trustworthiness if it behaves as
anticipated, even if its predictable behavior is not constant over time [24].

Secondly, computation-based trust is provided by technology from side-to-side com-
putational techniques. It evaluates trustworthiness among IIoT devices within computing
proximity and peer group interactions.

Thirdly, reputation-based trust is the accepted status of one peer on the basis of mutual
IIoT big data from other peers in the entire network. This joint IIoT big data builds on a
permutation of current observations and the historical statuses of the peers within a definite
time and particular IIoT environment [25].

The fourth IIoT trust style is the honesty-based trust concluded evaluation of peer
recommendations. Suppose industrial big data acknowledged from any peer matches
expectations within a given temporal time or spatial situation; as a result, the recommender
is considered an honest peer [26].

The last style is accuracy-based trust. This style designates IIoT big data integrity
throughout industrial networks with limited resources. Peers could be accurate if their
actual big data deployed at various locations of the heterogeneous IIoT environments lies
within strict thresholds of trustworthiness [27].

2.4. Consortium Blockchain Stack

Blockchain is generally a decentralized peer-to-peer network that provides a shared
ledger with continuous growth. The transactions of peers are chained jointly to create a
block of records. Every peer in blockchain technology has a couple of public and private
keys for contracting and confirming transactions [28].

The hash algorithm of Cryptographic SHA-512 is regularly applied to produce the
hash values from the public key as the identity for each peer. The peers in the blockchain
network run decentralized consensus algorithms to grant added transaction order validity
over the blockchain ledger [29].

The first block of such a ledger, called the genesis, is developed by random transactions
that are embedded and hard-coded into the blockchain system. Each block in the chain has
two parts: upper and lower. The upper is the header, and the lower is the body.

The block header stores the cryptographic root hashes of the timestamp, the nonce,
and the version to link the recent and prior blocks concurrently and build a secure chain of
blocks. The block body comprises a list of executed transactions [30].

Typically, there are four distinct types of blockchain technologies. (1) Public blockchain
is a permissionless process with no central authority. (2) Private blockchain is a per-
missioned process controlled by one authority. (3) Hybrid blockchain is a permission-
less process controlled by one authority, blending critical elements of public and private
blockchains. (4) Consortium blockchain is a semi-public and semi-private process con-
trolled by a pre-selected group of equivalently permissioned peers [31].

The consortium blockchain eliminates the single-point vulnerability of the private
blockchain depending on the decentralized network of multiple peers in trust of consensus
for decision-making. Since carefully selected peers are permissible to authorize transactions,
motivations are unnecessary for this kind of network, unlike in the public blockchain [32].

More precisely, the pre-selected group of peers in the consortium blockchain benefits
from the public blockchain in facets of scalability and efficiency in parallel with permitting
monitoring and central safeguarding, partially similar to the private blockchain [33].

Upon that, the hyper ledger fabric as a consortium blockchain application is designed
to fit the requirements of collaborating peers exploiting the consortium blockchain to
improve the smart manufacturing ecosystem. The consensus peers of the consortium group
are identified and reputable; consequently, malicious peers will be prohibited from joining
the consortium network easily [34].

As demonstrated in Figure 4, the consortium blockchain stack has four levels ascending
from the bottom level of IIoT big data to the top level of application, passing by consensus



IoT 2023, 4 33

and contract levels, respectively. At the level of IIoT big data, the significant computations
of the original big data-intensive and critical time are integrated with the physical edges
of smart manufacturing processes. The captured big data from the smart controllers is
considered the industrial big data source of the consortium blockchain [35].
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The consortium blockchain stack continues to accomplish the consensus level by
synchronizing the semi-public and semi-private consensus states for the group of peers,
publishing industrial big data that demands to be scoped globally, and thus making local
decisions for peer-to-peer networking to achieve the resiliency of the smart manufacturing
environments [36].

At the contract level, the mapped consensus operations are implemented into the
smart contracts that execute on a consortium blockchain to utilize the smart manufacturing
services and resources. The decentralized methods dynamically organize smart contracts
to settle smart manufacturing tasks.

Finally, the application level encapsulates the smart contracts to the programming
manufacturing resources to assist the peers in decision-making regarding the programming
manufacturing services [37].

3. The Research Gap

Industrial big data has great power to form significant value from smart manufac-
turing ecosystems in the present and future. The combination of the giant volume and
high velocity of big data captured and extracted from overabundant origins with exces-
sive, erroneous, and diverse levels of importance becomes more complicated along the
essential analysis cycle, and it is inversely proportional to developing valuable insights
into industrial big data [38].

Accordingly, the IIoT big data integrity challenges are associated with the volume and
velocity dimensions of the big data domain in IIoT critical infrastructures. These challenges
are divided into twofold: real-time transaction monitoring through data processing and
peer validation at the destination of this process [39].

The challenge of real-time transaction monitoring for big data integrity stems from
using the same infrastructure for big data analytics simultaneously with real-time transac-
tion monitoring. However, the related security objects generate many false positives and
alerts that require additional analysis since big data has been treated across several process
phases [40].



IoT 2023, 4 34

The monitoring process continuously tracks and analyzes transactions in big data
streams to secure their integrity. It adds automatically detects anomalies, suspicious
patterns, and potential security risks. It also quickly identifies and responds to threats to
protect against tampering, replication or transfer, or error checking [41].

Maintaining accuracy and consistency over a real-time monitoring lifecycle is crucial
for preventing compromised big data from leading to profound losses. Securing big data
integrity depends on protecting the industrial infrastructures and using comprehensive
sight to improve the security of other systems. It is not sufficient to avert compromised big
data at the originating process but conserved all over the entire process in place at high
speeds [42].

Continuous transaction monitoring is a challenge that necessity be addressed. How-
ever, it causes several alerts and false positives that require further analysis. As the volume
and velocity of big data increase, real-time monitoring problems also escalate because the
processing sequence of big data is not followed or treatments are not properly or fully com-
pleted. It is hindered even when the process sequencing is respected but when malicious
activities are involved in big data treatments [43]. In this manner, it is not adequate to set
security controls to prevent corrupted big data from being transferred at the beginning
stages of the data processing. The volume and velocity dimensions of big data crossing the
protection rules and mechanisms of IIoT infrastructures need to leverage its integrity to be
well-maintained and assured at every data process stage [41].

On the other hand, the challenge of the peer validation for big data integrity is not
relevant to the large-scale data, but the loss of control and uncertain provenance throughout
big data sources when the data creates. In this sense, the big data gathering phase is the
initial input for data validation to ensure that the input source is not malicious to avoid
fabricated or modified data from mingling with integrated ones [42].

Data validation is focused on both a state and a process, where data validation as a
state means a big data set that is accurate. As a process, it mentions measures employed
to confirm the accuracy of big data. It is essential for several reasons: recoverability,
traceability, connectivity, stability, and reusability [42].

