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Abstract: The Internet of Things (IoT) is an innovative scheme providing massive applications that
have become part of our daily lives. The number of IoT and connected devices are growing rapidly.
However, transferring the corresponding huge, generated data from these IoT devices to the cloud
produces challenges in terms of latency, bandwidth and network resources, data transmission costs,
long transmission times leading to higher power consumption of IoT devices, service availability, as
well as security and privacy issues. Edge computing (EC) is a promising strategy to overcome these
challenges by bringing data processing and storage close to end users and IoT devices. In this paper,
we first provide a comprehensive definition of edge computing and similar computing paradigms,
including their similarities and differences. Then, we extensively discuss the major security and
privacy attacks and threats in the context of EC-based IoT and provide possible countermeasures and
solutions. Next, we propose a secure EC-based architecture for IoT applications. Furthermore, an
application scenario of edge computing in IoT is introduced, and the advantages/disadvantages of
the scenario based on edge computing and cloud computing are discussed. Finally, we discuss the
most prominent security and privacy issues that can occur in EC-based IoT scenarios.
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1. Introduction

Over the past decades, cloud computing [1,2] has been largely developed and applied
due to its high cost-efficiency and flexibility achieved through a combination of computing,
storage, and network management functions that work in a centralized manner. Existing
centralized cloud computing architecture is facing severe challenges owing to the fast
development of the Internet of Things (IoT) and mobile Internet applications. For obtaining
sophisticated applications, mobile devices connected to remote centralized cloud servers
impose additional loads on both radio access networks (RANs) and backhaul networks that
result in high latency [3]. Furthermore, with the progressing development of information
technology, IoT is playing an important role in all aspects of current modern life [4]. With
the advent of IoT, new challenges have arisen, such as stringent latency, capacity constraints,
resource-constrained devices, uninterrupted services with intermittent connectivity, and
enhanced security, which centralized cloud computing architecture cannot adequately
satisfy [5].

IoT refers to the modern interaction and communication network infrastructure of
millions of physical objects (i.e., things) embedded with interconnected sensors/devices
that can produce, collect, and exchange different data amongst themselves [6–10]. Therefore,
more and more sensors and devices are being interconnected through IoT technology, and
these sensors and devices will generate enormous amounts of data and require further
processing and analytics, providing intelligence to both service providers and users. In
conventional cloud computing, all data must be uploaded to centralized servers, and after
computation, the results should be sent back to the sensors and devices. This process
will require prohibitively high network bandwidth and the data transmission costs of
bandwidth and resources.
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In addition, by increasing the size of the data, the network performance will deterio-
rate. Furthermore, since in a conventional cloud computing-based service, the computation
processes need to be uploaded to the cloud servers that are already far from the end users,
and the limited bandwidth and network resources are occupied by massive data transmis-
sions, there will be large latency within the networks. In time-sensitive IoT applications,
meaning that they require very short response times, such as smart transportation [11],
smart electricity grid [12,13], smart city [14–16], etc., large latency is more critical, and it
is unacceptable. This is an important issue for IoT since these applications will have an
impact on safety and emergency response.

Moreover, most IoT devices (smartphones, wearable watches, etc.) still have funda-
mental challenges such as limited memory size and limited battery life. Balancing power
consumption by transferring the energy-consuming computation tasks of applications to
devices that have higher power and computational capabilities is necessary to be able to
extend the battery life of devices. In addition, processing data in computation nodes with
a short distance to the end user will reduce transmission time, leading to a reduction in
power consumption. In contrast, in cloud computing-based services, network traffic affects
the data transmission speed, and heavy traffic results in long transmission times, therefore
increasing power consumption costs. Hence, offloading the energy-consuming computa-
tion of applications to the edge of networks [17] is a critical issue that should be considered
in order to extend the battery life of IoT devices. Recent research has investigated the
effective exploitation of capabilities at the edge of networks in order to support IoT and its
requirements [9].

In edge computing (EC), computing and storage of massive data produced by different
types of IoT devices can be performed at the network edge close to the user instead of
transferring them to a centralized cloud infrastructure [18–26]. Since the locations of edge
computing nodes are close to end users, the peak in traffic flows will be reduced. In addition,
the bandwidth requirements of the centralized network and the transmission latency during
data computing or storage in IoT will be significantly mitigated. Distributing computation
nodes deployed at the edge allow offloading of traffic and computational pressure from the
centralized cloud, and it provides faster response times for IoT applications and greater
quality services in comparison with cloud computing. Reducing the overall delay of the
system and the demand for communication bandwidth is very efficient and would improve
the overall performance of the system.

Transferring the data directly to the cloud platform requires substantial operational
costs for data migration, good bandwidth, and delay characteristics. By reducing data
uploading volume in EC-based IoT, data migration volume, bandwidth consumption, and
latency will be reduced; therefore, operational costs will be decreased accordingly.

Another advantage of edge computing is protecting data security and privacy [27–30].
Even though cloud platform service providers offer a comprehensive system of centralized
data security protection solutions, if centralized stored data becomes leaked, it will have se-
rious consequences. Edge computing in IoT allows deploying the most appropriate security
solutions in the local vicinity, so it reduces the risk of data leakage during transmission, as
well as the data volume stored in the cloud platform; therefore, security and privacy risks
will be minimized.

Furthermore, in edge computing, the computational and communication overhead
from IoT devices with limited battery or power supply will be migrated to edge nodes with
significant power resources. Therefore, the lifetime of the IoT devices with a limited battery
will be extended, resulting in an increased lifetime of the entire IoT network. Thus, edge
computing is more suitable for IoT services; it can offer secure and efficient services for a
large number of end users, and architectures based on edge computing can be considered
for future IoT infrastructure [10].

There are some existing related studies in the field of edge computing that have pro-
vided a survey of papers and architectures in the area of edge computing, fog computing, or
MEC. The authors in [31] presented a comprehensive survey on fog computing and related
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computing models and their differences and similarities. They also provide a summary and
taxonomy of research into fog computing and its related computing models. Some works
have focused on security and privacy issues and related countermeasures in edge comput-
ing paradigms [32,33]. Other works have proposed architectures for EC-based IoT [34,35].
Inspired by these works and using other materials from top journals/conferences, high-
cited works, and references in the field, our study provides a detailed and up-to-date
analysis of several subjects from a holistic perspective.

The main contributions of this article are summarized as follows:

1. We provide an overview and definition of edge computing and its relationship/difference
with/from other similar computing models, such as fog computing, cloud computing,
cloudlets, and MEC.

2. We present attacks and threats of EC-based IoT. Then, we discuss the possible solu-
tions and countermeasures at different network layers and for different security and
privacy issues.

3. We propose a secure edge computing-based architecture for IoT infrastructure through
many research achievements concerning edge computing in IoT and define an appli-
cation of edge computing in IoT for the architecture.

The remainder of this paper is structured as follows: in Section 2, we discuss cloud
computing and other similar computing paradigms and compare edge computing with other
similar computing paradigms. Section 3 provides classifications of security and privacy
attacks and threats for EC-based IoT. Section 4 describes possible security solutions and
countermeasures. It also provides a comprehensive analysis of security and privacy issues for
EC-based IoT. Section 5 presents an edge computing-based architecture for IoT infrastructure.
Section 6 defines IoT scenarios based on cloud and edge computing as an application of
the proposed architecture. Section 7 discusses the advantages/disadvantages of scenarios.
Section 8 highlights the main challenges. Finally, Section 9 concludes this article.

2. Edge Computing and Related Computing Paradigms

This section focuses on edge computing, types of edge computing technology, and
related computing paradigms. We compare edge computing with related computing
paradigms and also provide a comparison of different types of edge computing technology.

2.1. Cloud Computing

Using cloud computing, the access and abilities of computing, storage, and network
infrastructure have been developed for applications [31]. According to the definition of
the national institute of standards and technology (NIST), cloud computing is a pattern
to further omnipresent and on-demand network access to shared resources [1]. Cloud
data centers (provided by cloud providers, such as Google, IBM, Microsoft, and Amazon)
offer virtualized resources that are highly accessible, scalable, and can be reconfigured
dynamically; this reconfigurability helps cloud computing to offer services with a pay-as-
you-go cost model [36]. With the pay-as-you-go cost model, users are able to conveniently
access remote computing resources and data management services, and they will only
be charged for the number of resources that they use. Cloud offers services such as
infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service
(SaaS) [31]. A variety of these services can be used by application developers based on their
requirements for the applications that they develop.

The initial aim of cloud computing was to allow users to have access to computing
resources for omnipresent computing. Although cloud computing has assisted in achieving
this aim, it may take a long time to access cloud-based applications, which is not feasible for
some critical applications that require very low latency. The growing number of connected
devices and the amount of data generated at the network edge require cloud resources to be
in close proximity to the data generated place. Due to the high demand for high-bandwidth,
low-latency, geographically distributed, and privacy-sensitive data, there is an essential need
for computing models that can take place in close proximity to connected devices to be able to
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support the mentioned demands. For this purpose, edge computing has been proposed [37,38].
In the following, we explain various computing paradigms and compare them.

2.2. Mobile Computing

The development of mobile computing (MC) has influenced the advancement of
cloud computing. In mobile computing (also called nomadic computing), computing is
accomplished through mobile and portable devices [31]. One of the applications of mobile
computing is pervasive context-aware applications, such as location-based reminders.

Mobile computing has the advantage of distributed computing architecture. With
this architecture, mobile machines are able to operate in decentralized locations. Nev-
ertheless, mobile computing has many disadvantages such as poor resource constraints,
communication latency, the balance between autonomy and interdependence (common
in all distributed architectures), and mobile clients’ need to efficiently adapt to changing
environments [39]. Because of these drawbacks, mobile computing is often not suitable
for applications with low latency or robustness requirements or applications that generate,
process, and store large amounts of data on devices.

The scale and scope of mobile computing have been developed by fog (see
Section 2.4.3) and cloud computing. Computation in fog and cloud computing is not
limited to a local network. Mobile computing only requires the hardware of mobile devices.
Fog and cloud computing, however, need more rich resource hardware along with virtu-
alization abilities. Security in mobile computing should be given via securing the mobile
device. Mobile computing is more resource-constrained compared with fog and cloud
computing; however, recently, advancements in wireless protocols and mobile hardware
have notably lessened this gap.

2.3. Mobile Cloud Computing

The combination of mobile computing and cloud computing is called mobile cloud
computing (MCC), in which both data processing and data storage happen in the cloud
outside the mobile device [31,40]. The focus of MCC is on the relationship between cloud
service providers and cloud service users of mobile devices.

