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Abstract: The use of unmanned aerial vehicles (UAV) as an integrated sensing and communication
platform is emerging for surveillance and tracking applications, especially in large infrastructure-
deficient environments. In this study, we develop a multi-UAV system to collect data dynamically
in a resource-constrained context. The proposed approach consists of an access platform called
Access UAV (A_UAV) that stochastically coordinates the data collection from the Inspection-UAVs
(I_UAVs) equipped with a visual sensor to relay the same to the cloud. Our approach jointly
considers the trajectory optimization of A_UAV and the stability of the data queues at each UAV.
In particular, the Distance and Access Latency Aware Trajectory (DLAT) optimization for A_UAVs
is developed, which generates a fair access schedule for I_UAVs. Moreover, a Lyapunov-based
online optimization ensures the system stability of the average queue backlogs for dynamic data
collection while minimizing total system energy. Coordination between I_UAV and A_UAV is
achieved through a message-based mechanism. The simulation results validate the performance of
our proposed approach against several baselines under different parameter settings.

Keywords: trajectory planning; data collection; unmanned aerial vehicles (UAVs); access schedule;
multi-UAV system; optimization

1. Introduction

Intelligent solutions utilising unmanned aerial vehicles (UAV) are emerging in various
domains such as wireless sensing [1], payload delivery [2], precision agriculture [3] and
search and rescue operations [4]. Moreover, with the current trend of automation, sensing,
and information exchange within Industry 4.0 environments, UAV-based applications are
also finding their place in construction, mining, agriculture and logistics industries, espe-
cially for resource tracking and operational monitoring using aerial imagery. UAV-based
solutions are particularly beneficial in large infrastructure-deficient environments as they
offer ease of deployment, quick access to ground-truth data, and higher reachability and
coverage [5,6]. Furthermore, autonomous or semi-autonomous UAV-based solutions could
facilitate many industry-specific audits such as progress monitoring, resource and safety
inspections, environmental hazards, and many more. Although integrating a multi-UAV
based visual sensing and monitoring system has many benefits, developing such a system
is challenging. A few of those challenges include (1) monetary budget constraints which
limit the number of deployed UAVs, (2) limited battery of UAVs restricting the observa-
tion span, (3) limited on-board processing capabilities of UAVs which necessitates online
offloading of data, and (4) limited connectivity for data gathering and offloading tasks in
infrastructure-deficient environments that requires efficient trajectory planning. The com-
putationally intensive nature of the data collection task and limited on-board computation
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of UAVs impede the deployment of such solutions to collect and/or process data within
large infrastructure-deficient sites, such as tracking the progress of complex construction
projects. Hence, efficient multi-UAV mechanisms to collect and offload data from the field
or points of interests (PoIs) to the backend system (cloud) are required to leverage the
advantages of multi-UAV systems further. To address the above-mentioned challenges, a
feasible solution could be the adoption of a heterogeneous multi-UAV framework.

UAVs can also be considered as integrated sensing and communication platforms for
providing mobile edge computing services [7–9]. The edge-based UAV platform could be
flexible and cost-effective for computational and data-offloading tasks in infrastructure-
deficient environments. Furthermore, with the optimal trajectory design of an edge-based
access platform, the overall coverage of the PoIs can be improved. Thus an Access UAV
(A_UAV) platform can be optimized for data collection, basic data processing, and data
offloading to the cloud within infrastructure-deficient environments. However, if the PoIs
are arbitrarily distributed in 3D space such as the monitoring points in under-construction
projects, the maneuverability of the UAVs becomes challenging. UAVs that can be more
agile by design are therefore better suited to reach arbitrary locations quickly and safely.
Furthermore, such agile UAVs can carry different sensors such as multi-spectral cameras,
near-infrared cameras, etc. to collect the requisite data from the locations. Hence, instead of
overloading the A_UAV with data collection and offloading tasks, it would be prudent to
segregate the UAV functions to optimize them for specific tasks. In this paper, we introduce
the Inspection UAVs (I_UAVs) that are morphologically different from the A_UAV, as they
are smaller and more flexible to maneuver at lower heights. The I_UAV act as a mobile
visual sensing platform to collect visual data from different locations in the environment.
I_UAVs can be considered mobile sensors scattered throughout the environment. The
A_UAV thus need to locate these dynamically moving I_UAVs in order to collect data
from them.

Another problem is the buffer overflow of UAVs in data collection and offloading
tasks. The limited on-board processing capability and shared bandwidth to transfer data
leading to the overall system’s instability. In addition, the varying data traffic and con-
tinuous movement of UAVs make it challenging to stabilize the system in a deterministic
manner. Researchers have used online Lyapunov optimization [10] to address such system
instabilities. Lyapunov optimization considers the stability of a system with time-varying
data and optimizes the time averages of the system utility and queue backlogs.

In this study, we address the challenges of deploying a heterogeneous multi-UAV
system comprising a single UAV access platform called the Access UAV (A_UAV) and
multiple Inspection UAVs (I_UAVs) for dynamic data collection in infrastructure-deficient
environments. We propose a Distance and Access Latency Aware Trajectory (DLAT) of
the A_UAV by considering the fair access schedules of the dynamically moving I_UAVs.
In addition, to address system instabilities due to queue backlogs, the proposed solution
employs a Lyapunov-based online optimization approach. The overall problem has been
formulated as minimizing the total energy consumption of the system. Furthermore, as
the set of I_UAVs and A_UAV operate independently without any central entity, their
coordination is ensured through a message-based estimation mechanism.

The contributions of this research are fourfold, which are summarised as follows:

• An optimization model has been proposed for optimal trajectory planning of A_UAV
to fairly access the dynamically moving I_UAVs in different time slots. The optimiza-
tion model focuses on minimizing the distance travelled and generating a fair access
schedule of I_UAVs.

• From an applications point of view, this research focuses on trajectory optimization
of the A_UAV to consider the limited battery constraint and the distance from the
location of battery replenishment unit at the site.