Still, it must go through various changes and processes to be useful for identifying
relationships and making informed decisions. Effective enterprise security protocols in-
clude data integrity practices to ensure the validity and accuracy of data [43]. The input
validation and filtering mechanism check the trustworthiness of big data origins and what
the peer is responsible for. The overall score is computed and assigned to each big data
provenance indicating the degree of big data trustworthiness. Based on the input score, the
data is delivered to the next peer or rejected if it is insufficient [44].

Moreover, filtering malicious inputs is essential to prepare pure big data for the
following data processing steps at each end-point across edge devices in the industrial
internet of things to manage sound decisions related to the trusted peers where big data
integrity is guaranteed [42].

The trusted peers validate all transactions; hence, peers are responsible for executing
transactions by receiving requests and forwarding them to other peers for validation. A
malicious peer executes the hijacked request against the consortium network, signs the
response, and sends it back to the initial peer. The malicious responses are chronologically
embedded into the transactions chain and channel-based big data block creation [45].

Each peer validates these transactions in the big data block and, holding a copy, if they
are valid, adds the block to the local chain. The malicious peer has owned a copy of the big
data block or hosted the entire local chain. Conversely, the peers’ consensus among all big
data blocks validates the transactions. Once validation is complete, all blocks receive an
updated chain form [46].

4. Related Works

Many works studied more than a few aspects of the main technologies forming core
layers of the blockchain-enabled IIoT big data in smart manufacturing. Nonetheless, limited
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papers have been published dealing with issues securing big data integrity for industrial
IoT using blockchain ledgers.

The next paragraphs briefly overview the previous research contributions presented
on this paper topic as well as suggested approaches and technologies dealing with research
gaps. The related works below have dissented into parts; the first part emphasizes the
prior proposals to tackle the real-time monitoring challenge, and the second one states the
exploration efforts to cope with the peer validation challenge [47].

For the first challenge, a number of the latest studies in [43–45] suggest well-organized
designs of consortium blockchain based on modifications of Byzantine agreements [46,47]
without offering big data integrity guarantees for the reason that they are designed for
a closed network of trusted peers using a primary backup replication scheme to ensure
fault tolerance. However, more or fewer proposals leveraged zero-knowledge protocols
to withhold ‘transactions’ content [48], which involve expensive procedures for operating
protocol and frequently trust an unattractive setup to bootstrap these protocols.

Moreover, the author of [49] revealed additional issues of big data integrity that were
limited to specific technologies that did not have a holistic solution to improve efficiency
and allow peers to share replicas with others in the network. As well, a selection of
consortium blockchain projects in [50,51] does not address big data integrity, even though
others [52,53] provide big data integrity with low performance comparatively. However, it
tolerates decentralized control of a network of peers, where a separate security controls
each peer. It uses a voting mechanism to reach a consensus.

Furthermore, consortium ledgers were proposed in the research performed by Refs. [54–56]
depend on consensus protocols of Byzantine fault-tolerant for ordering the blockchain
transactions. Hyperledgers in [57,58] uses practical Byzantine fault tolerance variants,
which do not recall the algorithm of operating replications and, therefore, cannot appoint
responsibility. This consensus mechanism combines small sets of delegates elected to
validate transactions and reach a consensus.

The researchers [59] use the DiemBFT consensus protocol to secure the Diem blockchain
established on HotStuff [60] and remove some attributes of big data integrity. In compari-
son, DiemBFT, based on the Tendermint consensus algorithm, is designed to be fast and
more efficient. Alike, the Byzantine consensus in the works of [61,62] distributes trust
among peers, while recent works on Byzantine fault-tolerant protocols focused on particu-
lar use cases to improve performance. One potential critique in [63,64] is that DiemBFT is a
closed system, meaning that only authorized peers can validate transactions on the network,
which could be less decentralized and more susceptible to censorship and manipulation
than open networks. Additionally, it is still a new protocol and has not been tested wildly,
so it is hard to handle large-scale transactions. Scalable Byzantine fault tolerance offers
in [65] scale the peer replicas via a cryptography threshold to prevent big data manipu-
lation during transmission via traditional voting, mechanisms to achieve consensus, and
building big data blocks for various blockchains constructed on a decentralized consortium.
Nevertheless, scaling to peer replicas typically deprives of increasing the blockchain scope,
nor does it arbitrarily boost trustworthiness between heterogeneous peers [66].

Other papers have discovered misbehavior-based trust and its impact on IIoT big data
integrity, such as the BFT2F protocol [67], which formalizes security and aliveness integrity
after peers are compromised. However, it is insufficient because of susceptibility to dual
spending cyberattacks.

Similarly, [68,69] issues an optional protocol after detecting accuracy-based trust, but
it implements eventual big data integrity incompatible with consortium ledgers. It does
not have the same level of security and big data integrity as a public ledger because the
consensus mechanism used by consortium ledgers is typically centered on a smaller group
of peers, which increases the consequence of a single point of failure or a malicious peer.

Correspondingly, the study in [70] prevents primary honesty-based trust from con-
trolling the requests ordering of peers group. It did not address the multiple scenarios of
honesty-based trust in one or two cases.
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For the second challenge, the findings of [71] ensure that decentralized peers remain
accountable for their transactions. It sustains high levels of overhead when utilized in
a consortium ledger. It ensures the big data integrity of decentralized environments
that all consortium peers agree on the state of this network, even in the presence of
malicious or faulty peers. In contrast, [72] introduces procedures limited to Byzantine fault-
tolerant for peer state replication and consortium ledger to improve the regular execution
of transactions integrity. A consortium ledger is controlled by a group of pre-selected
and trusted peers rather than being an open network. The combination of Byzantine fault
tolerance and a consortium ledger improves the big data integrity of transactions so that all
trusted peers reach a consensus within the consortium network.

Virtual peer accountability projected in [73] accomplishes integrity via checkpoints,
although it has equal overhead performance, as [74] refers to the practice of holding oneself
accountable to a peer group in goal setting. In SNP [75], a particular network implements
peer accountability, recommending attribution of decisions for routing transactions. Such
implementations progress the performance in specific areas merely were not precisely
appropriate to consortium ledger.

Prosecutors [76] and BAR [77] incentivize peers to proceed with honesty-based trust
by penalizing dishonest peers. The prosecutor model handles incentives to enhance perfor-
mance, while BAR allows tolerance of three times faulty peers. Both mechanisms create
a powerful deterrent for dishonesty. Peers in place are more likely to act honestly and
transparently to avoid isolation. Conversely, peers did not improve the big data integrity
when the incentives failed.

It enforces peers to proceed with honesty-based trust by penalizing dishonest peers.
This approach creates a mechanism that encourages participants to be truthful and trans-
parent in their actions. Additionally, it is placed on peers to complete their obligations
honestly, and if any peer is found malicious, the peer is isolated [77].