In MCC, resource-constrained mobile devices are able to use the rich resources of cloud
services. Most part of the computation in MCC has shifted from mobile devices to the cloud.
MCC is able to run applications with intensive computations and increases the mobile
device’s battery life. Specifications and abilities of both mobile and cloud computing have
been used in MCC. By applying a combination of mobile and cloud computing, computing
resources are highly available in MCC compared with mobile computing, which is resource
constrained. This is beneficial for applications that require high computation, e.g., mobile
augmented reality. Cloud-based services in MCC are considerably more available compared
with mobile computing. However, mobile devices can function the computation in MCC,
but for operating high-computation services, MCC relies on cloud services. In MCC,
security must be provided on both mobile devices and the cloud.

MCC also has the same restrictions as mobile and cloud computing. MCC has a
centralized architecture that might not be suited to applications with the desire for the
pervasiveness of devices. Moreover, accessing cloud-based services in both cloud comput-
ing and MCC uses a WAN connection; therefore, applications running on these platforms
need to be always connected to the Internet, which introduces connectivity challenges.
In addition, offloading computation to the cloud results in high latency, which, as we
discussed, is not suitable for delay-sensitive applications.

2.4. Edge Computing

The storage, management, and processing power of data generated by connected
devices have been enhanced by edge computing. In contrast to MCC, edge computing
has been placed in close proximity to IoT devices at the edge of the network. It is worth
mentioning that edge is as close as one hop from IoT devices and not placed on those
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devices. Nevertheless, it is possible that edge is more than one hop far from IoT devices in
the local IoT network. According to OpenEdge Computing, computation in edge computing
is performed at the edge of the network via small data centers in the vicinity of users [41].
The main purpose of edge computing is to provide storage and computation resources in
close proximity to the user in a way that is omnipresent [41]. Edge computing is a pivotal
computing model for IoT devices—the filtering, preprocessing, and aggregating of IoT
data is performed using cloud centers placed in the vicinity of IoT devices [42]. The main
advantages of edge computing are as follows [31,34,42,43]:

• Improve system performance: the most important advantage of edge computing in
IoT is achieving ms-level of data processing. Edge computing reduces the overall
delay of the system and the demand for communication bandwidth and improves the
overall performance of the system.

• Protect data security and privacy: cloud platform service providers offer a compre-
hensive system of centralized data security protection solutions to their customers.
However, once centralized stored data becomes leaked, it will lead to serious conse-
quences. In contrast, edge computing allows deploying the most appropriate security
solutions in the local vicinity, and most of the computation can be performed on the
edge of the network, so less data need to be transferred. Therefore, it reduces the risk
of data leakage during the transmission and the amount of stored data in the cloud
platform; thus, security and privacy risks will be decreased. IoT devices collect a large
amount of data that can contain some sensitive information (e.g., global positioning
system (GPS) data, streams from cameras/microphones). An application might need
this information to run complex analytics in the cloud; it is important to preserve the
privacy of sensitive context once the data leaves where it was generated. Using edge
computing, the sensitive data can be preprocessed onsite and passed through a first
layer of anonymization, and then the privacy complaint data can be sent to the cloud
for further analysis.

• Reduce latency: latency in edge computing has been reduced compared with MCC and
cloud computing because of the proximity to users. However, if the local computation
unit is not powerful enough, the latency in edge computing can be worse than in MCC
and cloud computing.

• Reduce operational costs: transferring data directly to the cloud platform requires
substantial operational costs for data transmission, good bandwidth, and delay char-
acteristics. In contrast, edge computing can reduce data uploading volume; therefore,
data transmission volume, bandwidth consumption, and latency will be reduced,
consequently reducing operational costs.

• High service availability: availability of services is also superior in edge computing;
there is no waiting time for a centralized platform to provide the services, and there
is no limitation of resources, such as in traditional mobile computing. In contrast to
MACC (see Section 2.4.2), edge computing contains small data centers, while MACC
basically does not require a data center. Therefore, the availability of services is higher
in edge computing. In addition, edge computing can form peer-to-peer and cloud
computing hybrid models, so it benefits from broader computing capabilities than
does MACC [44].

• Be robust to connectivity issues: when part of the computations can be run directly
on the edge, applications will not be disrupted by limited or intermittent network
connectivity. This is especially beneficial when applications are running on remote
locations with poor network coverage. It can also reduce expensive costs related to
connectivity technologies, such as cellular technologies.

Where is Edge?
In the telecommunications industry, the term edge generally alludes to 4G/5G base

stations, radio access networks (RANs), and Internet service provider (ISP) access/edge
networks. However, in the IoT landscape [42,45], the term edge refers to the local network
where sensors and IoT devices are placed.
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The edge refers to the immediate first hop from the IoT devices but not the IoT nodes
themselves, e.g., the Wi-Fi access points or gateways. The computing paradigm that the
computation is performed on IoT devices is called mist computing (see Section 2.4.5). In
this paper, we consider mist computing as one of the technologies of edge computing.

2.4.1. Cloudlet Computing

The first edge computing concept bringing computation/storage closer to user equip-
ment (UE)s was proposed in 2009 by Carnegie Mellon University [43,46]. Cloudlet is
sometimes referred to as micro data center (MDC) in some studies [47]. The idea behind
the cloudlet is placing a computer or a cluster of computers with trusted high resources
and computation power and a strong connection to the Internet at strategic locations close
to edge devices to provide both computation resources and storage for the UEs in the
vicinity [46]. Cloudlets are small-scale data centers (miniature clouds) that are usually
located one hop from mobile devices. The purpose of cloudlet computing is offloading
computation from mobile devices to virtual machine (VM)-based cloudlets placed on the
edge of the network and in the local area [48].

Cloudlet is a small cloud in close proximity to mobile devices. Cloud service providers
who have a plan to offer accessible services in the proximity of mobile devices can be
operators of cloudlet computing. Cloudlets can be enabled by network infrastructure owners,
such as AT&T, Nokia, etc., with virtualization capacity placed in close proximity to mobile
devices, with small-scale hardware sizes in contrast to huge data centers in cloud computing.
Computing resources in cloudlets are more moderate because of the small sizes of cloudlets,
but latency and energy consumption are lower compared with cloud computing.

A disadvantage of cloudlets is that they are predominantly accessible through Wi-Fi
connection, and mobile UEs have to switch between Wi-Fi and the mobile network to use
cloudlet services [4]. In addition, cloudlets are not an inherent part of the mobile network,
and Wi-Fi only has local coverage with limited mobility support, so it is hard to attain good
quality of service (QoS) for mobile UEs, the same as in the case of MCC.

Mobile cloudlets are a similar concept to cloudlets. In mobile cloudlets, cloudlets
are a group of close mobile devices connected wirelessly, for instance, using Wi-Fi or
Bluetooth [49]; mobile devices here can be providers or clients of computing services.

2.4.2. Mobile Ad Hoc Cloud Computing

The other option to enable cloud computing at the edge is doing computing di-
rectly at the UEs through an ad hoc cloud that allows several UEs in proximity to com-
bine their computation power; therefore, they can process high-demanding applications
locally [43,50–59].

MCC is pervasive but is not very suitable in the absence of a centralized cloud or
infrastructure. An ad hoc mobile network is an impermanent and dynamic network of
nodes that has been created via routing and transport protocols. Mobile ad hoc cloud
computing (MACC) is the most decentralized form of a network [60]. In MACC, mobile
devices create a highly dynamic network topology; network adaptation for more devices
to frequently leave/join the network is necessary. Ad hoc mobile devices are also able to
create clouds to use for networking, storage, and computing. Unmanned vehicular systems
and group live video streaming are examples of MACC use cases.

Compared with cloudlets, virtualization with VM capability configuration is required
in cloudlets, but such infrastructure is not required in MACC. Mobility has been supported
in both cloudlet computing and MACC; however, real-time IoT applications are not sup-
ported in resource-constrained MACC. Tasks in the cloudlet have been divided among
cloudlet nodes placed in the vicinity of mobile devices in order to bear local services for
mobile customers [61].

Resources in MACC have an ad hoc nature; therefore, MACC is basically distinct
from cloud computing. Mobile devices in MACC act as data storage, data providers, and
processing devices, and because of the lack of network infrastructure, they also control
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routing traffic amongst themselves. Local mobile resources have been pooled to create an
ad hoc cloud; therefore, MACC can offer high computation. These attributes are distinct
from the target users, connectivity, and architecture in cloud computing.

The service access method, hardware, and distance from users are different in MACC
and MCC. The computation in MACC happens on mobile devices; however, in MCC,
the computation is away from mobile devices. In MACC, only mobile devices have been
required to operate; however, in MCC, extensive data centers used for cloud computing
are also needed. Therefore, computation power in MCC is high, but latency is also high in
MCC. Security in MACC is only achieved through mobile devices but achieving trust can
be challenging in the absence of a secure collaboration framework. Services in MACC are
only accessible using mobile devices; the connection between mobile devices is through
Bluetooth, Wi-Fi, or other cellular protocols.

A mobile ad hoc network (MANET) is a similar concept to MACC. In MANETs, mobile
host devices are connected to each other with a single hop and without base stations [62].
MANET devices create dynamic networks but not necessarily a cloud, meaning that the
computation or storage resource pools are not necessary for MANETs. Solutions such as
redundancy and broadcasting to MANETs are applicable to MACC.

2.4.3. Fog Computing

Another concept of edge computing is fog computing. The fog computing paradigm
(shortly often abbreviated as “fog” in the literature) was introduced by Cisco in 2012 to
enable the processing of applications on billions of connected devices at the edge of the
network [38]. Fog computing is defined as decentralizing a computing infrastructure by
extending the cloud by locating nodes between the cloud and edge devices [63,64]. This
puts data, computation, storage, and applications closer to the user or IoT device where the
data needs processing; therefore, a fog will be created outside the centralized cloud and
reduces the necessary data transfer times to process data.

As a consequence, computation, storage, networking, decision-making, and data
management take place both in the cloud and throughout the IoT-to-cloud route while
data travel over to the cloud (preferably in close proximity to IoT devices). For example, in
intelligent transportation systems (ITSs), GPS data can be compressed at the edge before
transferring to the cloud [65]. According to the definition of the OpenFog Consortium,
fog computing is [37]: “a horizontal system-level architecture that distributes computing,
storage, control and networking functions closer to the users along a cloud-to-thing con-
tinuum.” Computing functions in fog computing have been distributed amongst various
platforms and industries due to the “horizontal” platform [66]. To be able to fulfill the
requirements of data-driven operators/users, a flexible platform has been provided in fog
computing. IoT can be strongly supported by fog computing.