• Further, a model based on the Lyapunov based online optimization framework is
proposed to minimize the energy consumption and the queue backlog of A_UAV and
I_UAVs with limited storage capacity.
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• Finally, extensive numerical experiments are conducted to evaluate the efficiency and
performance of the proposed framework against multiple baselines.

The rest of the paper is organised as follows: Section 2 summarises the related lit-
erature on edge based UAV applications. Section 3 presents the proposed multi-UAV
framework and the system model. The overall system objective is discussed in Section 4.
Sections 5 and 6 discuss the access latency aware trajectory optimization and Lyapunov
based system stability, respectively. Sections 7 and 8 discuss the experiments and results.
Finally, Section 9 concludes the paper.

2. Related Work

Various studies have emphasized that trajectory planning of UAVs is an integral
component of the UAV-based inspection and monitoring applications [11,12]. In [13], the
authors presented the reconstruction of a 3D model and highlighted the importance of UAV
trajectories for computer vision techniques to reconstruct the 3D structure accurately. In [14],
the authors discussed how MEC can be divided into different architectures based on the role
of UAVs, which could be users, computing entities, or data relay entities. The UAV-enabled
MEC system is commonly employed in different scenarios to improve user experience
and service availability or to increase the system’s efficiency. The trajectory optimization
of UAVs is an integral part of such MEC systems as it affects the energy consumption
of the system and the service schedule of static or dynamic sensors. UAVs could be
deployed to relay data further or provide partial computing to improve the system overall
quality of service (QoS). In [15], multiple UAVs were deployed for data relay task from
mobile devices to the BS. The overall objective was to minimize the energy consumption of
mobile devices by jointly optimizing the task scheduling and UAV trajectories in resource-
constrained environment. Using a different approach, Ref. [16] proposed a single UAV-
mounted cloudlet to serve a set of mobile users. The overall framework minimizes the
energy consumption of mobile users, while optimizing the trajectory of the UAV-mounted
cloudlet. The work of Xu et al. [17] also considered the multi-UAV based computing
framework to minimize the latency of mobile device data relay task either by on-board
computing or relaying to BS. In [18], a hierarchical multi-coalition UAV MEC network was
discussed where the resource-constrained UAVs could offload task to other UAVs with high
computational resources to improve the overall system efficiency. However, the authors
did not consider the queue optimization, dynamic access of UAVs and challenges of an
infrastructure-deficient environment as modelled in our work. In [19], authors focused on
minimizing the weighted sum of energy consumption of UAV enabled MEC system. They
performed joint optimization of computation resource scheduling, bandwidth allocation
to user equipment (UEs), and trajectory optimization of UAV-based edge servers with
static ground sensors. The advantage of using multiple UAVs in the MEC system is further
studied in the work of Diao et al. [20], where the effects of joint optimization of trajectories
of multiple UAVs to improve the system metrics were considered. However, the dynamic
evolution of the data queues of the UAV-based MEC system could alleviate the problem of
queue stability and data offloading.

The authors in [21] addressed the stability issues with a Lyapunov-based joint resource
optimization of bandwidth usage, processing power consumption, and transmission power.
Zhang et al. [22] presented a complex system within a dynamic environment that involves
joint optimization of the computation resources of the multiple mobile users, UAV-BS,
and trajectory optimization. The authors in [23] discussed a UAV-assisted mobile edge
computing framework that jointly addressed energy minimization, trajectory optimization,
CPU frequency and offloading schedule. In [24], author considered the completion time of
the task along with the energy minimization and trajectory optimization of a UAV. One sig-
nificant difference between our work and those reviewed in the literature is the estimation
of the location of dynamic sensors (i.e., I_UAV). This problem brings another challenge of
coordination among I_UAVs and A_UAV in the absence of ubiquitous connectivity with a
limited battery. The proposed solution in this study attempts to solve both problems.
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The literature also discusses the network scheduling problem along with trajectory
scheduling for UAV-based MEC. In [25], authors developed a hierarchical MEC system
considering online optimization of computational resources and reinforcement learning
based trajectory optimization of multiple UAV-BSs for collecting data from a set of static
sensors. In [26], a sense and send transmission protocol was proposed using multiple
UAVs in a cellular network using an iterative trajectory sensing and scheduling algorithm.
However, this approach does not consider distributed and multi-layer interaction of UAVs
to collect and offload data with limited connectivity. In [27], the authors employed rein-
forcement learning for sensing and sending information using a decentralized setup for
multiple UAVs, however, their work did not consider the multi-layer UAV network with
limited connectivity. As apparent from the literature, resource scheduling in multi-UAV
based solutions is a challenging task, particularly in an infrastructure-deficient environment
with limited connectivity. Therefore, the dynamic deployment of mobile UAVs either to
collect data or relay data to the cloud could mitigate the issues of progress tracking and
job monitoring in industrial settings and aid in the performance of project deliveries. This
paper proposes a solution for end-to-end data offloading in large infrastructure-deficient
environments using a hierarchical multi-UAV system.

3. System Model

This section presents the key components of the proposed multi-UAV framework. The
system consists of heterogeneous UAVs, including a set of N Inspection UAVs (I_UAVs)
and a single UAV Access Platform (A_UAV). I_UAVs are smaller in size and more agile.
They collect visual data from a set of k Point of Interests (PoIs) denoted as li. Because
the framework considers infrastructure-less environments, limited Access Points (APs)
available for cloud connectivity. Further, I_UAVs possess a limited connectivity range,
making it difficult to transfer data directly to the cloud. A_UAV, which is larger in size and
possesses higher computational capabilities, coordinates with the I_UAVs to collect data.
We assume that the A_UAV always maintains a constant height, thus its trajectory lies in a
horizontal plane. Figure 1 shows a high level overview of the system under consideration
with I_UAVs tasked to collect data from the PoIs, whereas the A_UAV collects data from
the dynamically moving I_UAVs and relay it to the cloud. The notations used in this study
are given in Table 1.