Consortium accountability in [78,79] without behavior-based trust has been discussed
before polygraph [80] and BFT protocol forensics [81] which proposition a consortium
ledger for big data integrity mechanism but However, this assumption is based on the
belief that those with a lower reputation in the trust system are not concerned about
switching to a different peer group. These approaches propose various mechanisms for
ensuring the integrity of big data in a consortium ledger, but they also have limitations.
One limitation of polygraph testing is that it is inaccurate and produces false positive or
negative results. Moreover, it is easily manipulated to rely solely on results in forensic
investigations [82].

BFT protocol is limited to a high degree of trust among the network’s peers, which is
difficult to achieve in practice. Additionally, it is slow and inefficient, making it less suitable
for high-performance consortium networks. Tendermint [83] is used in blockchain systems
to ensure that all nodes in the network agree on the same data. However, it requires high
trust among the validators’ peers in the network, which is challenging, especially since it is
not always very efficient in performance and is slow in certain conditions.

The other consensus algorithm is zero-lag BFT (ZLB) [84]. It combines the charac-
teristics of BFT and a directed acyclic graph (DAG) to achieve faster and more efficient
consensus. ZLB is restricted to relatively new and untested in large-scale industrial environ-
ments, making assessing its long-term reliability complex. ZLB requires many validators’
peers to achieve its optimal performance. Tendermint and ZLB boost changes to the peer
group; however, they act lesser than peers in the computation-based trust.

5. The Proposed Solution

In accordance with the given context above, the authors in this paper present a novel
solution for bridging the research gap of IIoT big data integrity in smart manufacturing
by coping with real-time transaction monitoring and peer validation challenges. The
scope of the research contribution of this study is included developing, implementing, and
evaluating the performance of the trusted consortium blockchain (TCB) framework.
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As a proposed solution, the TCB is a decentralized trustworthiness framework that
provides high-level security of industrial big data integrity for non-privileged peers and
controls auditable computing over IIoT heterogeneous environments. It powers the hyper-
ledger fabric modular (HFM) to achieve governance across a voting-based consensus and
attain significant throughput and low latency performance.

5.1. TCB Framework Design and Development

The conceptual design of the TCB framework outlines three integrated layers consist-
ing of the consortium blockchain layer wrapped with industrial IoT and big data layers
to secure big data integrity. Each layer forked into seven integrated components. These
components interact interoperability with a particular set of key functions to construct a
trusted consortium blockchain framework.

As exemplified in Figure 5, the bottom layer of the TCB framework is the industrial
IoT layer which involves core components: the IIoT equipment connector, IIoT device
controller, IIoT unit communicator, IIoT edge transformer, IIoT big data accumulator, IIoT
big data abstractor, and IIoT big data loader.

Alike, the middle layer of the proposed framework is the consortium blockchain
layer which includes fundamental components: the CB store, CB provider, CB encoder, CB
adaptor, CB controller, CB wrapper, and CB verifier. As well, the upper layer of the TCB
framework is the big data layer which contains essential components: the BD access control
enforcer, BD retriever, BD integrity detector, BD splitter, BD reconstructor, and BD integrity
tracker. The following subsections show the extensive details of every component in the
TCB framework layers.

5.1.1. Industrial IoT Layer

(1) IIoT Equipment Connector: it establishes populated connections for industrial equip-
ment, such as robots and remote actuators, with the required information. The
associated facility sensors link targeted equipment to specific access points via field
bus protocols. After granting access, industrial data collected from several pieces of
equipment are metered and synchronized with pre-configured parameters.

(2) IIoT Device Controller: it controls all IIoT big data produced by industrial equipment
and manufacturing modulus and flows various devices, such as servo meters, em-
bedded chips, PLC/PIDs, DCS, and CNC. Moreover, the control bus monitors the
real-time data in unique source-based identification so that any part of industrial data
is observed individually within a decentralized environment.

(3) IIoT Unit Communicator: it provides an intermediary transmission to join physical
controllers and computational edge transformers throughout 5G base stations and
gateway nodes with high throughput. The RTUs bond between industrial data
generated and broadcasted and handle communications using the M2M bus among
decentralized devices over vast manufacturing areas to efficiently concentrate small
levels of real-time data processing and transmit to central IIoT hubs.

(4) IIoT Edge Transformer: it leverages the I/O senescing of smart edges attached to
industrial equipment with rapid response time because of the low latency capturing
and handling big data locally across IIoT hubs. The AMQP/MQTT servers acquired
real-time data streams from various smart edges and standardized them to optimize
the analysis of different security risks. Additionally, the OPC DA/UA servers are
monitored the industrial data geographically for secure transmission depending on
closing computing to the smart edges that produce the big data.

(5) IIoT Big Data Accumulator: it delivers industrial data from storage nodes to the big
data lake for initial pre-processing stages. The storage nodes module simultaneously
supports multiple assemblies within the IIoT space, converts partially structured
big data into fully structured ones through secure extraction techniques, and sends
the processed big data into distinctive chunks. The big data lake achieves filtration,
metadata reasoning, and fusing based on locale-time-sensitive.
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(6) IIoT Big Data Abstractor: it supports local big data aggregation acquired from het-
erogeneous manufactured sources and renders efficient real-time data with minimal
delay by the substantial number of interoperability events within smart edges. It
also manages quality levels of raw industrial data by trimming faulty, incomplete
and duplicate big data to minimize the required resources and utilize the limited
processing and transmitting capabilities.

(7) IIoT Big Data Loader: it boosts the structured industrial data in historian reposito-
ries to improve rational big data computation and enhances decentralized loading
capabilities. Afterward, the MES/MOM servers raise the readiness of abstracted
IIoT big data by indexing, transferring, and storing the queries and responses among
interconnected smart edges for loading directly to the consortium blockchain store in
the middle layer of the TCB framework.

5.1.2. Consortium Blockchain Layer

(1) CB Store: it stores designated big data fetched from historian repositories into decen-
tralized storages and manages trusted access to them through the account authority
rules. Moreover, it organizes the clean, complete, and error-free industrial data
into small well-structured blocks with contextual metadata such as space, time, and
location to detect big data integrity faults early.

(2) CB Provider: it encapsulates designated big data into a hyperledger fabric modular
(HFM) using testing and tran–chain interfaces. The testing interface receives main big
data blocks from decentralized storage, constructs metadata mapping, and composers
blocks structure in agreed formats. At the same time, the tran–chain interface detects
and analyzes dual transactions to discover the malicious blocks. Both interfaces
worked under the standardized policies of the contract governor to identify the
correlation and control the chained big data blocks.

(3) CB Encoder: it provides the fundamental requirements of formulating an encryption
consensus in addition to customizing the standard contracts to run the consortium
blockchain entry functions of given industrial data. Contract unifiers support these
functions to normalize the peer-to-peer overlay networks. The contract testers also
assess the encrypted blocks during peer consensus to identify errors and avoid vul-
nerabilities that lead to high exploits.

(4) CB Adapter: it comprises diverse consortium blockchain interactions and builds cohe-
sive capabilities for the chain–chain interoperability, including a registration chain,
relay chain, and trans-gateway chain maintained by the trans-backbone chain. The
standard API and tasks engine work together on the consortium blockchain to deliver
essential adaptation to the cross-peer chain over the manufactured environments.