Compared with traditional cloud computing, fog nodes are placed in the vicinity of IoT
source nodes, which causes significantly low latency. Node locations are less centralized
in fog computing, as opposed to cloud data centers, which are centralized. Fog nodes are
widely distributed geographically. In fog computing, security is achieved via the edge or
in the fog node locations compared with cloud computing, in which security mechanisms
are provided in the location of cloud data centers. Because fog computing is decentralized,
devices can be served as either fog computing nodes themselves or as clients of the fog that
use fog resources.

The main difference between cloud and fog computing is the scale of hardware compo-
nents related to these computing paradigms. Cloud computing provides highly available
computing resources with relatively high-power consumption, while fog computing pro-
vides computing resources with medium availability and lower power consumption [67].
Cloud computing usually utilizes large data centers, whereas, in fog computing, there are
small servers, routers, switches, gateways, set-top boxes, or access points. Hardware in fog
computing occupies much less space compared with the one in cloud computing; therefore,
it can be placed closer to users. Fog computing is accessible via connected devices from
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the edge to the network core, while cloud computing is accessible via the network core.
In addition, fog-based services can work without continuous Internet connectivity (with
low/no Internet connection), meaning that the services are able to work independently,
then necessary updates will be sent to the cloud anytime that there is an Internet connection.
However, in cloud computing, devices need to be connected to the Internet while the cloud
service is running.

In fog, computation, communication, storage, control, and decision-making have been
distributed closer to IoT devices, helping devices to measure, monitor, process, analyze,
and react [37]. Many industries, such as energy, manufacturing, transportation, healthcare,
smart cities, etc., could benefit from fog computing.

Compared with MACC, MACC is more suitable for highly decentralized and dynamic
networks in which there might be no Internet connection. In MACC, connected devices are
mostly not centralized; therefore, devices form a more dynamic network [68].

Compared with cloudlets, however, cloudlet computing fits well with the mobile
cloudlet–cloud framework, but fog computing can support large amounts of traffic; in
addition, resources in fog can be located anywhere throughout the things-to-cloud path [69].

Fog and edge computing are not identical, even though both perform the computation
and storage in the edge close to end users. The OpenFog Consortium states this distinction
as the hierarchical nature of fog computing, allowing computing, networking, storage,
control, and acceleration anywhere along the cloud-to-things continuum; however, in edge
computing, computing is performed only at the edge [37].

The most significant drawback of the above-mentioned edge computing concepts
(cloudlet, ad hoc clouds, and fog computing) is that the computing is not integrated into
the architecture of a mobile network; therefore, QoS and quality of experience (QoE) for
users are not completely guaranteed [43]. One concept that can integrate cloud capabilities
into a mobile network is the cloud radio access network (C-RAN) [70]. The C-RAN uses
the idea of distributed protocol stack [71], in which some layers of the protocol stack have
changed their place from distributed radio remote heads (RRHs) to centralized base band
units (BBUs) (see [72]).

A fog radio access network (Fog RAN/F-RAN) is a form of fog computing that is
also able to be combined with mobile technologies; more details can be found in [73].
F-RAN and C-RAN can be both used for mobile networks with base stations; they can
be implemented for 5G-related mobile technology deployments [73] and are more energy
efficient for network operations. For more information about F-RAN, we encourage readers
to refer to the reference [74].

2.4.4. Multi-Access Edge Computing

Another concept merging edge computing and mobile network architecture was pro-
posed by the newly created (2014) industry specification group (ISG) within the European
telecommunications standards institute (ETSI) [75]. The solution outlined by ETSI is known
as mobile edge computing (MEC), which has been supported by prominent mobile opera-
tors and manufacturers, such as NTT DoCoMo, Vodafone, TELECOM Italia, IBM, Nokia,
Huawei, Intel, and other companies. At the MEC World Congress 2016, MEC ISG renamed
mobile edge computing to “multi-access edge computing” to reflect the growing interests
of noncellular operators and to include a wider scope of applications not only limited to
mobile device-specific tasks.

According to ETSI, MEC is a platform that offers application developers and content
providers cloud computing capabilities and an IT service environment within RAN in 4G
and 5G at the edge of the network [76].

In MEC, edge computing functionalities can be appended to existing base stations us-
ing RAN operators. In MEC, data centers are small with virtualization capacity. Compared
with cloud computing, available computing resources in MEC are moderate because of the
underlying hardware.
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Furthermore, low-latency applications, as well as delay-sensitive critical applica-
tions [75], can be supported in MEC. A personalized and contextualized experience has
been offered to mobile users using MEC applications because these applications profit from
real-time radio and network information.

Connectivity in MEC has been established via WAN, Wi-Fi, or cellular connections.
The focus of MEC is on RAN-based network infrastructure providers. It is anticipated
that MEC benefits significantly from the 5G platform [75] since a broad range of mobile
devices with lower latency and higher bandwidth can be supported by 5G. In addition to
5G technologies, MEC also benefits from using software-defined networking (SDN) and
network function virtualization (NFV) capabilities [77,78].

2.4.5. Mist Computing

Recently, mist computing has been presented that describes dispersed computing at
the extreme edge of connected devices (the IoT devices themselves) [79,80]. Mist computing
could be considered the earliest computing hop in the cloud–fog–IoT sequence; informally,
it is called “IoT computing” or “things computing.” An IoT device can be a wearable
watch, smartphone, smart fridge, etc. Mist computing extends computing, storage, and
networking across the fog through the things. Mist computing can be considered a superset
of MACC; since, in mist, the networking is not necessarily ad hoc, and the devices may not
be mobile devices.

Research shows that using mist computing, the load in traditional Wi-Fi infrastruc-
tures for video dissemination applications can be reduced [81], users’ data privacy can be
preserved through local processing [82], or virtualized instances on single-board computers
can be deployed efficiently [83].

Other than the computing paradigms explained above, cloud of things (CoT) [84–87]
and edge cloud [88–91] are also other similar computing paradigms that have been mentioned
in some studies.

3. Security and Privacy Attacks and Threats in EC-Based IoT

In this section, we describe the possible key security and privacy attacks, their types,
and their sources at different levels and layers (EC devices, communication and EC
servers/nodes, and cloud servers) of edge computing in IoT networks.

1. Malicious hardware/software injection: unauthorized software/hardware components
to the communication or EC node levels can be added by attackers that inject malicious
inputs into the EC servers. Then, adversaries will be able to exploit service providers to
perform hacking processes on their behalf, such as bypassing authentication, stealing data,
reporting false data, or exposing database integrity [33,92,93]. Hardware injection attacks
have several classifications, and we will further investigate the most common ones.

• Node replication: this occurs when adversaries inject a new malicious node into an
existing set of nodes by replicating one node’s ID number. Then, attackers will be
able to corrupt, steal, or misdirect data packets arriving at the malicious replica. The
required access to extract cryptographic shared keys can be obtained by attackers
causing severe damage to the system. Moreover, by implementing node revocation
protocols, legitimate EC nodes can be revoked by node replicas [33,92]. This attack is
considered an active attack [94–96].

• If attackers gain illegitimate access to integrated circuits (ICs), they can appear as
hardware trojan. Attackers will be able to control the circuit and access data or even
software running on these ICs. There are two types of Trojans: (1) internally activated
Trojans, which can be activated by satisfying a particular condition inside the Ics; and
(2) externally activated Trojans, which can be activated using sensors or antennas that
interact with the outside world [33,92].

• Attackers can also camouflage by injecting a fake EC node into the network or attack
an authorized node to be able to hide at the edge level. This counterfeit/modified
EC node will work as a normal EC node to receive, share, process, store, redirect, or



IoT 2022, 3 341

transmit data packets [33,92]. In addition, this node is able to operate in a passive
mode and only analyses the traffic. This attack is considered a passive attack [94,96,97].

• Attackers gain unauthorized access and control of the network, taking advantage of
corrupted or malicious EC nodes, then inject misleading data packets or can block the
delivery of legitimate data packets [92,98–100]. This attack can be launched using three
different attack methods: (1) insertion, in which the attacker inserts malicious packets
(that seem legitimate) in network communication; (2) manipulation, in which the
attacker captures packets, then change them; or (3) replication (or replay), in which the
previously exchanged packets between two nodes have been captured and replayed
by the attacker.

2. Side-channel attacks compromise the security and privacy of users by any accessible
information that is not privacy-sensitive in nature, called side-channel information [33,92].
However, this accessible information usually has some correlations with privacy-sensitive
data. Attackers explore the hidden correlations and extract the desired sensitive information
from side-channel information using specific algorithms or machine learning models. The
most popular side channels in EC are: communication signals, electric power consumption,
and smartphone/proc filesystem or embedded sensors.

3. Authentication and authorization attacks can be categorized into four types [101]:
(1) dictionary attacks, in which the attacker utilizes a credential/password dictionary to
crack into the authentication of a system [102]; (2) attacks exploiting vulnerabilities in
authentication protocols, in which attackers discover the design flaws of the authentication
protocols. The most widely adopted authentication protocols in edge computing are Wi-
Fi-protected access (WPA/WPA2) and secure sockets layer (SSL)/transport layer security
(TLS) protocols; (3) attacks exploiting vulnerabilities in authorization protocols, in which
attackers usually exploit the design weaknesses or logic flaws existing in authorization
protocols to gain unauthorized access to the sensitive resources or perform privileged
operations. The most widely adopted authorization protocol in edge computing is the open
authorization (OAuth) protocol [103,104]; (4) Overprivileged attacks, which can happen if
an app or a device is granted stronger access rights or more than what is needed.

4. Jamming attack is a special type of denial-of-service (DoS) attack. The network will
be flooded intentionally by attackers using counterfeit messages to exhaust communication,
computing, or/and storage resources. This attack will make authorized users unable to use
the infrastructure of the EC-based IoT network [33,92,105].

5. The most famous types of distributed denial-of-service (DDoS) attacks [101,106] against
EC nodes are outage attacks, sleep deprivation, and battery draining. In outage attacks,
EC nodes do not perform their normal operations because of unauthorized access by
attackers. In sleep deprivation, attackers overwhelm EC nodes with too many legitimate
requests. This kind of attack is very hard to detect. In battery draining, the batteries of
sensors, devices, or EC nodes are depleted; therefore, node failure or outage occurs. The
most common DDoS attack at the communication level is jamming the transmission of
signals, including continuous jamming over all transmissions and intermittent jamming by
sending/receiving packets periodically by EC nodes [32,92,98–100,105,107–111].