A_UAV

PoI

I_UAV Path

I_UAV

UAV to UAV Wi-Fi 
Channel

I_UAV

A_UAV Path

Wi-Fi Channel

Figure 1. System Setup.
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Table 1. List of Notations.

Parameters Description

T Set of time slots

N Set of I_UAVs deployed to collect images

Qi(t) The queue of the ith I_UAV in time slot t

Si(t) The position of the I_UAV in time slot t

Saccess(t) The position of A_UAV in time slot t

L(t) The queue length of A_UAV server in time slot t

do f f
i (t) The amount of data offloaded to A_UAV by the I_UAV in time slot t

Ai(t) The amount of data bits arrived at ith I_UAV in time slot t

do f f
access(t) The amount of data offloaded by the A_UAV in time slot t

pi(t) Transmission power of ith I_UAV in time slot t

Paccess(t) Transmission power of A_UAV in time slot t

τ The duration of time slot

v(t) The velocity of A_UAV

eo , e1 Environmental constants

Ecomm
i (t) Transmission energy of I_UAV

Etransition
access (t) Transition energy of the A_UAV in time slot t

Ecomm
access(t) Transmission energy of A_UAV in time slot t

V The tradeoff parameter between transition and
transmission energy

g0 Path loss constant

φ Path loss exponent

ζ Channel power gain

li ith tuple with location and data information

ψi 3D coordinates of the PoI

N0 Power spectral density of noise

θ Elevation angle of A_UAV

Ri(t) Access latency of the ith I_UAV in the time-slot t

xi(t) Binary variable for the selection of I_UAVs

σ standard deviation of normal
distribution used for data generation at each PoI

$ the maximum distance between two
consecutive PoIs in the trajectory of I_UAVs

µ mean value of normal distribution
used for data generation at each PoI

Qmax max buffer of I_UAV

τsearch search time to find the exact location of I_UAVs

τcomm time allotted for data transmission

τtrans time taken to transit from one location to another

3.1. Communication Channel

The communication between I_UAV and A_UAV (A2A channel) has a limited range
and capacity. This work assumes that the achievable data transmission rate of the ith I_UAV
in a given time slot as do f f

i (t). The communication channel between I_UAVs and A_UAV
involves both line-of-sight (LoS) and non-line-of-sight (NLoS) links as PoIs can be dis-
tributed vertically and longitudinally. Furthermore, the shadowing effect is also considered
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due to obstructions caused by buildings and other structures in the surroundings [28,29].
The path loss of a link is given as follows:

Lα = Lα(r0) + 10φ log(
r
′

r0
) + Xσ (1)

where Xσ is a shadowing factor that is indirectly proportional to the altitude of the PoI,
α ∈ {LoS, NLoS} and φ is the path loss exponent. The probability of LoS link, (PLoS),
depends on the angle of elevation and environmental constraints (eo and e1) as given in
Equation (2):

PLoS =
1

1 + eo.exp(−e1[θ − eo])
(2)

The average path-loss is calculated as:

L = PLoS.LLoS + (1− PLoS).LNLoS (3)

In this work, we have assumed Wi-Fi technology without a fixed access point for
emergency or infrastructure deficient scenarios [30]. The network of I_UAVs and A_UAV
provides connectivity to send collected data from PoIs to the cloud.

3.2. Data Gathering Process

Each PoI (lj) is a tuple (< dj, Oj >), where dj specifies the amount of data (e.g., images)
to be collected and Oj denotes the 3D coordinates of the PoI. The sequence of PoIs to be
visited is provided to the I_UAVs and the same is also shared with the A_UAV. During
the traversal along the sequence of PoIs, if the buffer of any of the I_UAVs overflows then
that I_UAV waits at the same PoI until its data is offloaded.

In order to gather and offload data, the A_UAV communicates with a single I_UAV
in a time slot. Let us denote the data gathered by each of the I_UAVs in a time slot t by
Ai(t). Let Qi(t) be the queue of the ith I_UAV and do f f

i (t) denotes the amount of data
offloaded to the A_UAV by the ith I_UAV in time slot t. The recursive equation to update
the Qi(t) is as follows:

Qi(t + 1) = max{Qi(t)− do f f
i (t), 0}+ Ai(t) (4)

Let L(t) be the queue of the A_UAV where A_UAV accepts the data from the selected
I_UAV in the time slot t. The following equation updates L(t) recursively:

L(t + 1) = max{L(t) + do f f
i (t)− do f f

access(t), 0} (5)

where do f f
access(t) is the amount of data offloaded to the cloud by the A_UAV in time slot t.

Figure 2 shows the different functions performed by an A_UAV in a single time-slot. The
decision function takes negligible time to decide on the next I_UAV for data gathering,
followed by the transition function where A_UAV takes τtrans time to move near the next
possible location to connect with the chosen I_UAV. The search function (τsearch) estimates
the location of the selected I_UAV based on the queue and position estimation algorithm
given in Algorithm 1. The bound on the maximum time required to estimate the position
of I_UAVs is discussed in Section 5.1. Finally, the data transmission function establishes
the successful communication with the I_UAV (if it is not shadowed). The sequence of the
functions mentioned above is repeated for every time slot. The next section describes the
objective of the system and formulates it as an optimization problem.
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1 2 3 4 5 6 7 8 9 T
….

select transit search transmit

Time slots

Sub phases of each time slot

Figure 2. Division of a timeslot with different functions of A_UAV.