(5) CB Controller: it employs identify manager to characterize the chains of industrial
data blocks and discard the out-of-context ones. Likewise, the transactions manager
ensures fast transmission via measuring time series and geolocations of peer chains.
The data composers ordered assorted chains of big data blocks corresponding to the
volume, speed, and period of chain creation to be ready for representation throughout
big data interfaces.

(6) CB Wrapper: it provides a participated multi-chain governor for registration, relay,
and trans-gateway chains from the beginning of resources management to the end
with permissions management and passing-by tasks management. These three critical
mechanisms encompass concurrent focal points to administer the encryption peer
consensus and big data integrity.

(7) CB Verifier: it is a verification triad that jointly encompasses peers, credentials, and
records verification. Verifying peers checks the structure of peering acting as a linking
status. Thus, the verification of credentials confirms consortium consensus modeling.
Additionally, verifying records proves the core consistency of in-line chains and off-
chains of the big data blocks before enforcing them within access control in the upper
layer of the TCB framework.
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Figure 5. Architecture diagram of the trusted consortium blockchain (TCB) framework. Figure 5. Architecture diagram of the trusted consortium blockchain (TCB) framework.
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5.1.3. Big Data Layer

(1) BD Access Control Enforcer: it is responsible for creating authenticity and authority
between the big data owners and consortium peers. The authority creator enforces
access control policies to all big data requests based on acceptable privileges granted
to consortium peers. The big data owners seek and apply authorization rules afforded
by the authenticity provider. Afterward, the big data integrity auditing logs are
performed on the hyperledger fabric modular (HFM), and the big data blocks charge
in the consortium blockchain.

(2) BD Retriever: it retrieves the processed trained big data sets related to the requested
big data blocks from the consortium blockchain using the retrieval processing. The
features extractor merges and treats the integrity qualities of these blocks. Then, the
retrieved blocks from big data contents are subject to a visualization course in order
to prepare them for handling with the mechanisms of the big data integrity detector.

(3) BD Integrity Detector: it analyzes the big data blocks to recognize the industrial data
integrity aspects according to defined rules. Depending on the determined integrity
level, big data blocks are discovered ahead of being labeled differently managing by
the detection engine. Additionally, big data blocks are classified previous to placing
into the big data source. The integrity metadata are generated during the detection
analysis and held on the consortium blockchain to enable integrity capabilities.

(4) BD Distributor: it assigns the big data destinations and maps them to the big data bal-
ancer. Formerly, it created scripting components aligned with the big data structure,
hinging on the previously stated integrity preferences. Furthermore, these compo-
nents send copies of the big data blocks from destinations to two distinctive tracks
simultaneously. The first track is the big data sets mapper past the big data splitter,
and the second is the block reporter passing through the big data reconstructor and
then stored on the hyperledger fabric modular (HFM).

(5) BD Splitter: it provides segmentation techniques for an additional coating of securing
big data integrity. These techniques split big data blocks by class selector into integral
and non-integral data sets based on specified integrity requirements. Next, the leaf
calculator used checksum to ensure big data integrity by dint of SHA-512 encryption
calculations for the original big data blocks. Then, the class estimator compared the
hashing results to the initial encryption parameters after the performance clustering.

(6) BD Reconstructor: it returns the big data blocks to their original forms using the
integrity metadata saved in the block reporter over the hyperledger babric modu-
lar (HFM). The big data node master performs the segmentation and decryption
to reconstruct the original blocks retrieved from big data nodes. The heart beater
hardens the segmentation processing for low-integrity big data and decrypts the
high-integrity portions of the big data blocks to avoid significant overhead measured
by the performance cluster.

(7) BD Integrity Tracker: it traces the streams of big data blocks delivered directly from
the refiner cluster to the delivery cluster upon verified transaction queries of con-
sortium peers or big data owners. Additionally, it leverages the event monitoring
traceability on the basis of the termed thresholds and specific conditions provided
by the hyperledger fabric modular (HFM). By doing this, the real-time execution of
the active transaction queries shows continuous results during the industrial data
integrity tracking process.

5.2. TCB Framework Implementation and Deployment

The prototype of the TCB framework is implemented based on two main algorithms
that handle this research challenge of real-time transaction monitoring and peer validation,
as mentioned in the following sections.
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5.2.1. Real-Time Transaction Monitoring

Big data integrity is wrecked when the cycles of big data processing are not treated
correctly. Furthermore, it is vulnerable even though the cycles are treated successfully,
but malicious peers are aboard in these cycles. The suspicious behaviors of peers are not
effortless to monitor, especially with big data’s volume and velocity dimensions.

To cope with this challenge, examine every request that involves each big data transac-
tion. Thus, assemble a compound metric of real-time transaction monitoring that yields
two numerical values of the trustworthiness cycle and sequencing cycle.

The trustworthiness cycle monitors the peers who send and receive the transactions
of the big data blocks at a certain time. Additionally, the sequencing cycle monitors
the transactions of big data blocks that have been handled and accomplished within the
respected orders before entering the analytical engine, as shown in Algorithm 1.

Algorithm 1. Real-time Transaction Monitoring.

01. function RealtimeTransactionMonitoring(blockchain)
02. // Initialize a list to store suspicious transactions
03. suspiciousTransactions = []
04. // Loop through all transactions in the blockchain
05. for each block in blockchain
06. for each transaction in block.transactions
07. // Check if the transaction is suspicious
08. if (isSuspiciousTransaction(transaction, blockchain))
09. // Add the transaction to the list of suspicious transactions
10. suspiciousTransactions.append(transaction)
11. // Notify the relevant authorities
12. notifyAuthorities(transaction)
13. end if
14. end for
15. end for
16. // Continuously monitor for new transactions
17. while (true)
18. newTransaction = getNewTransaction()
19. // Check if the new transaction is suspicious
20. if (isSuspiciousTransaction(newTransaction, blockchain))
21. // Add the transaction to the list of suspicious transactions
22. suspiciousTransactions.append(newTransaction)
23. // Notify the relevant authorities
24. notifyAuthorities(newTransaction)
25. end if
26. end while
27. end function

In this algorithm, the real-time transaction monitoring metric is calculated from when
the transactions are sent to when they are treated based on the established steps. The
transactions are leveraged throughout the trustworthiness and sequencing cycles in the
correct order to manipulate the allowed or forbidden ones. Similarly, completing the
authentication and authorization of the peers.

It allows transaction monitoring for malicious activity based on real-time analysis em-
bedded architecture layers of the trusted consortium blockchain (TCB) framework to improve
the accuracy of detecting suspicious and reduce false positives in industrial transactions.

Dissimilarity, traditional detection methods involve analyzing past transaction data to
identify patterns or anomalies that indicate malicious activity. With real-time monitoring,
potential malicious is detected and flagged as soon as the transaction is made, securing the
integrity of big data and allowing for more immediate action.