DDoS attacks in edge computing can be classified as flooding-based attacks and zero-
day attacks. In flooding-based attacks (e.g., UDP flooding, SYN flooding, HTTP flooding),
the attacker tries to saturate the server and shut down the normal service of a server by
flooding with malicious/malformed network packets. A zero-day attack is more difficult to
implement. In zero-day DDoS attacks, the attacker should find an unknown vulnerability,
i.e., a zero-day vulnerability in the code running on the target edge device/server. These
vulnerabilities can trigger memory failure/corruption, resulting in a service shutdown. A
zero-day attack is also difficult to defend since it exploits a zero-day unknown vulnerability.

6. Physical attacks/tampering happen when attackers can access the EC nodes/devices
physically. Then, attackers can extract valuable and sensitive cryptographic data, tamper
with the circuit, or modify software/operating systems [33,92].
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7. Eavesdropping or sniffing attacks occur when adversaries covertly listen to private
conversations, such as usernames, passwords, etc., over communication links. Attackers
will be able to gain crucial information about the network, for instance, when sniffed
packets contain control or access information of the EC nodes, such as configurations and
identifiers of nodes or passwords of the shared network [92,98,105].

8. EC nodes can reveal critical information even when they are not transmitting any
data as nonnetwork side-channel attacks. For example, the detection of known electromag-
netic/acoustic signals or protocols from medical devices can lead to serious privacy issues
since critical information about the patient and device can be leaked [8,92].

9. By redirecting, misdirecting, spoofing, or dropping data packets at the commu-
nication level, attackers can change routing information and affect how messages are
routed [8,92,105]. Routing information attacks can appear in different types: (1) altering
attack, in which the routing information will be modified by the attacker, for instance,
through routing loops or false error messages; (2) blackhole attack [112,113], in which a
malicious node attracts all the traffic by advertising the shortest path to the destination, then
the attacker processes the packets sent to the malicious node or just drops them; (3) gray
hole attack [113] is a kind of blackhole attack in which selective packets will be dropped;
(4) worm hole attack, in which the attacker records packets at one network location first,
the afterward will tunnel them to another location [114]; (5) hello flood attack, in which the
attacker sends “HELLO PACKETS” to all the other nodes using a high transmission power
malicious node claiming that it is their neighbor [115,116]; and (6) sybil attack, in which the
attacker uses/adds nodes with fake identities called sybil nodes that are able to out-vote
genuine nodes in the system [117].

10. The attackers in forgery attacks inject new fraudulent data packets and interfere with
the receiver, which causes system damage or failure. These data packets can be inserted
into communication links using methods such as inserting malicious data packets that seem
legitimate, capturing then modifying data packets, and replicating previously exchanged
packets between two EC nodes/devices [8,32,92,109].

11. The neighboring EC nodes communicate with each other to access or share data, but
every node should only communicate with those nodes that need its data. In unauthorized
control access, attackers can control the whole neighboring nodes if they gain access to one
of the unsecured EC nodes [8,92,118].

12. Two types of integrity attacks against machine learning can happen in machine
learning methods used in EC-based IoT [92]: (1) causative attack, in which attackers change
the training process of machine learning models by manipulating or injecting misleading
training data set; and (2) exploratory attack, in which attackers misuse vulnerabilities
without changing the training process.

13. In replay attacks or freshness attacks, attackers capture and record data traffic for a
particular period of time and then use these historical data to replace the current real-time
data. This can cause energy and bandwidth consumption of EC nodes and other adverse
effects [8,33,92,109].

14. Insufficient/inessential logging attacks can damage EC-based IoT systems when log files
are not encrypted. System and infrastructure developers must log events such as application
errors and attempts of unsuccessful/successful authorization/authentication [32,33,92].

15. Security threats from/on IoT devices include mobile botnets, ransomware, and IoT
malware [33,92]. In 2017, over 1.5 million attacks were reported that originated from
mobile malware [99]. Such threats can lead to data leakage/corruption or even application
death [99,105].

16. Nonstandard frameworks and inadequate testing and coding flaws are able to cause
serious security and privacy attacks [33]. Nodes usually need to be connected to intermedi-
ate servers; therefore, compromise could be increased. EC-based system development is a
complicated procedure that needs to combine heterogeneous devices/resources created by
diverse manufacturers [119]. Moreover, there is no standard framework or policy for the



IoT 2022, 3 343

implementation of EC-based systems. Therefore, some security and privacy flaws of these
systems may stay undetected.

17. Functionalities of EC nodes may need to extract personal data from the information
generated by user devices. Some of the sensitive information (such as personal activities,
preferences, or health status) that must belong to data owners could be shared with other
users or network entities without any permission from the data owners, which makes them
vulnerable to intruders during data transmission/sharing, causing privacy leakage. Location
awareness of EC nodes, e.g., Wi-Fi hotspots and base stations (BSs), can be exploited by
attackers, and then they can detect and track the device’s physical location or other sensitive
information from the physical location of EC nodes. In addition, if users connect to multiple
EC nodes simultaneously to access a particular service, the physical location of a user’s
device can be precisely detected using positioning techniques [32,33,99,105].

The EC paradigm in IoT is a combination of heterogeneous resources and devices
manufactured by various vendors. Generally, there is no agreed framework or standard
policies for the implementation of this paradigm; still, there are many undetected security
and privacy threats [33].

Table 1 shows a summary of security and privacy attacks and related solutions and
countermeasures according to the solutions explained in Section 4 and their related IDs in
Table 2. Table 3 shows the definitions of the security principles outlined in Table 1.

Table 1. Summary of security and privacy attacks and related solutions and countermeasures.

Against

Confidentiality Integrity Availability Accountability Nonrepudiation Trust Privacy

Attacks and threats Solutions

Malicious injections X X X X X X X 18

Node replication X X X X X X X

Hardware Trojans X X X X X X X 4, 5, 6

Camouflage X X X X X X X 4, 5, 6, 11

Corrupted or malicious
EC nodes X X X X X X X 4, 5, 6, 11

Injecting fraudulent packets X X X X 10, 11

Side-channel attacks X X X 6

Jamming attacks X X X X 2, 8, 10, 11

Denial-of-service
(DoS) attacks X X X X 1, 2, 8, 10, 11

Physical attacks/tampering X X X X X X X 6

Eavesdropping or sniffing X X X 11

Routing information attacks X X X X X 9

Forgery attacks X X X X 10, 11

Unauthorized control access X X X X X X X 10, 14

Integrity attacks against
machine learning X X 19

Replay attack or
freshness attacks X X X X 10, 11

Insufficient/inessential
logging attacks X X X X 18

Nonstandard frameworks
and inadequate testing X X X X X X X 18
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Table 2. Summary of security and privacy solutions and countermeasures.

Solutions and Countermeasures ID Explanation

Packet filters 1 Accept or deny packets from particular addresses or services by setting up routers, firewalls, or servers [120].
Firewalls 2 Apply a set of rules at the boundary between two or more networks and specify which traffic is allowed and which is denied.

Physical security 3
Limits access to key resources by keeping the resources behind a locked door and/or protected from natural and human-made
disasters, intentional and unintentional misuses of equipment, hackers, competitors, and terrorist and biohazard events by keeping
resources behind a locked and protected place [120].

Countermeasures for malicious
hardware/software injection

Side-channel signal analysis 4 By implementing timing, power, and spatial temperature testing analysis and by detecting unusual behaviors of nodes/devices,
detecting hardware Trojans and malicious firmware/software installed on IoT EC nodes/devices.

Trojan activation methods 5 Compares the outputs, behavior, and side-channel leakages of Trojan-inserted versus Trojan-free circuits in order to detect and model
malicious attacks

Circuit modification or replacing 6 This countermeasure includes: (a) tamper-preventing and/or self-destruction; (b) minimizing information leakage; and (c) PUF into the
circuit hardware.

Policy-based mechanisms 7 Ensure that standard rules are not breached; this way, they can detect any violation of policies, and they can detect any abnormal
requests to the EC nodes [92].

Securing firmware update 8 The network’s firmware can be updated reliably, either remotely or directly. Both methods should have authentication and integrity to
ensure secure updates [92].

Reliable routing protocols 9 A table of trusted nodes for sharing sensitive and private information will be created by EC nodes [8,92,98].

Intrusion detection system (IDS) 10 Mitigates security threats using: (1) monitoring network operations and communication links; (2) reporting suspicious activities; and
(3) detecting routing attacks and blackhole attacks.

Cryptographic schemes 11 Strong and efficient encryption countermeasure strategies that secure communication protocols against different attacks.
Depatterning data transmissions 12 Prevent side-channel attacks by intentionally inserting fake packets that change the traffic pattern [92,105,108].

Decentralization 13 To ensure anonymity, this mechanism distributes sensitive information among EC nodes in a way that no node has complete
knowledge of the information [105].

Authorization 14 Prevents responses to requests originated by attackers or malicious EC nodes. It inspects if an entity can access, control, modify, or
share the data [8,92,108,111].

Authentication 15 An action of verifying user identities who request certain services.
Accounting (auditing) 16 Collects network activity data to effectively analyze the security of a network and to respond to security incidents.
Information flooding 17 Prevents intruders from detecting and tracking the location of the information source [98].

Prior testing 18 A behavioral test of the components of the EC network. Conducted prior to the actual operation; performed by applying special inputs,
pilot, and/or token signals to the network and monitoring their outputs.

Outlier detection 19 Attacks against machine learning methods inject data outliers into the training data set. These kinds of attacks are drastically mitigated
by statistical data analytics methods [98,105].

Secure data aggregation 20
In this scheme, individual devices encrypt their data independently using homomorphic encryption schemes, then send the encrypted
data to the EC nodes. EC nodes will aggregate all data, compute the multiplication of individual data, and send the aggregated results
to the central cloud servers.

Secure data deduplication 21 Allows the intermediaries to detect the replicate data without learning any knowledge about the data.

Secure data analysis 22 Partitioning functionality execution across edge nodes/devices and the cloud enables individuals that locally and independently train
their models and only share their trained models to keep their original data and respective private training set.

Combining EC and blockchain technologies 23 A blockchain provides a trusted, reliable, and secure foundation for information transactions and data regulation between various
operating network edge entities based on a consensus mechanism.
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Table 3. Security principles.