Algorithm 1 Estimated position and queue length of I_UAV

Initialization:
time_elapsed← cur_timeslot-last_access_timeslot

li = last_accessed_position of I_UAVs
ψmin = li
ψmax = li
Qi = last_accessed_buffer I_UAVs

curr_location_data = data left at last_accessed_position of I_UAVs
Modes = Min or Max
if Modes == Min then D = Dmin

if Modes == Max then D = Dmax

for all I_UAVs do
for all Modes do

j← 0
while j ≤ time_elapsed do

if Qi ≤ Qmax then
if curr_location_data is not collected then

li = last_accessed_position
Qi =last_accessed_buffer+data_at_current_loc
j← j + 1

else
i← i + 1
li = next_position
Qi = last_accessed_buffer+Dmin or Dmax
j← j + 1
if Mode == Min then

Qi,min = Qi
ψmin = ψmin ∪ li

else
Qi,max = Qi
ψmax = ψmax ∪ li

else
li = last_accessed_position
Qi = last_accessed_buffer
break

return Qi,max, ψmax, Qi,min, ψmin

4. System Objective

In the proposed framework, the offloading of data happens at two stages—(1) from
I_UAV to A_UAV and (2) from A_UAV to the cloud. Our main focus is to achieve end-to-
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end data offloading to the cloud by minimizing the total energy consumption of the whole
system (Esys) given as:

Esys(t) = Etrans
access(t) + Ecomm

access(t) + Ehover
access(t) +

(
N

∑
i=1

(Ecomm
i (t))

)
(6)

where Etrans
access(t) is the transition energy of the A_UAV, Ecomm

access(t) is the transmission of
the A_UAV, Ehover

access(t) is the hovering energy of A_UAV and Ecomm
i (t) is the transmission

energy of the ith I_UAV. The following subsections discusses the details of calculating each
component of energy consumption in Equation (6).

4.1. Transition Energy of A_UAV

The transition energy of A_UAV refers to the energy consumed when moving from
one location to another [11,16,31] which is given as:

Etrans
access = κ · ||vel(t)||2τtrans (7)

where κ is a constant that depends on the total mass of the A_UAV, vel(t) is the velocity of
A_UAV and τtrans is the time taken to transit from one location to another.

4.2. Transmission Energy of A_UAV

A_UAV offloads data to the cloud via a wireless channel [32]. The transmission energy
consumed to transmit the data to the cloud is given as:

Ecomm
access(t) = (2

do f f
access(t)

W·τ − 1) · N0W
ζ
· τcomm (8)

where τcomm is the time allotted for data transmission. Other parameters such as do f f
access(t),

W, τ, N0, ζ are defined in the Table 1.

4.3. Hovering Energy of A_UAV

A_UAV hovers above the PoI to collect the data. The hovering energy consumed to
collect the data is given as:

Ehover
access(t) = Phover · τhover (9)

where, Phover is the power consumed while hovering per unit time and τhover is the time for
hovering.

4.4. Transmission Energy of I_UAVs

The energy consumed for offloading the do f f
i (t) data bits at time slot t from the selected

I_UAV to the A_UAV using the Air to Air channel of bandwidth W Hz is given similarly
to Equation (8) as:

Ecomm
i (t) = (2

do f f
i (t)
W·τ − 1) · N0W

ζ
· τ (10)

The wireless (Air to Air) channel power gain (ζ) from I_UAV to A_UAV can be given as:

ζ = g0 · (
r0

r′
)φ (11)

where g0 is the path loss constant, r0 is the reference distance, r
′

is the distance between the
UAVs, φ is the path loss exponent and τ is the time.

Given the system’s energy consumption, our goal is to find the optimal settings to
minimize the expected cumulative energy across the time horizon. The decision vari-
ables in every time slot t that affect the total system’s energy are given by the set π(t) =
{pi(t), Paccess(t), Saccess(t)} corresponding to the transmission energies of the I_UAVs &
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A_UAV, and the transition energy of A_UAV, respectively. Moreover, the channel informa-
tion for the data offloading task is not deterministic and varies in the environment, hence
the amount of data arrived at the A_UAV becomes stochastic which depends on the chan-
nel characteristics and the position of the selected I_UAV. Further, this framework does
not consider the energy consumed for the movement of I_UAVs as the PoIs are predefined
and the I_UAVs follow a predetermined trajectory consuming constant energy. The overall
optimization model for the stable system performance is formulated as:

P1 min
π(t)

lim
T→∞

1
T

T

∑
t=1

E[Esys(t)] (12)

s.t.

pi(t) ≤ pmax, ∀i, ∀t (13)

Paccess(t) ≤ Pmax, ∀t (14)

||Saccess(t)− Si(t)|| ≤ vmaxτ, ∀i, ∀t (15)
N

∑
i=1

Ri(t)(1− xi(t))
N

≤ Rmax, ∀i, ∀t (16)

do f f
i (t) ≤ Qi(t), ∀i, ∀t (17)

do f f
i (t) ≤Wτcomm log2(1 +

ζ pmax(t)
NoW

), ∀i, ∀t (18)

do f f
access(t) ≤Wτcomm log2(1 +

ζPmax(t)
NoW

), ∀t (19)

lim
T→∞

E[Qi(t)]
T

= 0, ∀i, ∀t (20)

lim
T→∞

E[L(t)]
T

= 0, ∀t (21)

Constraints (13) and (14) define the maximum transmission power of I_UAVs and
A_UAV, respectively. Constraint (15) limits the maximum transition energy of A_UAV for
every transition and Constraint (16) limits the time that has elapsed since the last access of
ith I_UAV to be less than Rmax. Additionally (17)–(19) bound the number of transmitted
bits. Constraints (20) and (21) establish the rate stability of all the system queues (I_UAVs
and A_UAV). Next, the model to optimize the trajectory of the A_UAV with respect to the
trajectories of I_UAVs is discussed.