In detail, big data owners communicate with the mutual authenticity provider and
authority creator and rely upon TLS to establish secure channels via several interfaces.
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These consortium ‘peers’ are verified against the hyperledger fabric modular (HFM) to
certify and store the current state of the big data blockchain, whereas the security certificates
are endorsed largely by the processed trained server.

The algorithm is statically programmed in C++ language and coded in Python scripts
for easy reviewing and offers additional flexibility. It is stored and supported by the service
API keys, passed command parameters, and defined rules.

The implementation uses positive payload as values and peer identifiers as keys.
The HFM ledger authenticates the senders as registered peers implicitly. By rule, the
authenticated peer identifiers are passed as a part of the first arguments in each command.
The transfer commands take a receiver and a payload as added arguments.

Moreover, it checks that the sender has the correct checksum, then updates the states
of both sender and receiver. The sequencing cycle confirms the uniqueness of these checks
and updates, returning the existing states of sender and receiver peers.

The HFM ledger records a pair of updated key values, the first key checks that all
transactions are valid and verify the correctness of signed transfers. The second one
replays the peer authentication with supplementary signatures that passed as the final
command argument.

To this end, the HFM ledger validates these signatures over other “transfers” argu-
ments employing the sender has kept identifications before deploying the command. The
received signatures are checked and overwritten their values by each transfer block. The
updated and supported signatures are registered for the sender and receiver peers within
the signed transactions concluded in the HFM ledger.

Signed transfers encompass further cryptographic handling for the transactions along-
side the peers subject to their workloads and considerations. In such cases, the selected
command codes are responsible for saving the signature values in the re-verified transfer
context at adequate confidentiality. Eventually, the data block control returns the warning
for every peer as the transfers executed have been compromised and start rolling back.

The warning explicitly contains the provisional serialization index of the compromised
transfers in the HFM ledger. However, the HFM ledger runs parallel with the primary replica-
tion servers to broadcast, persevere, and immediately designate the rolled-back transactions.
Later, peers query their ‘transactions’ selected state and use separate checksums.

Optionally, the HFM ledger correspondingly returns signed transfers for designated
transactions, delivering self-governing evidence that the transfers executed at a serialization
index in the HFM ledger created the returned transactions previously.

Likewise, when the HFM ledger fails to return signed transfers for several reasons, for
example, big data node crashing, peer compromising, connection breaching, or time outing,
the peer must still decide whether its transfers have been executed ahead of releasing new
transactions. As a result, the HFM ledger records the definite sequence of big data blocks
and unique peer identifiers in the transaction.

Furthermore, the peer tracks the up-to-date status of the signed transfers before
submitting and receiving the existing position in the HFM ledger. Once the peer submits a
new transaction, it is recorded after the previous position. The peer signature masks the
transaction and its position in the HFM ledger, ensuring the restriction verifiability.

5.2.2. Peer Validation

The mechanism of peer validation fulfillments industrial data integrity by investigating
the trustworthiness threshold of peers as big data sources and assigning a sub-score for
each big data provenance that peers send or receive. After that, it computes and returns the
total score of peer trustworthiness.

For that, implementing the peer validation algorithm checks the industrial data origi-
nation, defines who is responsible according to the acceptance or rejection of transactions
passed to the other peers, and determines the big data integrity degree. These degree scores
are recorded in the HFM ledger for additional integrity control.
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The core originality of the peer validation algorithm is the dependency on the spe-
cific context process, in which a peer consortium is a source of industrial data; the peer
behavior-based evaluation is vital to ensure the accuracy, reliability, and credibility of the
big data sources.

Furthermore, this algorithm provides a more comprehensive evaluation of peer contri-
butions to the consortium group and enhances the understanding of the overall behaviors
implemented within the smart manufacturing environments.

The initial stages of the algorithm reduce big data volume by applying several filters
belonging to trustful peers to avoid big data with low integrity degrees from transmitting
into the next processing paces. Therefore, peer validation assured that the transactions
based on the integrity degree scores were accurate and sound.

Furthermore, valid peers have access to the consortium blockchain, coded set in C++
and parameterized by python scripts stored in the HFM ledger. It comprises a range of
functions such as deliver, request, vote, ack, and complete, as given in Algorithm 2.

These functions permit peers with acceptable trustful thresholds to review the HFM
ledger, obtain valid peer identifiers, and verify their credentials. Additionally, it reinforces
the restricted execution of ‘peers’ signed transfers on the HFM ledger for verifiability. Thus,
the peers enable to reach consortium decisions, implement them transparently and update
their primitives.

When one peer sends a transaction to a definite receiver, the transaction is restricted
after running different checks on the basis of the selected updates on the HFM ledger. Their
insertion index keys checks. The state of each check changes from alive to either reserved or
passed. Apart from their states, checks are certainly not updated or ignored. After checking
completely, the peers perform conditional voting on the verified transaction; each vote is
updated as long as the transaction is still not recorded on the HFM ledger.

The acknowledgments of the consortium peers are witnessing the signed transfers
running at the transaction index. These ‘peers’ signatures are stored in the HFM ledger, as
the aliveness of the peer witnesses and their endorsements of comparatively topical states
of the HFM ledger is useful feedback for auditing the checksum.

Upon that, the minimum number of required peer votes to pass the signed transactions
is two-thirds of the total peer votes depending on its signed transfers. Peers call the
HFM ledger to record their neoteric signed transfers. It checks at the outset that the new
transaction is sent from an active peer with a well-formed scope.

Then, the HFM ledger adds a new big data block to the blockchain with an active
peer identifier and valid credentials. It also updates present peer records by fixing their
acceptance status as malicious. Hence, a single transaction needs multiple updates to
ensure its one-off execution.

The HFM ledger records the fresh signed transfer for an active peer at the succeeding
accessible index in the blockchain before returning it. Again, active peers call others to
modify or record their final voting on the recently signed transfers. After reviews, the peer
votes become non-adjustable and return true in approving the signed transfers.

The HFM ledger generally involves surplus checks on the status of the transactions.
It enables the peer voters to check that the status of the active peer is set and meets the
minimal requirements once the transactions are executed.

Likewise, when the peer voters are voting on adding a new active peer, their consor-
tium decision is constituted based on accepted two third votes and passed before reaching
a shared transaction index.

Any active peer calls request to compute the votes and decide if they be sufficient to
pass transactions. It ensures that the transactions are still checked, tracks all their stored
pre-status, and subsequently records on the HFM ledger to define the number of accepted
votes required subject to the ‘transactions’ big data blocks.
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Algorithm 2. Peer Validation.