Fundamental
Principles Definition

Confidentiality To ensure that information is only available or disclosed to unauthorized individuals, entities, or processes
Integrity To ensure that information is accurate and complete without any manipulation by unauthorized people
Availability To ensure that information and services are accessible and usable when requested by an authorized entity
Accountability An individual is responsible for proper authority for their actions
Nonrepudiation To be able to prove the occurrence of a claimed event or action

Trust To be able to provide confidence to others of the qualifications, capabilities, and reliability of that entity to
perform specific tasks and fulfill assigned responsibilities

Privacy To ensure that the confidentiality of, and access to, certain information is protected

4. Security and Privacy Countermeasures and Solutions in EC-Based IoT

This section explains the main strategies and solutions developed to countermeasure
the security and privacy attacks and threats explained in the previous section.

1. Packet filters protect network resources from unauthorized use, theft, destruction, or
DoS attacks. There are two kinds of packet filter policies: one policy denies specific types
of packets and accepts all others, and the second one accepts specific types of packets and
denies all others.

2. Firewalls can be applied as software, hardware appliance, or a router with access
control lists (ACLs). Some types of firewalls are: static stateless packet filter firewalls
that check packets individually and are optimized for speed and configuration simplicity,
stateful firewalls that allow or deny traffic by tracking communication sessions, and proxy
firewalls that inspect packets, have support for stateful tracking of sessions, and are able to
block malicious traffic or unacceptable content [120].

3. Effective techniques developed to tackle countermeasures for malicious hardware/software
injection are as follows: (1) side-channel signal analysis, which detects both hardware
Trojans by implementing timing, power, and spatial temperature testing analysis, and
malicious firmware/software installed on EC nodes/devices by detecting unusual behav-
iors of nodes/devices, for instance, a significant increase in their heat, execution time,
or power consumption [92]; (2) trojan activation methods, which compare the outputs,
behavior, and side-channel leakages of Trojan-inserted versus Trojan-free circuits to detect
and model malicious attacks [92,105]; and (3) circuit modification or replacing, which is
also an effective solution against physical/hardware, Trojan, and side-channel attacks. This
countermeasure includes [92]: (a) tamper-preventing and/or self-destruction—to prevent
malicious attacks, EC nodes are physically embedded with hardware, or in the worst case,
the EC nodes destruct themselves and/or erase their data; (b) minimizing information
leakage—in this mechanism, random noise or delay is added to the data intentionally to
implement a constant execution path code and to balance Hamming weights; and (c) em-
bedding the physically unclonable function (PUF) into the circuit hardware—this enables
device identification and authentication to detect Trojan attacks.

4. Intrusion detection system (IDS) is the second line of defense to mitigate security
threats by [8,32,92,121]: (1) monitoring network operations and communication links;
(2) reporting suspicious activities, for example, when predefined policies are breached or
when invalid information is injected into the system; and (3) detecting routing attacks (e.g.,
spoofing or modification of information) and blackhole attacks.

Wang et al. [122] proposed an IDS architecture for EC-based IoT that integrates a
trust evaluation mechanism using the EC platform and service template with balanced
dynamics using the EC network. A more general EC IDS architecture has been proposed
by Lin et al. [123], showing an efficient, fair resource allocation in EC-based IoT systems.

The hierarchical distributed intrusion detection system (HD-IDS) [124] based on the
fog architecture is a hierarchical protection detection that deploys multiple IDSs in different
network layers and performs detection by multiple layers collaboratively with traffic
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analysis; therefore, it provides real time and precise protections. HD-IDS is mainly for
detecting traffic injection attacks.

Another approach is called the real-time traffic monitoring system (RTMS) [125], which
thoroughly inspects data packets and matches the SQLI pattern in the IDS database to form
signature rules, avoiding the workload of manually writing signature rules. The RTMS
detects traffic injection attacks more efficiently. This approach mainly updates the traffic
injection signature rules through historical attack data analysis, which requires relatively
low real-time requirements for rule updates.

5. Cryptographic schemes are strong and efficient encryption countermeasure strategies
that are used to secure communication protocols against different attacks, such as eaves-
dropping or routing attacks. There is a wide variety of encryption/decryption strategies
that can enhance network security and privacy [126–128], but these solutions are applicable
for wired networks. Since EC nodes are usually small sensors with limited resources,
e.g., battery power, computing/processing capabilities, and storage memory, employing
standard encryption/decryption techniques will cause high memory usage, delay, and
power consumption [92,98,105]. The architectures and ideas of several key cryptosystems,
such as proxy encryption, attribute-based encryption, searchable encryption, identity-based
encryption, and homomorphic encryption, have been explored by Zhang et al. [108]. The
work in [129] proposes a secure data-sharing scheme for IoT based on EC smart devices.
The proposed scheme uses both public key and secret key encryptions. Moreover, a search-
ing strategy is presented that enables authorized users to perform secure data searches
within shared, encrypted, and stored data in IoT based on EC networks without leaking
data, secret keys, or keywords. An architecture based on the data proxy concept has been
presented in [130] that applies process knowledge to enable security via abstraction and
also privacy via remote data fusion.

6. In the EC-based IoT environment, entities are required to be authenticated mutually
with one another across different trust domains. There are authentication mechanisms such
as single/cross-domain and handover authentication. These mechanisms are discussed in
detail in [8,32,98,105,108,111,131].

7. Accounting (auditing) is collecting network activity data to be able to effectively
analyze the security of a network and respond to security incidents. For networks with
strict security policies, all attempts to achieve authentication and authorization by any
person should be included in audit data. Logging “anonymous” or “guest” access to public
servers is especially important. All attempts by users to modify their access rights should
also be logged in the data. More information about the collected data in accounting can be
found in [120].

A security assessment is a further extension of auditing, in which the network is
examined from within by professionals trained in the vulnerabilities exploited by network
invaders. Periodic assessments of network vulnerabilities should be part of any security
policy and audit procedure. In addition, as a result, a specific plan should be made for
correcting deficiencies, which might be as simple as retraining staff [120].

8. Prior testing is a behavioral test of the whole and the components of the EC network
(e.g., EC routers/nodes, servers, etc.) that is conducted prior to the actual operation. This
is performed by applying special inputs, pilot, and/or token signals to the network and
monitoring their outputs. The aim of this solution is mainly to identify the possible attacks,
simulate them, and evaluate their impacts on the EC-based IoT. It also defines which
information must be logged and which is sensitive to be shared or stored [33,92,105,132].
Furthermore, the input files should be inspected closely to prevent any malicious injection.

9. Secure data aggregation is a highly secure, privacy-preserving [133,134], and efficient
data compression strategy. In this scheme, individual devices encrypt their data inde-
pendently using homomorphic encryption schemes (such as the Brakerski, Gentry, and
Vaikuntanathan (BGV) cryptosystem), then send the encrypted data to the EC nodes. The
EC nodes will aggregate all data, compute the multiplication of individual data, and send
the aggregated results to the central cloud servers [98,99,105,135].
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Discarding the replicate copies of data on intermediaries is required to be able to save
the bandwidth in IoT networks. However, this method can disclose sensitive information to
intermediaries or intruders. Data encryption is common to protect information and prevent
data leakage, but it is not possible to detect replicate copies of data on intermediaries after
encrypting the data since all the data will be transformed to random values. To overcome
this threat, secure data deduplication has been proposed that allows the intermediaries to
detect the replicate data without learning any knowledge about the data [99,105].

10. Secure data analysis: with the advances in EC technology, some artificial intelligence
(AI) functionalities can be shifted from the centralized cloud to EC devices/nodes. This can
improve security, privacy, and latency. For instance, partitioning functionality execution
across edge nodes/devices and the cloud enables individuals that locally and independently
train their models and only share their trained models; therefore, they can keep their original
data and respective private training set [99,105]. This reduces the risk of privacy leakage.

11. Combining EC and blockchain technologies: a blockchain provides a trusted, reli-
able, and secure foundation for information transactions and data regulation between
various operating network edge entities. Decisions about the correct execution of particular
transactions are based on a consensus mechanism without depending on a trusted central
authority between the communicating IoT edge nodes [110,136]. In [137], the authors inte-
grated smart contract technologies with a consortium blockchain and developed a secure
distributed data storage and sharing method for vehicular EC networks. Gai et al. [138]
combined EC and blockchain technologies and proposed a permissioned blockchain EC
model to address the privacy-preserving and energy security of smart grid IoT based on
EC networks by combing EC and blockchain technologies. A security-aware strategy based
on smart contracts running on the blockchain has also been presented in this work.

Table 2 shows a summary of security and privacy solutions and countermeasures. It is
worth noting that some of the security and privacy-related concepts, attacks, and solutions
explained in the reference papers were in the context of centralized cloud-based IoT, but
they are also applicable or can be extended to EC-based IoT.

5. Architecture of Edge Computing-Based IoT

Edge computing in IoT focuses on deploying edge computing into different IoT
scenarios to reduce network traffic and decision-making delay.

With the goal of proposing a novel application scenario for edge computing, we
present the architecture of edge computing in an IoT-based scenario. As shown in Figure 1,
the architecture is divided into three layers: the IoT layer, the edge layer, and the cloud
layer, which are derived from the existing edge computing reference architectures [34,35].
The proposed architecture in this paper comprehensively considers the characteristics of
IoT and edge computing. We focus on the functions that each layer should have and how
layers communicate with each other in detail.

1. IoT layer: the IoT layer is formed by all kinds of devices or equipment, handheld
terminals, instruments and meters, smart machines, smart vehicles, robots, and other
physical objects that monitor services, activities, or equipment in operation. This layer also
includes sensors, actuators, controllers, and gateways for IoT environments, allowing for
the management and storage of computational resources in IoT devices. These devices or
equipment collect a large amount of data by all kinds of sensors using various types of
wireless networks, transmit the data to the edge layer, and wait for the control instructions
from the edge layer. In IoT environments, a wireless standard, such as Wi-Fi [139], Blue-
tooth [140], RFID [141], NB-IoT [142–145], 5G [146,147], BLE [18], ZigBee [19,21], LoRa [20],
SigFox [139], etc., is normally applied [148].

2. Edge layer: this layer is the core layer of the EC-based IoT architecture and is basically
responsible for receiving, processing, and forwarding data flow from the IoT layer. The edge
layer also provides time-sensitive services such as edge security and privacy protection,
intelligent computing, edge data analysis, process optimization, and real-time control.
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Figure 1. A secure architecture for edge computing-based IoT.