5. Distance and Latency Aware Trajectory (DLAT) Optimization

Flexible and dynamic trajectory planning of A_UAV is crucial to applications where
terrestrial communication infrastructure is missing. As already mentioned, the position of
I_UAVs changes in every time-slot since they move through different PoIs to collect data.
The A_UAV’s trajectory needs to be planned so that it can connect and access an I_UAV in
a time-slot before the I_UAV’s queue overflows. Whenever an I_UAV’s queue gets full,
it does not move to its next designated PoI. Instead, it sojourns at the same PoI until it
can offload its data to the A_UAV and free up the queue space. In order to choose one of
the I_UAVs to gather data, the A_UAV would require the real-time information about the
queues of all I_UAVs in each time-slot. This information is not available a priori due to
the dynamic nature of the system queues. We use a message passing based approach for
estimating the queues of I_UAVs to make a selection. Further, the trajectory of the A_UAV
must be optimized to consume minimal energy.

The trajectory optimization model of A_UAV optimizes the trade-off between the
transition energy of A_UAV and the access latencies of all I_UAVs. In addition, this access
latency based data offloading generates an access fair schedule for the I_UAVs to offload
their data to the A_UAV. The access latency (Ri(t)) of the ith I_UAV in the time-slot t is



IoT 2022, 3 482

the difference between the time of its last access by the A_UAV and the current time-slot.
The distance and latency aware trajectory optimization of A_UAV is formulated as:

P2 min
Saccess(t)

T

∑
t=1

N

∑
i=1
||Saccess(t + 1)− Saccess(t)||2 −Vpi(t) (22)

s.t.

||Saccess(t)− Si(t)|| ≤ vmaxτ, ∀i, ∀t (23)
N

∑
i=1

Ri(t)(1− xi(t))
N

≤ Rmax, ∀i, ∀t (24)

N

∑
i=1

(xi(t) ·Qi(t)) ≥ 0, ∀i, ∀t (25)

N

∑
i=1

xi(t) = 1, ∀i, ∀t (26)

pi(t) ≤ pmax, ∀i, ∀t (27)

xi(t) ∈ {0, 1}, ∀i, ∀t (28)

where the first constraint (23) signifies that the distance travelled within a time-slot is
limited by the maximum velocity. Constraint (24) limits the time that has elapsed since
the last access of ith I_UAV to be less than Rmax. The constraint in (25) selects the I_UAV
which has data to offload whereas (26) enforces the selection of only one of the I_UAVs in
a time-slot. The selected I_UAV transmission power should be bounded as given in (27).

5.1. Estimating Position and Queue Length

The exact position and queue length of I_UAVs is not known to the A_UAV a priori.
The A_UAV maintains the last access statistics of each I_UAV using status messages. The
track of status messages received over time helps in computing the position (li) and queue
length (Qi(t)) of I_UAVs in a time-slot. The status message comprises of the remaining
queue size at the time of access and the data to be collected at the current PoI. Moreover,
the pre-computed trajectory of each I_UAV provides the set of PoIs to be visited by each
I_UAV. Algorithm 1 describes the procedure to estimate the queue length of each I_UAV
in every time-slot.

5.2. Estimation of Search Time Bound

A_UAV estimates the location of I_UAVs in each time slot using the last access
statistics. It could search the set of candidate locations to locate the precise location of
selected I_UAVs, which contributes to the search time. The bound on the search time
depends on the data generation rate and the maximum buffer of I_UAVs as derived below.

Lemma 1. The search time τsearch to locate the exact location of I_UAV with max buffer size Qmax
is given as:

τsearch(|ψ|) ≤
1
3

σ ·Qmax · $
vmax(µ2 − σ2)

(29)

where $ is the maximum distance between two consecutive PoIs in the possible set of locations to be
searched and |ψ| is the number of candidate locations for I_UAV and data generation process at
each PoI follows the normal distribution D ∼ N (µ, σ2)

Proof. The time taken to find the location of I_UAV depends on the travel distance to
cover the candidate PoI locations as given in Equation (30).

τsearch(|ψ|) ≥ |ψ| ·
$

vmax
(30)
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By generality,
|ψmin| ≥ |ψmax| (31)

where ψmin = {li, . . . , li,min} is the set of locations visited when each location has minimum
data Dmin to be collected whereas ψmax = {li, . . . , li,max} is the set of locations when
maximum data Dmax is present at each location. As the memory of each I_UAV is bounded
by Qmax, it covers less number of locations for ψmax as shown in Equation (31). Similarly,
the data collected in both the scenarios will be same as the maximum memory size is fixed.
The candidate locations are defined as the locations starting at li,max and ending at li,min.
Intuitively, the number of candidate locations |ψ| = |ψmin| − |ψmax|.

|ψmin| · Dmin = |ψmax| · Dmax

|ψmin| = |ψmax| ·
Dmax

Dmin

|ψmin| − |ψmax| =
(Dmax − Dmin)

Dmin
· |ψmax|

|ψmin| − |ψmax| =
(Dmax − Dmin)

Dmin
· Qmax

Dmax

(32)

From the above derivation, the locations in search trajectory are influenced by data rate and
maximum limit of memory size for I_UAVs. The upper and lower limit of normally dis-
tributed data is given as Dmax = µ + σ and Dmin = µ− σ respectively. Thus Equation (30)
can be written as

τsearch(|ψ|) ≤
1
3

σ ·Qmax · $
vmax(µ2 − σ2)

(33)

To calculate the upper bound for Equation (33), $ is the distance between consecutive
PoIs which could be calculated from the pre-calculated trajectory of I_UAVs based on
shortest path.