01. function PeerValidation(transaction, blockchain)
02. isValid = True
03. // Check if the transaction is already in the blockchain
04. for each block in blockchain
05. if (block.transaction == transaction)
06. isValid = False
07. break
08. end for
09. if (isValid)
10. // Verify the transaction using digital signature
11. if (verifyTransaction(transaction))

12.
// Check if the transaction is valid by comparing it to the current state of the

network
13. if (isValidTransaction(transaction, blockchain))
14. // Broadcast the transaction to the peer network
15. broadcast(transaction)
16. // Add the transaction to the local blockchain
17. addTransactionToBlockchain(transaction, blockchain)
18. // Notify peers of new transaction
19. notifyPeers(transaction)
20. else
21. // Discard the transaction if it is invalid
23. discardTransaction(transaction)
24. end if
25. else
26. // Discard the transaction if digital signature is invalid
27. discardTransaction(transaction)
28. end if
29. else
30. // Discard the transaction if it already exists in the blockchain
31. discardTransaction(transaction)
32. end if
33. end function

Each transaction is executed entirely if its status succeeded in updating from check to
pass; otherwise, the failed one updates from check to withdrawn. All aspects of the present
and past transactions and their votes are stored in the HFM ledger to enable future auditing.

Regularly, consortium peers employ acknowledgments to confirm their contributions
to the transactions and approve their states with verified signatures. It checks that these
peers are not malicious, and the signed transfers properly update the index to the HFM
ledger and do not overwrite signatures recorded previously.

Above all, accepted peers are a prerequisite to acknowledge their contributions to
become active peers and, consequently, reward access to big data blocks stored in the
verified transactions through the HFM ledger. Such acknowledgments require the presence
of a supermajority of the acceptable peer voters.

On the other hand, deploying the TCB framework allocates the consortium peers to
establish protected connection channels by exchanging the Diffie–Hellman keys. Addi-
tionally, it is pipelining the execution of transaction batches with sizes ranging between
800–1000 transactions for the IIoT LAN environment and 400–600 transactions for the IIoT
WAN environment. The TCB uses the EverCrypt functions with SHA-512 encryption, veri-
fied Merkle trees, SECP-256k to secure signatures entirely, and the library of the MbedTLS
for peering communications.

Furthermore, the checkpoints of big data integrity in the deployment area are founded
in every 12,000 sequence number of industrial data blocks in the IIoT LAN networks and
6000 sequence numbers in the IIoT WAN networks, in addition to using the virtual smart
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manufacturing benchmark with six singular peers who casually fulfill combinations of
both types for transaction sources, such as orders and transaction actions as issues.

In addition, the benchmark entries size of the hyperledger fabric modular (HFM) varies
between 200–350 bytes for each transaction entry, 250–300 bytes for every pre-prepare entry,
300–900 bytes for the single entry of prepare evidence, and 30–60 bytes for nonces entries
depending on the transaction type.

5.3. TCB Framework Evaluation Metrics and Testbeds

At a glance, the performance evaluation of the TCB framework empirically provides a
deep understanding of TCB capabilities to solve the real-time transaction monitoring and
peer validation challenges. Upon that, this section presents a comprehensive demonstration
of TCB evaluation metrics and testbed.

On the top, a set of evaluation metrics concludes that transaction throughput and
latency measurements are used to assess TCB performance compared to existing consortium
blockchain frameworks. The transaction throughput measurement over a dedicated cluster
has quantified the units of transactions per second (tx/s) processed in a certain period and is
measured by three metrics: average throughput, signed peer transfers, and ledger auditing.

In addition, the transaction latency measurement across the whole transactions in
described experiments and calculating the time (ms) from transferring transaction to the
consortium peer to receiving a consensus acknowledgment. Additionally, it is measured
by three metrics involving average latency, 99th percentile latency, and IIoT network
round trips.

The characteristic combination of the transaction throughput and transaction latency
measurements with checkpointing for the experiments embraces three metrics: key value
storing, functionality overhead, and checkpoint intervals. The results of these metrics
for the proposed solution are compared against three popular solutions with open-source
consortium ledgers as state-of-the-art baselines: IA-CCF [84], Pompe [82], and HotStuff [60].

In general, all conducted experiments were compute-bound, and collected results
were around 10 runs with minimum errors. The TCB framework runtime testbed is
configured and investigated suspiciously under diverse testing scenarios, with discrete
cyberattacks fluctuating between compromises of big data integrity and inclusive testing
environment crashes.

The experimental testbed setup is divided into three virtual environments based on
SGX-enabled AWS VMs: dedicated cluster, LAN, and WAN networks, as illustrated in
Figure 6. The dedicated virtual cluster consists of 4 trusted consortium blockchain servers,
each one with an 8-Core 3.70 GHz CPU, Intel Xeon E-2288G, 32 GB RAM, and 60 Gbps NIC
with full bi-section bandwidth; all of them run Ubuntu Linux 18.04.2 LTS.

Moreover, the local network in the AWS cloud includes four replica big data nodes
with Fsv2-series VMs, 16-Core 3.40 GHz CPU, Intel Xeon E-8168, and 40 Gbps NIC links. On
such durable configurations, the hyperledger fabric modular (HFM) with well-established
BFT methods is expected to achieve the performance of a 10,223 (tx/s) as throughput, geth
8656 (tx/s), parity 64 (tx/s), and h-store 34,956 (tx/s), in addition to the external network
with six consortium peers across 4 AWS VM pools from different locations.

The runtime testbed is ported to the LUA and EVM custom libraries of the mbedTLS
with Everest in the virtual environments to terminate the internal TLS connections inside the
VM clusters and deal with public-key certificates. For this reason, the HFM detects the TLS
negotiations and the encrypted network traffic only. It uses suites of cryptographic algorithms
for binary Merkle trees on the basis of SHA-256, ECDSA, ECDHE, and AES256-GCM.
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Formally, the HFM observes the verified connections via JSON-RPC over the TLS
module and forwards side-channel big data blocks and ‘peers’ identifiers using the TCB
servers to handle the interfaces of big data node-to-node and peer-to-node communications
with intermediate hashes caching and quick incremental up to 4M (tx/s).

6. Results and Discussion

The research results are presented in this section and described in detail through
numerical tables and graphical charts. Additionally, the measured results are collected and
analyzed precisely using testbed experiments.

The performance results of the proposed solution are evaluated, organized, and
compared to the existing solutions over several testing scenarios with cyberattack events
based on the selected metrics set of transaction throughput and latency measurements.
Furthermore, the results are discussed, and the final research findings are interpreted in
line with the research gap and related works.

In Table 1, the overall results show the transaction throughput measurement over the
dedicated virtual cluster for the comparative solutions in this study. The TCB proposed
solution has the best results in all evaluated metrics.

Table 1. Transaction throughput (tx/s) over dedicated virtual clusters.

Comparative Solutions Average
Throughput

Signed Peer
Transfers

Ledger
Auditing

IA-CCF 302,231 115,936 139,159

Pompe 487,644 204,775 330,459

HotStuff 313,697 128,897 162,711

TCB 508,444 217,661 367,119

It achieves 508,444 tx/s in average throughput metric higher than the Pompe solution,
which reaches 487,644 tx/s, while the HotStuff and IA-CCF solutions have similar results,
313,697 tx/s and 302,231 tx/s, respectively, lower than the topmost ones.