This layer is located close to the edge endpoint nodes; it corrects the orchestration of
the different technological assets in the organization and significantly improves the supply,
monitoring, and updating of existing resources.

Some of the technical support activities of this layer include: the management of
critical business activities, including the management of physical resources, such as sensors,
actuators, and controllers, and the study and analysis of large volumes of data in real time.

In this layer, the data that are coming from the IoT layer will be filtered and prepro-
cessed, then will be sent to the cloud layer. The sensors in IoT nodes collect the data using
microcontrollers with reduced computational and storage resources. These data will be
filtered and preprocessed in computing elements in the edge layer. Low-cost solutions such
as microcomputers based on architectures such as Raspberry Pi [22] or Orange Pi (which
are based on Raspberry Pi) can be used for these computing elements. These devices are
able to process a much greater amount of information than the microcontrollers that are
usually used in IoT devices, with the purpose of minimizing energy consumption and
executing simple reading logic and control programs on general-purpose input and output
ports (GPIO), serial ports such as universal asynchronous receiver-transmitter (UART),
serial peripheral interface (SPI), or communication buses between integrated circuits (Iˆ2C).

This kind of device can come with I/O ports allowing to connect them with sensors
and actuators; implementation of the edge and IoT layers within a single device is also
possible. These devices are used to coordinate a network of cheaper IoT devices that work
as hub elements or data collectors throughout the IoT and up to the edge. These devices
sometimes must be powered by batteries and solar panels, which are placed beyond the
reach of power supply networks.

With the help of these layers, it is possible to apply machine learning techniques to the
edge, for example, through TensorFlowLite libraries [22] in Raspberry Pi or similar devices;
therefore, it facilitates the performance of data analytics in the edge, saves the amount of
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data sent to the cloud, reduces associated costs, and offers valuable data to users even if
the connection with the Internet and the cloud are temporarily lost.

Based on the data processing capacity of different equipment in the edge layer, the
edge layer can be distributed in three sublayers as follows: edge controller layer, edge
gateway layer, and edge server layer.

a. Edge controller layer: this layer collects data from the IoT layer using some edge
controllers, performs preliminary threshold judging or data filtering, and transfers
control flow from the edge layer or cloud layer to the IoT layer.

Sensors and devices in the IoT layer are heterogeneous; therefore, the edge controllers
in the edge controller layer must be compatible with various protocols and be able to access
various sensors or devices, so they will be able to collect data from time delay-sensitive
networks of the IoT in real time. After collecting the data from IoT devices, it should
be preprocessed for threshold judging or data filtering. Hence, edge controllers of the
edge controller layer should integrate the algorithm library based on the environment
configuration in order to enhance the effectiveness of the strategy continuously. In addition,
after receiving the decision from the edge controller layer or the upper layers, the edge
controllers of the edge controller layer should transfer the control flow to the IoT layer via
the programmable logic controller (PLC) control or action control module. Moreover, for
certain tasks, different edge controllers may need to cooperate.

The latency of the edge controller layer for judgment and feedback is usually very
low at the ms-level. This is very important for some time-sensitive applications or emer-
gency situations. In order to reduce the delay or protect life/property, these applica-
tions/emergencies must be processed in the edge controller layer.

b. Edge gateway layer: this layer mostly contains edge gateways. It collects the data
from the edge controller layer using wired networks (such as fieldbus, industrial
ethernet, industrial optical fiber, etc.) or wireless networks (such as Wi-Fi, Bluetooth,
RFID, NB-IoT, LoRa, 5G, etc.), caches the collected data and provides heterogeneous
computing. In addition, edge gateways in this layer transfer control flow from the
upper layers (edge server layer or cloud layer) to the edge controller layer and manage
the equipment in the edge gateway layer or edge controller layer.

The edge controller layer only performs simple threshold judging or data filtering;
however, the edge gateway layer can execute the collected data from IoT devices since it
has more storage and computing resources.

After collecting the heterogeneous data by the edge controller layer from IoT devices,
these data will first be preprocessed, fused, and cached in the edge gateway layer. After
obtaining enough data, the edge gateways of the edge gateway layer will carry out data
processing deployed in the embedded system or the lightweight container, data aggregation,
and data analysis in either traditional big data analysis or appearing edge intelligence
technologies. The data analysis log will be saved for use in the future.

The latency of the edge gateway layer is usually at the s-level or min-level. This layer
grants more extensive judgment via merging data from various devices. The management
module with many management functions, such as device management, access manage-
ment, communication management, etc., and the edge gateway collaboration module are
also handled in the edge gateway layer, enabling multilayer and multidevice collaboration.
These kinds of events have a few seconds or minutes delay and are perfectly handled at the
edge gateway layer.

c. Edge server layer: the edge server layer has powerful edge servers. This layer performs
more complex and critical data processing and based on the data collected from the
edge gateway layer by dedicated networks, it creates directional decision instruction.
The edge servers in the edge server layer should also have business application
management and platform management functions.
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The edge servers in the edge server layer are formed into a small computing platform
with more powerful storage and computing resources than the equipment of the edge
controller and the edge gateway layers. Therefore, the edge server layer is mostly used for
a large amount of heterogeneous data processing and operation, reasoning, and training of
more precise models, which results in achieving better production scheduling decisions for
the edge network. All kinds of resources in the whole edge layer, which require operation
and virtualization management functions of the platform, as well as the deployment
and scheduling functions of the edge side business application management in order to
reasonably allocate resources and reasonably complete and deliver tasks, are also managed
by the edge server layer.

More data from different equipment can be analyzed in the edge server layer, achieving
process optimization or the best measures taken in a wider area and a longer period of time.
This layer usually has an h-level latency.

3. Cloud layer: this layer mainly performs massive data mining and seeks optimal
resource allocation across an enterprise, a region, or even nationwide. The data in the
edge layer will be transferred to the cloud layer through the public network. The edge
layer can receive feedback models, services, and business applications offered in the cloud
from the cloud layer. At this level, both public (hosting data on commercial servers)
and private (corporate data center) cloud services can be used. In this layer, individual
application programming interface (API) calls can be activated via executing more complex
sets of operations that involve the use of interactive interfaces and are part of the business
applications ecosystem. Applications such as product or process design, comprehensive
enterprise management, and sale and after-sale services are supported in the cloud layer.
Moreover, in the cloud layer, the data can be shared via cloud collaboration between groups
of different attributes (e.g., managers, cooperative enterprises, designers, and customers),
achieving more pluralistic and deeper data mining. The decision time for such feedback
and services in the cloud layer is normally at the day level. The main components of this
layer are as follows:

• Analytics: case-based reasoning, machine learning algorithms, and artificial intelli-
gence techniques give greater flexibility in data analysis and visualization capabilities
that are required by different business units and operating teams; massive analytics
that need more resources and time can be performed at the cloud layer.

• Cloud management: using a storage and administration service, physical or virtual
segregation of the stored data according to the tenant, or enabling to track the use of
the service by the tenant is possible. Moreover, several tenants can use the service.
This is a perfect feature even in private cloud management services. The tenants can
be different departments or working groups of a public or private organization.

• Authentication: this can be performed using authorization or a distributed transaction,
according to [35].

• Knowledge base: virtual organization of agents and support decision systems based
on sensor data can develop a social machine [24]. Cloud-based orchestration, which en-
ables the provisioning, monitoring, and updating of connected technological resources,
can complement this component.

• APIs: cloud services can be called through a set of applications (with standard methods,
e.g., HTTP, RESTful, XML, or SOAP calls [25]). Using these applications, services can
become available via a standard web browser or other HTTP client applications.

Based on every scenario and the main attacks that can occur in that scenario, we
should consider relevant solutions and countermeasures discussed in Section 4 for securing
the architecture. In the following sections, we describe how security can be achieved based
on our scenario.
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6. Application of Proposed Architecture

The reference architecture proposed in Section 5 can be suitable for some IoT scenarios.
We selected automatic ticketing as a case to discuss how the proposed architecture can be
adapted to the IoT scenarios.

Passengers can purchase and validate public transport tickets in various ways, for
instance, through an app solution on the passenger’s smartphone, contactless payment
cards, the transport provider’s own card solutions, or buying tickets with cash. In all
of these solutions, the passenger needs to do something. Instead, imagine that ticketing
automatically happens when passengers are inside the bus or tram without them having to
perform any action. Passengers do not need to think about purchasing/validating tickets
or the best price option when they want to travel by public transport when ticketing takes
place automatically. Faster boarding, no cash handling, and possibly increasing customer
satisfaction, as well as discovering customer behavioral patterns on public transport com-
panies, are just a few of the advantages that automatic mobile ticketing solutions can
offer [149,150]. The challenge is how, with high accuracy, to determine whether travelers
are inside or outside of a public transport and which kind of public transportation travelers
are taking.

Inferring the user’s state is necessary to detect the mode of transport of a commuter and
to enable automated ticketing. Mobile sensor data combined with the reference sensor data
of a transport vehicle can be utilized to detect the activity of a person [151–153] or to derive
the transportation mode [154–157]. In particular, contextual data, e.g., the location and start
time of a journey, can be utilized to reveal significant journeys of passengers [158–163].

This can be achieved by the collection of movement data of a traveler using sensors
of the traveler’s smartphone in combination with external data sources such as existing
bluetooth low energy (BLE)-enabled beacons [164]. BLE technology is the most popular
approach to achieving automatic ticketing [165–168]. By employing BLE, it is possible to
completely eliminate the traveler’s action during check-in and check-out. The traveler’s
smartphone communicates with either a BLE-enabled on-board device or a device located
at a bus stop for seamless check-in/check-out [166–169]. In these solutions, an application
residing on the traveler’s smartphone triggers a check-in or check-out event when the
traveler enters or leaves the proximity of a BLE beacon. Other common solutions mostly
rely on GPS or cellular network coordinates to locate the traveler; however, these solutions
are not viable for automatic ticketing.

The accurate in-vehicle presence of the traveler is critical for accurate automatic check-
in/check-out [165]. It is challenging to establish whether the traveler is indeed inside
the public transport vehicle or is located outside somewhere next to the public transport
vehicle using GPS technology. Moreover, a GPS is associated with high energy consumption
compared with sensor data, such as a gyroscope, magnetometer, or accelerometer [170],
and a GPS also depends on an unobstructed view of satellites, which may be difficult to
achieve in urban public transportation infrastructure. Therefore, it is less suitable for the
real-time in-vehicle presence detection of people. In addition, a GPS provides only static
position information and does not capture the constantly changing environment that a
passenger is experiencing during travel. Thus, merely considering location data to monitor
passengers is inadequate and can be improved by incorporating contextual information
from mobile sensors [171].