6. Energy Aware Data Offloading

The model presented in P1 in Section 4 is a stochastic optimization problem as the
arrival of data in the system queue is stochastic. Using the online Lyapunov optimization
algorithm, we solve the stochastic optimization in P1 and jointly stabilize all queues by
finding the optimal policy to access each I_UAV in each time-slot. The quadratic Lyapunov
function, as given in Equation (36) associates a scalar measure to the queues of the system.
Further, the stability of the system is maintained by a guaranteed mean rate stability of the
evolving queues as given in Equations (34) and (35).

lim
T→∞

E[Qi(t)]
T

= 0, ∀i (34)

lim
T→∞

E[L(t)]
T

= 0 (35)

Z(v(t)) =
1
2

[
N

∑
i=1

Qi(t)2 + L(t)2

]
(36)

where v(t) = [{Qi(t)}N
i=1, L(t)] consists of all system queues at a time t and Z(.) is quadratic

Lyapunov function of system queues. The Lyapunov drift corresponding to the above
function is given as:

4Z(v(t)) = E[(z(v(t + 1))− z(v(t)))] (37)



IoT 2022, 3 484

The Lyapunov drift plus a penalty function is minimized to stabilize the queue backlog of
the system is given as:

4DP(t) = 4Z(v(t)) + V ·E[Esys(t)] (38)

where V is a positive constant that controls the trade-off between Lyapunov drift and the
expected system energy. A high value of parameter V signifies more weight on minimizing
the energy of the system at the cost of high queue backlog. Therefore, V acts as a trade-off
parameter between system energy and queue backlog. An upper bound on4Z(v(t)) can
be derived as follows, (for details see [10])

4Z(v(t)) ≤E[−
N

∑
i=1

Qi(t) · d
o f f
i (t)]+ E[L(t) · (−do f f

access(t))] + C (39)

where C is a deterministic constant.
As a result, the upper bound of the drift plus penalty function becomes

4DP(t) ≤ C−E[
N

∑
i=1

Qi(t) · d
o f f
i (t)]−E[L(t) · do f f

access(t)] + V ·E[Esystem(t)|v(t)] (40)

Hence, the original formulation P1 can be reduced to P3 which bounds the system’s drift to
keep it stable.

P3 min
pi(t),Paccess(t)

E
[
−

N

∑
i=1

Qi(t)
o f f
i (t)]

]
−E[L(t)o f f

access(t)] + V ·E[Esys(t)] (41)

s.t.

pi(t) ≤ pmax, ∀i, ∀t (42)

do f f
i (t) ≤ Qi(t), ∀i, ∀t (43)

do f f
i (t) ≤Wτcomm log2(1 +

ζ pmax(t)
NoW

), ∀i, ∀t (44)

Paccess(t) ≤ Pmax, ∀t (45)

do f f
access(t) ≤Wτcomm log2(1 +

ζPmax(t)
NoW

), ∀t (46)

As can be observed, the constraints in P3 is a subset of the constraints in P1. To further
simplify the solution of the optimization formulation, we reformulate P3 as two separate
sub-problems provided the positions of A_UAV and I_UAV are fixed in a given time slot
t. The Lyapunov based online optimization is optimal for a stochastic system to derive the
overall optimal solution [33].

6.1. Optimization of Transmission Energies of I_UAVs

The first sub-problem deals with the optimization of parameters related to the I_UAV.
The variables Saccess(t), i.e., the position of A_UAV and the offloaded data do f f

i (t) of the
selected ith I_UAV are coupled in a particular time-slot. The fixed position of A_UAV
decouples these variables. In the optimization model P 3.1, the transmission energy is
optimized for a single time-slot (t) given the position of A_UAV:

P 3.1 min
pi(t)
−

N

∑
i=1

Qi(t) · d
o f f
i (t) + V · τcomm ·

N

∑
i=1

pi(t) (47)
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s.t.

pi(t) ≤ pmax, ∀i (48)

do f f
i (t) ≤ Qi(t), ∀i (49)

do f f
i (t) ≤Wτcomm log2(1 +

ζ pmax(t)
NoW

), ∀i (50)

The objective function in P 3.1 is a convex function. The first & second constraints
are linear and the third constraint is upper bounded by a concave function. As a result,
the stationary point of the objective function is found to be: p∗i (t) = min{max{(Qi(t)W

V −
NoW

ζ ), 0}, pmax}.

6.2. Optimization of Transmission Energy of A_UAV

The second sub-problem deals with the optimization of the A_UAV parameters for
the amount of data offloaded to the cloud at time t. The updated optimization model is
given as:

P 3.2 min
Paccess(t)

−L(t) · do f f
access(t) + V · τcomm · Paccess(t) (51)

s.t.

Paccess(t) ≤ Pmax (52)

do f f
access(t) ≤ L(t) (53)

do f f
access(t) ≤Wτcomm log2(1 +

ζPmax(t)
NoW

) (54)

The model P 3.2 has a convex optimization objective subject to convex constraints
to solve for the optimal transmission power of the A_UAV. The stationary point of the
optimization model is Paccess(t) = min{max{( L(t)W

V − N0W
ζ ), 0}, Pmax}.

Thus, the derived stationary points of the optimization model using the Lyapunov opti-
mization framework are calculated in every time-step to optimize the A_UAV trajectory and
data-offloading tasks. The overall proposed solution approach is presented in Algorithm 2.
Next, we discuss the experimentation setup for evaluating the proposed solution.

Algorithm 2 Proposed Solution Approach

Initialize: Trajectories of all I_UAVi and list of PoIs li.
Time: t = 0
while t ≤ T do
1. Compute and offload do f f

access(t) as using P 3.2
2. Update L(t)
3. Using Algorithm 1 estimate the {Qi(t)}N

i=1 and {Si(t)}N
i=1

4. Select the ith I_UAV to collect data using P2
5. Compute do f f

i (t) for ith I_UAV using P 3.1 to offload data to A_UAV
6. Update Qi(t)
7. t = t + 1

7. Experimentation

In this section, we present the simulation setup to validate the efficacy of our proposed
Distance and Latency Aware Trajectory Optimization with Lyapunov based energy-aware
data offloading followed by results and discussions. The simulation parameters are listed
in Table 2.
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Table 2. List of Simulation Parameters.