The TCB and Pompe solutions also have higher throughput results in the the signed
peer transfer metric of the HotStuff and IA-CCF solutions. The effectiveness of the HFM
and HLF ledgers hired one-to-one in the TCB, and Pompe solutions played a crucial role in
accomplishing 217,661 tx/s and 204,775 tx/s.
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As illustrated in Figure 7, these throughput results are approximately double the
throughput results of the HotStuff and IA-CCF in 128,897 tx/s and 115,936 tx/s. The
influence on transaction throughput increases when the number of consortium peers in the
AWS WAN environment spans multiple locations and decreases the correlated failures in
IIoT networks.
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In place of what was expected, the comparison against the TCB deployed in the AWS
LAN environment reveals that the BFT consensus protocol of HotStuff is without key-value
storing. The transaction throughput of the TCB grows with more peers because each peer
confirms further signatures. Since each peer checks signed peer transfers in parallel, the
transaction throughput rises whenever the peer number exceeds the number of big data
nodes, which was four nodes in this runtime testbed experiments.

The above analysis also applies to the results of the ledger auditing metric, where the
TCB achieves a throughput of 367,119 tx/s in the WAN environment, which is lower than
its average LAN throughput. While the ledger auditing throughput of the Pompe reduces
slightly to touch 330,459 tx/s with more peers, its throughput rests at 9% less than the TCB.

The throughput results of the ledger auditing for HotStuff and IA-CCF are even lower
than TCB and Pompe since they execute cryptographic operations. When comparing
auditing time to execution time, the auditing performance measures throughput at 162,711
tx/s for HotStuff and 139,159 for IA-CCF.

The ledger auditing of HotStuff is about 15% faster than IA-CCF because of the
low overhead for ledger auditing writes and transaction signing. In every execution,
HotStuff verifies one-sixth rather than up to one-third of new signatures. For IA-CCF, the
performance gap of ledger auditing enlarges to 62% as more peers make connections and
cryptographic workloads during the execution. The bottleneck of ledger auditing is the
proof of peer transaction signatures that are parallelized insignificantly.

In Table 2, the conclusive results represent the transaction latency measurement upon
the dedicated virtual cluster that contains several comparable metrics of average and
percentile latencies and IIoT network round trips. The functionality of these metrics
considers creating transaction workloads, the entry sizes of the ledgers fitting in the cache,
and the consensus costs among peers with verifying their signatures.
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Table 2. Transaction latency (ms) over a dedicated virtual cluster.

Comparative Solutions Average
Latency

99th Percentile
Latency

Round-Trip
Latency

IA-CCF 188 198 215

Pompe 391 437 509

HotStuff 346 398 445

TCB 290 254 326

In the measurement of the average latency metric for comparative solutions under high
loads, IA-CCF’s average latency was 188 ms, which is nearly less than twice that of Pompe
with 391 ms and HotStuff with 346 ms. For both solutions, the average latency is affected
by the number of IIoT network round trips, whereas the peers receive transactions with
their acknowledgments in four and five round trips for HotStuff and Pompe, respectively.

The TCB has second place in average latency next to IA-CCF with 290 ms due to
being marginally impacted by the higher WAN pipelining latency compared to the LAN
deployment. Consequently, the 99th percentile latency metric focuses on the maximum
latency for the fastest 99% of transactions processed by the peer in a certain period.

As exemplified in Figure 8, the 99th percentile latency of the IA-CCF is the lowest
one measured up to other results of all comparative solutions, including the proposed
solution in this study; hence, the peers processed 99% of transactions in less than 198 ms.
These results are consistent with the above results of the average latency metric for the
comparative solutions.
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Again, the TCB attained the second rank in the results of the overall percentile latency
following the IA-CCF solution with 294 ms. The TCB requires more time to verify transac-
tions depending on the path length of the Merkle tree and the number of peer signatures
needed to be checked at once.

Far away from the results of the first two solutions, the remaining ones have worse
results in the percentile latency, 398 ms for HotStuff, and 437 ms for Pompe, since these
solutions handled the number of transactions with bounded entry sizes available in the big
data nodes due to the given path length of the IIoT network which enables the verification
of entries between 250 and 900 bytes only.
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Consequently, the key performance metric of the round-trip time has measured the
duration from when a peer sends a transaction to when it receives acknowledgments from
consortium peers in the IIoT network. It is a focal factor, and there are other metrics for
measuring industrial network latency.

The whole cost of round-trip latency in the runtime testbed is overlooked by the peer
signature verification, which usually takes 16 ms and 22 ms for each peer. The total results
of the round-trip latency for the IA-CCF and TCB solutions are lower than the ones of the
HotStuff and Pompe solutions. Thus, IA-CCF reaches 215 ms, and the TCB completes 326
ms in round-trip latency.

For context, the operating protocols of Byzantine consensus have similar functionality
in HotStuff and Pompe frameworks; therefore, HotStuff’s round-trip latency is 445 ms,
and Pompe’s is 509 ms. The TCB utilizes techniques for decreasing round-trip latency
incomparable with HotStuff and Pompe solutions. All discussed results in altered fault
tolerance to guarantee big data integrity, and demonstrate the efficiency of the TCB.

In Table 3, the transaction throughput/latency measurement evaluates the perfor-
mance correlation between the throughput and latency measurement via three composite
metrics, including key value storing, functionality overhead, and checkpoint intervals.

Table 3. Transaction throughput/latency (tx/s) with checkpointing.

Comparative Solutions Key Value
Storing

Functionality
Overhead

Checkpoint
Intervals

IA-CCF 57,579 11,118 53,209

Pompe 46,845 10,763 41,018

HotStuff 60,986 12,799 55,415

TCB 61,100 13,102 56,219

The TCB solution triumphs in the key value storing metric by 61,100 tx/s and main-
tains overhead functionality metric above 13,102 tx/s in parallel with touches 56,219 tx/s
for checkpoint interval metrics. Therefore, the results of the proposed solution significantly
excelled in the whole results for comparative solutions of all these metrics.

The performance of the TCB is impacted by changing the number of key entries
processed and stored by the consortium peers. As expected, TCB throughput upturns
when the number of key entries in the big data nodes buildups because the mapping
implementation of the access time demonstrates the low cost of stored values and expands
logarithmically with the number of key entries.

The throughput/latency results of the comparative solutions’ key value storing metric
vary upon the entries queueing delays. So, HotStuff’s throughput/latency is 60,986 tx/s,
which is lower than the TCB by about 1%. Additionally, IA-CCF has the third place in
key-value storing with 57,579 tx/s turndowns, 5.7% of TCB performance.

Lastly, the Pompe solution exhibits an order of entry size dropper throughput/latency
result of 23.3% to be 46,845 tx/s matched to the TCB results because all entries must be
stored after signing, and the peer signs and stores the values for each entry in every big
data node separately.

As illuminated in Figure 9, the overhead functionality results provide a clear percep-
tion of the ‘ledgers’ capability employed by comparative solutions to drive functionality
within consensus protocols with peer accountability for generating transactions.