In our scenario, a group of passengers travels using several modes of public transporta-
tion, such as a bus, train, metro, tram, and city boat, within a middle-sized Scandinavian
city. Public transportation vehicles are equipped with BLE beacons that detect the smart-
phone of a passenger in proximity and broadcast their identifiers to the smartphone. All
the passengers have a ticketing app installed on their smartphones with a software de-
velopment kit (SDK) that allows the collection and sending of smartphone sensor data
along with contextual information. The raw passenger data are uploaded to a cloud-based
database and transformed in an extract, transform, and load (ETL) process, as shown in
Figure 2. By analyzing these data and using machine learning solutions, we have planned
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to define the mode of public transportation and whether the passenger is inside the public
transportation vehicle.

Figure 2. Current cloud-based architecture of the automatic ticketing scenario.

A big challenge here is uploading the data to a cloud-based database that can have
high latency because of network traffic or the size of data being uploaded to the cloud,
high operational costs, as well as security and privacy risks. To avoid these problems, we
can consider three solutions: one solution is performing all the analyses on the mobile
phone directly. Another solution is transferring the data to IoT devices, in this case, a
Raspberry Pi placed very close to the traveler’s smartphone, for instance, inside the public
transportation vehicle or at the public transportation stops, then the data will be analyzed
on these IoT devices rather than transferring the data to the cloud. Our last proposed
solution is implementing edge devices and servers at the cellular base stations.

For our scenario, the IoT layer corresponds to the public transportation, the edge
controller layer corresponds to the controller units of smartphones, the edge gateway layer
corresponds to the smart gateways, the edge server layer corresponds to the centralized
dispatching edge servers in certain cellular base stations, and the cloud layer corresponds
to the cloud computing platforms.

As the entity of the IoT layer, the smartphone is equipped with sensors, such as
a rotation vector, sounds, a magnetic field, a gyroscope, etc., to collect various sensor
data. Meanwhile, the smartphone is equipped with a variety of actuators to execute the
instructions from the upper layers.

As the entity of the edge controller layer, the controller units of smartphones are
responsible for collecting and recognizing data from different sensors, performing some
simple data filtering, data preprocessing and real-time threshold judgment, and transmit-
ting instructions based on the judgment or decision from the upper layers to various action
actuators of the IoT layer. For instance, when an error occurs, such as errors in the normal
working of a smartphone or in collecting sensor data or full memory errors, the controller
units must be able to provide ms-level feedback to the actuators to execute alarms.

The edge gateway layer (in our scenario Raspberry Pis close to the traveler’s smart-
phones) has more storage and computing resources than the edge controller layer and
is usually responsible for collecting data from smartphones, preprocessing, fusing, and
caching heterogeneous data, and performing corresponding heterogeneous computing.
This layer is also responsible for transferring control flow from the upper layers to the
edge controller layer. For example, when enough data are obtained from smartphones,
Raspberry Pi will perform the steps of data processing, aggregating, and analyzing the data
in the way of traditional big data analysis or emerging edge intelligence technologies. The
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data analysis log will also be saved for future use. The edge gateway layer can monitor and
optimize the parameters of different smartphones and identify errors in time. However, if
the amount of data is more than the storage capacity of Raspberry Pi or more complex data
analysis is required, the data will be transferred to the edge server layer.

As the entity of the edge layer, the area edge server can obtain all the data from
Raspberry Pis and perform more comprehensive and complex data analysis, especially
when there is a large amount of data, providing some real-time microservices. In addition,
the regional edge server must have platform management and application optimization
capabilities to manage the Raspberry Pis in the region to make reasonable and effective use
of their storage and computing resources and to implement process optimization based on
big data.

As the entity of the cloud layer, the cloud service platform obtains the data from edge
servers in different base stations and uses it for some top-level decisions and applications,
such as process optimization, etc.

In the next section, we will discuss in detail the benefits and disadvantages of these
approaches.

6.1. Major Security Threats and Attacks

We summarize the major security threats and attacks faced by edge computing in our
scenario. Then, we explore the corresponding defense mechanisms. In the next section, we
outline the main causes of the attacks and discuss the practicality of launching/defending them.

1. DDoS attacks and defense mechanisms: DDoS attacks are the most common and
easiest-to-exploit attacks in the practical world. Therefore, they are significant threats to
EC services as well. This attack is very dangerous, especially in scenarios where many IoT
devices are involved, such as in our scenario. Lack of suitable security or any vulnerability
in IoT devices (mobile phones, Raspberry Pis, and beacons in our scenario) can be misused
by attackers to launch a DDoS attack.

DDoS attacks targeting edge computing can be categorized as flooding-based attacks
and zero-day attacks. Flooding-based attacks aim to shut down the normal service of a
server using a large amount of flooded malformed/malicious network packets. Zero-day
DDoS attacks are more advanced than flooding-based DDoS, but they are more difficult to
implement. In such an attack, an unknown vulnerability in a piece of code running on the
target edge server/device must be fined by an attacker (i.e., zero-day vulnerability), which
can result in memory corruption and a service shutdown.

The detection of flooding-based DDoS attacks can be mainly classified into two cate-
gories: per-packet-based detection and statistics-based detection. Per-packet-based detections
detect flooding-based attacks at the packet level. A flooding-based DDoS attack is launched
mainly by sending an enormous amount of malicious/malformed network packets; there-
fore, detecting and filtering those packets is an effective defense. Statistics-based approaches
mainly detect DDoS attacks based on the advent of clusters of DDoS traffic. The existing
statistics-based detection solutions use either packet entropy or machine learning tools.

As per-packet-based detections were used in our scenario, we used packet filters and
firewalls against the flooding-based attacks. In addition, for statistics-based detections, we
used IDSs. Moreover, it is important to use secure firmware updates. We also considered
static analysis techniques to detect any vulnerability in our codes.

2. Side-channel attacks and defense mechanisms: defenses against side-channel attacks
can be performed by either restricting access to side-channel information or protecting
sensitive data from inference attacks.

In our scenario, we considered defense mechanisms such as data perturbation-based
techniques (e.g., differential privacy) and source code-level obfuscation and hardware pro-
tection to directly manipulate or restrict access to the side channels in order to
provide protection.
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3. Malware injection attacks and defense mechanisms: malware injection attacks in edge
computing can be classified into two categories: server-side injections (injection attacks
targeting edge servers) and device-side injections (injection attacks targeting edge devices).

The defenses against server-side injections are mainly based on the detection filter
philosophy, while code-level analysis for fine-grained access control and malicious behavior
detection is mainly used to defend against device-side injections.

To detect these attacks, we considered employing code checking with various schemes
such as static analysis, dynamic debugging, blackbox testing, and taint-based analysis; and
to prevent any illegal SQL queries from being executed, we considered setting up a proxy
filter and employing instruction-set randomization (ISR).

Malware injections attacking mobile devices exploit the design flaws of the mobile
OSes and the usage of malicious libraries. We used static analysis methods to identify
possible malicious uses of dangerous Android APIs. In addition, we considered using cryp-
tographic techniques, such as signature verification, as well as Trojan activation methods,
circuit modification/replacing, and prior testing.

Authentication and authorization attacks and defense mechanisms: other attacks that are
very common are authentication and authorization attacks [101]. These attacks can be
taxonomized into four types: dictionary attacks, attacks exploiting vulnerabilities in au-
thentication protocols, attacks exploiting vulnerabilities in authorization protocols, and
overprivileged attacks. The first two target authentication protocols, and the rest target
authorization protocols. In dictionary attacks, an attacker employs a credential/password
dictionary to crack the credential-enabled authentication system.

The defenses against dictionary attacks mainly focus on adding a stronger authentication
layer (e.g., two-factor authentication) or hardening the password verification processes,
and the defenses against the other three types of attacks mainly use the philosophy of
patching/strengthening the current protocols or conducting code-level analyses. Defending
against attacks exploiting the vulnerabilities in authentication protocols should either enhance
the security of the communication protocols or secure the cryptographic implementations.

Hardening authorization protocols: authorization in an edge computing infrastructure
is as important as the authentication system. Without a properly designed authorization
mechanism, an attacker can exploit the weaknesses in the authorization system as well.
OAuth 2.0 is a secure protocol that can be used. A common approach to defend against
overprivileged attacks against smartphone devices is strengthening the current permission
models adopted by mobile OSes.

7. Discussion

Cloud computing has been considered one of the major computing paradigms in the
field of information technology. This technological strategy offers consumers a smooth
communication connection to a system of huge, virtualized computing resources that can be
easily reconfigured for the scalable demands of users. Users can store their data in the cloud
and access/retrieve these data when they require it [172]. Using cloud computing, costs of
servicing and resource management involved with utilization have been deducted [173].
The cloud providers are responsible for maintaining and managing information over the
cloud storage. Despite all the advantages that cloud computing brings for its users, several
concerns have been raised: high latency for some time-sensitive applications, as well as
security and privacy of the data being transferred to the cloud, to name a few. These are
especially problematic in our scenario of automatic ticketing, in which a substantial amount
of sensitive real-time information is being collected from the traveler’s smartphone. In
addition, these data should be analyzed with the least latency to define the location of
travelers as well as the mode of public transportation.

To combat the mentioned problems of cloud computing, EC solutions have been
proposed. In EC, computations will be performed on the edge of the network close to
the smartphones of passengers in our scenario. Placing computation power close to the
edge reduces latency occurring during the data transition to/from the cloud and increases
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the speed of the transaction. Analyzing the data locally in EC protects the information of
users from security and privacy vulnerabilities related to the network or the closed system
of a service provider and, as a result, reduces the concerns related to sensitive data of a
traveler’s smartphone. The flow of data into central systems can be optimized, and the
volume of raw data can be retained at the edge; therefore, bandwidth and related costs
will be reduced. This is beneficial for automatic ticketing services and can help public
transportation companies to offer lower prices for their services. The data have been stored
and processed locally by edge devices and centers; this can overcome any intermittent
connectivity issues.