Parameters Values

Channel Bandwidth 1 MHz
κ 1

Noise Power for I_UAV 10−13

Noise Power for A_UAV 10−20

The path-loss constant g0 10−4

The path loss exponent θ 2 to 4
Memory capacity of I_UAV (Memmax) 105 bits

We have considered a 600× 600 square meter area with PoIs spread along the region in
disjoint clusters and at heights ranging from 70 to 80 m above the ground. All experiments
are conducted for at least 30 times and the average of results are plotted. We sample 150 PoI
locations uniformly randomly in three disjoint clusters. From a practical point of view of
a multi-UAV system, we consider a system of three I_UAVs with one A_UAV in all the
simulation experiments. Each I_UAV is assigned to a cluster where I_UAVs randomly
choose a starting location within the cluster. The sequence of PoIs to be visited by each
I_UAV is generated using the shortest path algorithm. Before proceeding to the next PoI,
an I_UAV collects all the data (Ai(t)) from that PoI. In the data collection process, an
I_UAV may sojourn at the same PoI across multiple time-slots until all the data (Ai(t)) of
PoI is collected. For each PoI, the amount of data to be collected is modeled as a Gaussian
distribution with a mean of 150 Kb and variance of 50 Kb. The A_UAV gets partial
information about the data generated at each location so it could not accurately estimate the
location of I_UAV in the next time slot; as a result, it has to search for candidate locations
to access the selected I_UAVs as discussed in Section 5.1. The trade-off parameter V ranges
from 10 to 1010. The length of each time slot(τ) is 25 s divided into different sub slots as
shown in Figure 2. The selection of I_UAV is assumed to take negligible time whereas
transition may take up to 20 s. The search and transmit function takes total of 5 s. The
maximum transmission power for A_UAV and I_UAV are 5 W and 2 W, respectively [25].
The other simulation parameters are listed in Table 2.

In order to validate the performance of our proposed approach, we compared our
proposed approach with a set of baseline approaches on two broad categories of optimiza-
tion parameters viz. Trajectory planning and Data offloading. We consider the following
baseline approaches:

• Distance Aware Trajectory planning (DAT): In this approach, the A_UAV selects to
access an I_UAV based on the shortest distance from the current location in each
time slot.

• Round Robin based Trajectory planning (RR): In this approach, the A_UAV accesses
I_UAVs in sequential order in each time slot.

• Maximum Transmission Power (MAX) data offloading: In each time slot, the A_UAV
and the I_UAV operate at the maximum transmission power to offload data.

The proposed approaches are as follows:

• Distance and Latency Aware Trajectory Optimization (DLAT): In this approach, the
A_UAV selects the I_UAV based on the minimum distance, with maximum bits to
offload and access latency constraint as given in the trajectory optimization problem.

• Hybrid Approach for Trajectory Scheduling (HDLAT): In this approach, the A_UAV
selects the I_UAV based on the minimum distance and access latency constraint as
given in the trajectory optimization problem up to a certain threshold of battery, i.e.,
75% of the total battery. Beyond the threshold, the scheduling algorithm switches to
the DAT strategy (proposed approach).

• Lyapunov Optimization for data offloading: In each time slot, the A_UAV and
the I_UAV calculate the optimal value of transmission energy using the Lya-
punov Optimization.
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Experiments were conducted by taking a combination of one of the approaches from
both the categories: (1) DAT + MAX, (2) DLAT + MAX, (3) RR + MAX, (4) HDLAT + MAX,
(5) DAT + Lyapunov, (6) RR + Lyapunov (7) DLAT + Lyapunov (proposed approach) and
(8) HDLAT + Lyapunov.

8. Results and Discussion

In this section, we discuss the comparative performances of our proposed approaches
with baseline approaches.

8.1. Transmission Power and Average Buffer Size

Figure 3a depicts the effect of value of parameter V with respect to the transmis-
sion power of the A_UAV. It is evident from Figure 3a that all combinations with max
power consumption for data offloading always consume the maximum energy, making
the average transmission power consumption the same across different values of V. For
baseline and proposed approach with Lyapunov based data offloading, a drop in the energy
consumption can be observed for log(V) values beyond 7, because large V forces the system
to consume less energy, consequently less data is transmitted to A_UAV.

0 2 4 6 8 10
log10(V)

0

1

2

3

4

5

Av
era

ge
 Tr

an
sm

iss
ion

 Po
we

r (
W)

HDLAT
DAT

DLAT
RR

HDLAT +Max
DAT +Max

DLAT+Max
RR+Max

(a)

0 2 4 6 8 10
log10(V)

0

50

100

150

200

250

300

Tim
e S

lot
s (

)

HDLAT
DAT

DLAT
RR

HDLAT +Max
DAT +Max

DLAT+Max
RR+Max

(b)

0 2 4 6 8
log10(V)

500

1000

1500

2000

2500

3000

Av
er

ag
e B

uff
er

 of
 A_

UA
V

HDLAT
DAT

DLAT
RR

HDLAT +Max
DAT +Max

DLAT+Max
RR+Max

(c)

0 2 4 6 8 10
log10(V)

0.0

0.5

1.0

1.5

2.0

2.5

Av
era

ge
 H

ov
eri

ng
 En

erg
y (

J)

×104

HDLAT
DAT

DLAT
RR

HDLAT +Max
DAT +Max

DLAT+Max
RR+Max

(d)

Figure 3. Cont.
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Figure 3. Various Results of A_UAV. (a) Analysis of Average Transmission Power of A_UAV.
(b) Analysis of Average Access Latency of A_UAV. (c) Analysis of Average Buffer of A_UAV.
(d) Analysis of Hovering Energy of A_UAV. (e) Analysis of Transition Energy of A_UAV. (f) Analy-
sis of Total Flight Time of A_UAV.

It can be observed in Figure 4a that the average buffer length of I_UAVs increases in
line with the rise of V after hitting the inflection point. The value of V between 6 and 7 could
maintain the queue buffer and consume less transmission energy for I_UAVs. Similarly,
A_UAV has fewer data transmitted from the I_UAVs for higher values of V, which would
decrease the total data collection or transmission further by A_UAV as shown in Figure 3c.