IoT 2023, 4 50

IoT 2023, 4, FOR PEER REVIEW 24 
 

 

Lastly, the Pompe solution exhibits an order of entry size dropper throughput/la-
tency result of 23.3% to be 46,845 tx/s matched to the TCB results because all entries must 
be stored after signing, and the peer signs and stores the values for each entry in every big 
data node separately.  

As illuminated in Figure 9, the overhead functionality results provide a clear percep-
tion of the ‘ledgers’ capability employed by comparative solutions to drive functionality 
within consensus protocols with peer accountability for generating transactions. 

The TCB achieved 13,102 tx/s, which explores the impact of fulfilling functionality 
overhead on its throughput/latency over the dedicated virtual cluster. By straightening 
out the transaction ordering and peer consensus, IA-CCF accomplishes a functionality 
overhead of 11,118 tx/s.  

In contrast, the HotStuff solution uses signatures substantially to remove the func-
tionality overhead of performing transactions against the transactional key-value storing 
rather than specifying consensus protocol in an attempt to double throughput with 12,799 
tx/s. However, the results of Pompe indicate that its functionality overhead regularly 
comes from the cryptographic procedures entailed for validating peer transactions; as a 
result, it ends at 10,763 tx/s as the lowermost performance. 

 
Figure 9. Transaction throughputs/latencies for comparative solutions. 

Finally, the results of the checkpoint intervals reveal their effect on the performance 
of the comparative solutions where the size of the key value storing for the checkpointing 
workloads and frequencies varies. Thus, the TCB solution has the best results rather 
toother solutions, with 56,219 tx/s.  

As predictable, the results of the HotStuff and IA-CCF were convergent with 55,415 
tx/s and 53,209 tx/s, respectively, for checkpoint intervals between 60 and 85K every 500 
milliseconds and replay the transactions at the same time into proper practice.  

The checkpointing overheads enlarge with the key values’ sizes; hence, the check-
point interval results of both solutions were close to the TCB. On the contrary, the result 
of the Pompe solution was noticeably the lowest one at 41,018 tx/s due to an asymmetric 
cryptographic procedure with two orders of magnitudes more than the TCB.  

7. Conclusions 
The fourth industrial revolution aims to shift manufacturing from automation to 

smartness to improve quality, productivity, efficiency, and sustainability. It has a deep-
seated transformation involving integrating industrial IoT capabilities into operations and 

Figure 9. Transaction throughputs/latencies for comparative solutions.

The TCB achieved 13,102 tx/s, which explores the impact of fulfilling functionality
overhead on its throughput/latency over the dedicated virtual cluster. By straightening
out the transaction ordering and peer consensus, IA-CCF accomplishes a functionality
overhead of 11,118 tx/s.

In contrast, the HotStuff solution uses signatures substantially to remove the function-
ality overhead of performing transactions against the transactional key-value storing rather
than specifying consensus protocol in an attempt to double throughput with 12,799 tx/s.
However, the results of Pompe indicate that its functionality overhead regularly comes
from the cryptographic procedures entailed for validating peer transactions; as a result, it
ends at 10,763 tx/s as the lowermost performance.

Finally, the results of the checkpoint intervals reveal their effect on the performance
of the comparative solutions where the size of the key value storing for the checkpointing
workloads and frequencies varies. Thus, the TCB solution has the best results rather toother
solutions, with 56,219 tx/s.

As predictable, the results of the HotStuff and IA-CCF were convergent with 55,415
tx/s and 53,209 tx/s, respectively, for checkpoint intervals between 60 and 85K every 500
milliseconds and replay the transactions at the same time into proper practice.

The checkpointing overheads enlarge with the key values’ sizes; hence, the checkpoint
interval results of both solutions were close to the TCB. On the contrary, the result of
the Pompe solution was noticeably the lowest one at 41,018 tx/s due to an asymmetric
cryptographic procedure with two orders of magnitudes more than the TCB.

7. Conclusions

The fourth industrial revolution aims to shift manufacturing from automation to
smartness to improve quality, productivity, efficiency, and sustainability. It has a deep-
seated transformation involving integrating industrial IoT capabilities into operations and
production environments to foster interconnectivity and improve real-time monitoring
and control.

Smart manufacturing has evolved from monolithic proprietary systems to decen-
tralized smart systems, which are now embracing IIoT technologies to collect big data
at an ever-increasing rate. These technologies provide faster computing, advanced data
analytics, and cost-effective maintenance of industrial infrastructures, leading to valuable
business results.

Big data integrity is crucial for successful smart manufacturing. It implicates moving
from passive monitoring and control to improving overall operational effectiveness, acquir-
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ing big data in real-time, immediately accessing analysis outputs, and enabling on-the-spot
actions anytime and anywhere.

This paper focused on two challenges of big data integrity in the industrial internet
of things stemming from big data v-dimension complexity. It proposed an optimal so-
lution to cope successfully with these challenges for securing big data integrity in smart
manufacturing environments.

Furthermore, such research is developing, implementing, and evaluating the perfor-
mance of the trusted consortium blockchain (TCB) framework to leverage the trustwor-
thiness levels of the big data cycle through real-time transaction monitoring and govern
peer validation.

The three layers of the TCB framework are integrated and built on top of the hyper-
ledger fabric modular (HFM), which enhances high transaction throughput and low latency
of the consortium peers’ transactions in heterogeneous IIoT networks to manage, preserve,
and accomplish ALOCA principles of big data integrity.

By experimentation, the TCB has been running on the configured testbed and examin-
ing carefully under multiple testing scenarios with different cyberattack mockups ranging
from compromises to crashes. Additionally, the performance of the new framework is
evaluated and visualized based on several metrics according to transaction throughput
and latency measurements.

The TCB and Pompe solutions have an average throughput higher than the HotStuff
and IA-CCF solutions. The TCB and Pompe solutions have higher signed peer transfers
than the HotStuff and IA-CCF solutions. At the same time, HotStuff and IA-CCF are lower
than the TCB and Pompe for ledger auditing results.

The average latency of IA-CCF is significantly lower than that of Pompe and HotStuff,
although the 99th percentile latency of IA-CCF is the lowest among all comparative so-
lutions. The round-trip latency for the IA-CCF and TCB solutions is lower than that of
HotStuff and Pompe.

The TCB’s performance is affected by the key value storing processed and stored by
consortium peers and increases as the number of key entries in big data nodes increases.
Other solutions, such as HotStuff and IA-CCF, have lower key value storing rates, while
the Pompe solution has the lowest rate. The TCB performs the best in terms of functionality
overhead, followed by IA-CCF, HotStuff, and Pompe. Lastly, the TCB has the highest rate
in checkpoint intervals, while HotStuff and IA-CCF are close behind, and Pompe has the
lowest rate.

The overall empirical results of the proposed solution have been discussed and in-
terpreted compared to the results of the existing consortium blockchain frameworks. Sig-
nificantly, the TCB solution achieves high throughput and latency results better than the
comparative other diverse solutions with guarantees of industrial data integrity.
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