The first EC solution (mentioned in the previous section) of processing and analyses
of all the sensor data at the extreme edge (the smartphones of passengers themselves)
would not be possible practically because smartphones have limited computation power,
limited memory size, and limited battery life. Thus, we considered uploading the raw data
from the passenger’s smartphone to other powerful IoT devices such as Raspberry Pi. The
second solution, to a great extent, would reduce latency, operational costs, and security
and privacy concerns related to cloud-based solutions, as well as intermittent connectivity
issues. However, the limited computational power and storage of Raspberry Pi compared
with cloud computing servers can be an issue, especially if we have a huge, increased
amount of data to process; in this case, Raspberry Pi can communicate with the cloud-based
environment to access more computational and storage resources that would cause the
same problems of cloud-based computing solutions. Transferring the data to cellular base
stations equipped with edge servers that have more powerful storage and computation
resources, as well as a more secure environment, would be the best proposed solution. The
edge layer can send the data to the cloud to support applications such as comprehensive
enterprise management, product/process design, and further services, and gives feedback
models and microservices to the edge layer. Moreover, the data can be shared through
cloud collaboration among managers, cooperative enterprises, designers, or passengers to
achieve more pluralistic and deeper data value mining.

7.1. Major Security Threats and Attacks

1. DDoS attacks and defense mechanisms: protocol-level flaws caused by a lack of sufficient
security in the initial design are the main reason for flooding-based DDoS attacks. On the
other hand, the main reason for zero-day flooding attacks is code-level vulnerabilities.
Flooding-based attacks are easy to launch since the attacker only needs to create a large
number of malicious packets, which can be provided through compromised distributed
devices. However, zero-day attacks may not be very easy and common to launch since
discovering zero-day vulnerabilities in a system demands highly sophisticated analysis.
Nevertheless, launching a zero-day attack is still quite practical since it is difficult to avoid
code-level vulnerabilities, especially in large systems with millions of lines of code. It is even
harder to avoid such vulnerabilities in edge computing since edge devices are not usually
built with strong security software to avoid high costs and have a better user experience.

Countermeasures against DDoS attacks are still very limited. Per-packet-based detec-
tions (e.g., packet filters, firewalls, or some types of IDSs) against flooding-based attacks can
be either bypassed using more advanced DDoS attacks that, for instance, exploit address
spoofing or require maintaining a large list of authorized IP addresses that might need
frequent changes. On the other hand, statistics-based detections (e.g., IDSs) can identify
DDoS attacks only when groups of DDoS attacks have been sent to the target edge servers,
which can cause irreparable damages. Zero-day DDoS attacks are even harder to detect
and defend. Most of the offline detection countermeasures are not able to recognize the
exact type or location of the vulnerabilities, and if the DDoS attack shellcodes are encrypted
or intentionally modified, most of the real-time online defense mechanisms are barely able
to discover the attacks.

2. Side-channel attacks and defense mechanisms: the main reason for side-channel attacks
is hidden connections between publicly available side-channel data and sensitive data
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that should be protected [101]. Leaking of side-channel information is very common
and unavoidable. With the advances in machine learning and deep learning, achieving
a successful side-channel attack is becoming easier. Research shows that all kinds of
side-channel attacks can be practically launched in edge computing [174].

Side-channel attacks are very difficult to defend since they can be launched silently
and passively. Defense mechanisms such as data perturbation-based techniques (e.g.,
differential privacy) can be very effective and prevent attackers from deriving a user’s
sensitive data, but they may sacrifice the utility of the data [175], while there is still a
tradeoff between privacy protection and data utility for some particular applications.

In addition, defense mechanisms such as source code-level obfuscation and hardware
protection directly manipulate or restrict access to side channels in order to provide pro-
tection; however, it is not possible to use these solutions for any piece of side-channel
information, as most of this information is undetectable. Moreover, many of the existing
countermeasures are still vulnerable to side-channel attacks [176,177].

3. Malware injection attacks and defense mechanisms: the main reason for server-side
injections is protocol design flaws, while device-side injections mostly happen because
of code-level design flaws, as well as the adoption of device-level coarse-grained access
control [101]. Server-side injections are quite common and have been widely exploited
in the industry. Even though device-side injections are not as common as those at the
server-side, research shows that they can still be launched in practice.

The defense mechanisms against server-side injections are mainly based on the de-
tection filter philosophy, while code-level analysis for fine-grained access control and
malicious behavior detection is mainly used to defend against device-side injections. The
defense mechanisms against edge device malware injection/modification are not very
successful. There are no mature countermeasures defending against zero-day injections,
firmware modification attacks, and remote WebView infections. In addition, current so-
lutions such as code-level static analysis provide actions that cannot be used in real time;
therefore, they cannot prevent damage; moreover, they need full access to the firmware or
source codes, which may not be possible all the time. Some other defenses that are based
on weak signature verification are also ineffective. Therefore, defending against malware
injection attacks, especially on the edge device side, is still quite challenging.

Authentication and authorization attacks and defense mechanisms: attacks such as brute-force
attacks can be easily launched in edge computing systems with little or a reasonable amount
of effort. The main reason for brute-force attacks is credential weaknesses in authentication
protocols that can be defended by adding a stronger layer of authentication or hardening
the password verification processes. Other attacks, such as overprivileged attacks, occur
because of protocol/implementation-level flaws and can be defended by code-level analyses
or patching/strengthening the current protocols. Strengthening authentication security in
edge computing systems is critical, as it is the security entry point of a system. Most attacks
begin with breaking into the authentication of systems in the first place.

Defending against dictionary and brute-force attacks might be challenging. Attackers
may have their own resources to build their dictionaries/passwords that can have great
data to break the authentication system. It has been proven that mechanisms such as
two-factor authentication are not effective and can be broken practically. Attacks exploiting
the weaknesses of authentication/authorization protocols are not easy and need more effort
since the attacker should identify the vulnerabilities of the protocol and compromise the
edge servers, but by cracking an authentication/authorization protocol, attackers can break
into the system and then begin other attacks. Overprivileged attacks are quite common
in IoT and mobile devices, and there are many real-world overprivileged apps [178,179].
However, the corresponding countermeasures are generally not very effective.

8. Challenges of EC-Based IoT

As we discussed, there are numerous benefits to integrating edge computing to assist
IoT. In this section, we discuss the main challenges of EC-based IoT.
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1. System integration: a significant challenge in the edge computing environment is
supporting various kinds of IoT devices and different service demands. Edge computing is
a heterogeneous system and combines various platforms, network topologies, and servers.
Therefore, programming and managing resources and data for diverse applications running
on varying and heterogeneous platforms in different locations would be difficult. Another
challenge is deploying and managing the huge number of server-side programs on the
edge nodes.

In addition, since various storage servers are running with various operating systems,
file naming, resource allocation, file reliability management, etc., will be another challenge.
Moreover, the naming of data resources becomes another big challenge because of the
massive number of IoT devices generating and uploading data at the same time.

2. Resource management: because of decentralized resources in edge computing, the signifi-
cant heterogeneity of service providers, devices, and applications creates substantial complexity.

3. Security and privacy: edge computing consists of a complex interweaving of multiple
and varied technologies (peer-to-peer systems, wireless networks, virtualization, etc.) and
adopting a comprehensive, integrated system to safeguard and manage each technology
platform and the system as a whole is required. The security and privacy of distributed
structures are very challenging. With respect to privacy, privacy-sensitive information
associated with end users could be exploited during data processing at the edge.

With respect to security, one of the security problems of edge computing is authenticat-
ing gateways on different levels. Different edge nodes are managed by different owners, so
deploying an equivalent security strategy throughout would be difficult. Security in data
sharing and data transmission processes are also other key challenges for EC-based IoT. To
be able to perform many tasks with limited resources and a huge number of edge devices,
multiple devices should collaborate, and data need to be shared securely between edge
devices. In EC-based IoT, massive data are generated by numerous sensors and devices,
and different third-party suppliers provide all the storage. User data are outsourced to
those storage suppliers, whose storage devices are deployed at the edge of the network
and located at many different physical addresses. This increases the risk of attacks for
several reasons: first, ensuring data integrity is difficult; the data are separated into many
parts and are stored across different storage locations, so it is easy to lose data packets
or store incorrect data. Second, unauthorized users or adversaries may modify or abuse
the uploaded data in storage, which will lead to data leakage and other privacy issues.
Another important security challenge in EC-based IoT is maintaining security and privacy
in uploading computational tasks to edge computation nodes.

Blockchain can provide security for edge data sharing to some extent. However, since
the computing resources of edge devices are usually limited, the design and optimization
of edge IoT architecture based on blockchain are a great challenge, and more attention
should be paid to the direction of the edge IoT based on blockchain.

4. Advanced communication: with advances in communication technologies of future
5G cellular networks, including ultradense networks (UDNs), massive multiple input
and multiple output (MIMO), and millimeter-wave, further progress in edge computing
becomes inevitable with the integration of these technologies.

The challenges to applying 5G, as the next generation communication technology, in
edge computing in IoT focus on QoS, nodes management, and network slicing. The QoS
standards and schemes are different in 5G, and edge computing and common problems need
to be considered. A large number of 5G base stations helps to collect and manage edge node
information, but a suitable edge node management scheme should be carried out according to
local conditions. Multiple services can be deployed in parallel because of the network slicing
feature of 5G, but the architectures of different systems still need to be tailored according to
the actual situation. Furthermore, the hardware transformation of traditional equipment and
the remote maintenance schemes for 5G infrastructure also need attention.

5. Data offloading and load balancing are always very challenging in EC-based IoT
systems because of the huge number of devices, and the computing resources that need to
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be scheduled are too distributed. Therefore, data offloading and load balancing schemes
should be designed for special requirements.

6. Edge artificial intelligence provides new opportunities and challenges for data pro-
cessing at the edge of the system. The weak computing power of edge devices makes it
difficult to complete a large amount of computation quickly on edge devices. Moreover,
the model of edge artificial intelligence is usually complex and requires more computing
resources to complete the training and inference of the model.

9. Conclusions

In this article, we provided an overview of what edge computing is and what its
relationship/difference is with other similar computing paradigms, such as fog computing,
cloud computing, and others. We also extracted and summarized the major security
and privacy attacks in EC-based IoT, as reported in the literature, and the corresponding
countermeasures and solutions that can be applied to these attacks. Next, we proposed a
secure EC-based architecture for IoT infrastructure through relevant research achievements
concerning edge computing in IoT. In addition, we defined an IoT scenario related to
transport mode detection based on cloud computing, then presented two scenarios based on
edge computing for the defined IoT scenario and discussed the advantages/disadvantages
of scenarios based on edge computing and the scenario based on cloud computing. Last,
we discussed the most influential attacks that can occur as well as their corresponding
defense mechanisms that can be practically used in our scenario.
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