8.2. Hovering Energy of A_UAV

The plot in Figure 3d depicts the impact of trade off parameter V on the hovering
energy of A_UAV. The total hovering energy starts increasing after the inflection point
because A_UAV takes more time slots to collect the same amount of data from I_UAVs. As
a result, the energy consumption of A_UAV significantly increases for DAT and HDLAT,
whereas it remains constant for DLAT (total flying time is less). Similarly, Figure 3e shows
the evolution of total transition energy with V. It is interesting to observe that for DAT
baseline A_UAV stays in the field for a longer time. As a result, transition energy is higher
compared to DLAT and HDLAT. However, the A_UAV transition energy starts decreasing
after the inflexion point. Similarly, DAT and HDLAT consume less battery in every time-slot
as both save on transition energy by selecting the nearest I_UAV. This allows A_UAV to
stay longer in the field, which is illustrated in Figure 3f. The baseline DAT remains for a
more extended time, whereas RR stays for the least number of time slots before running
out of battery. The proposed approaches of DLAT and HDLAT lie between the extreme
baselines for the different analyses conducted. This shows that the proposed approach has
an optimised trade-off between energy saving along with the end-to-end data offloading
from multiple I_UAVs.
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Figure 4. Various Results of the System. (a) Analysis of Average Buffer of I_UAV. (b) Analysis of
Total Number of PoIs Covered. (c) Analysis of Total Number of PoIs Covered and Max Buffer of
I_UAVs. (d) Analysis of Average Access Latency and Max Buffer of I_UAVs.

8.3. I_UAVs Access Latency

Figure 3b shows the effect of trade off parameter V on the average access latency of
the system. The trajectory of the A_UAV affects the access sequence and waiting times of
the I_UAVs to offload their data to A_UAV. This can be observed in the proposed DLAT +
Lyapunov, which has an upper bound on access latency throughout the system. Similarly,
RR based baseline approach has an access latency of 2 time-slots whereas for both DAT
and DAT + MAX baseline approaches, the average access latency is higher. The average
access latency for DAT baseline approach becomes worse with increasing V. The same
remains stable for DLAT in both scenarios. HDLAT, as per expectation, remains between
the DLAT and DAT approaches. It could be related to the fact that an increase of V causes
the A_UAV to spend more time slots to collect the data from I_UAVs. An increase in flying
time of A_UAV is influenced by a decrease in transition and transmission power, which
increases the average access latency of DAT and HDLAT approaches. In contrast, it remains
constant for DLAT and RR because of latency constraints. Our proposed approaches
lie within the extreme baselines and maintain the average access latency by saving on
transmission energy and transition energy in HDLAT by switching from DLAT to DAT
after 75 percent of the battery is consumed. The Average energy consumption of A_UAV
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includes transmission, transition, and hovering energy consumption. Similarly, the tradeoff
between the average access latency and the average energy consumption can be observed as
the average access latency of the system reduces, the average energy consumption increases.
By the definition and from Figure 3a,b,d,e, this can be oberved that the RR baseline has
the least average access latency as well as the highest energy consumption whereas, DAT
has the highest average access latency and the least energy consumption. From Figure 3b,
this can be observed that for HDLAT the average access latency of A_UAV is reduced by
approximately 70% as compared to the greedy approach(DAT) and remains constant for
DLAT. The RR baseline has the least average access latency, but the gap between HDLAT
and RR is much lesser as compared to the gap between HDLAT and DAT.

8.4. Coverage of PoIs

The coverage of PoIs by the A_UAV can be defined as the number of PoI locations
whose data has been offloaded to A_UAV by the I_UAVs. Figure 4b shows the effect of
trade-off parameter V value on the number of PoIs covered in the system. It can be observed
that A_UAV can serve more PoIs for both DLAT and HDLAT approaches than the RR
baseline approach. The DAT-baseline approach serves relatively more PoIs than DLAT and
HDLAT by saving on transition and transmission energy, but not maintaining low access
latencies of I_UAVs. In Figure 4c, the effect of increasing the buffer size of I_UAVs on the
PoIs is shown. It can be observed, the number of PoIs served increases with an increase
in buffer size. In our proposed approach, the performance of DLAT and HDLAT is a
tradeoff between two extreme baselines. DAT baseline approach covers more locations but
at the cost of access latency, as shown in Figure 4d. In a similar manner to average access
latency, the tradeoff between the PoIs coverage and the average energy consumption is also
evident from Figures 3e and 4b. The approach with higher average energy consumption
also has a reduced PoIs coverage. RR has the highest energy consumption and covers the
least number of PoIs, whereas DAT is having the least energy consumption but covers
the maximum number of PoIs. In the optimal processing zone of log(V) between 6 and 7,
HDLAT covers more than double the number of PoIs as compared to RR while consuming
less energy.

9. Conclusions

In this paper, we have introduced an online scheduling approach to collect data in
resource-constrained and infrastructure-deficient environments. The paper presents a
heterogeneous multi-UAV based framework for end-to-end data collection and offloading
using a distance and latency-aware trajectory optimization. The Lyapunov optimization ap-
proach is used to ensure the system’s stability in terms of expected system queue backlogs
by breaking the system optimization problem into manageable sub-problems. The simula-
tion results show that the access latency of our proposed (DLAT & HDLAT) approaches
perform better than other baseline approaches. Moreover, the system parameter V analysis
has shown a trade-off between the queue stability and the system utility. The paper also
presents a detailed analysis of different forms of energy consumption of A_UAV. In the
future, we plan to optimize the trajectories of I_UAVs jointly with that of the A_UAV.
The energy optimization of I_UAVs could be analyzed while designing the optimal trajec-
tory of both the I_UAVs and A_UAVs. Further, the effect of introducing more than one
A_UAV could be studied in the overall optimization approach. Along with this, the use of
multi-agent reinforcement learning could be explored to solve the problem by introducing
the coordination among the A_UAVs and I_UAVs.
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